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Abstract

This paper is devoted to study the following nonlinear elliptic problem with Neumann boundary
condition, (Pµ) : −∆u + µu = Ku3 , u > 0 in Ω and ∂u/∂ν = 0 on ∂Ω where Ω is a smooth
bounded domain in R4, µ is a positive parameter and K is a C3 positive Morse function on
Ω. Using dynamical methods involving the study of Palais-Smale condition of the associated
variational structure J , we prove some existence results of (Pµ).
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1 Introduction

Let us consider the nonlinear Neumann elliptic problem:

(Pq,µ)

{
−∆u+ µu = uq, u > 0 in Ω

∂u
∂ν

= 0 on ∂Ω,
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where 1 < q < ∞, Ω is a smooth bounded domain in R4, µ is a positive parameter and ∂u
∂ν

is the
normal derivative of u.

It is well known that problem (Pq,µ) appears in several domains of applied sciences. For example,
in biological pattern formation, it was used as a steady-state equation for the shadow system of the
Gierer- Meinhardt system [1] and as parabolic equations in chemotaxis, (Keller-Segel model [2]).

For the subcritical case, i.e.q < n+2
n−2

, it was proved by Lin, Ni and Takagi [2] that, if µ is very small,
the only solution of this problem is the constant one, however they proved that this problem has
a nonconstant solutions which blow up at one or several points for large µ. concerning the critical
case, i.e. q = 5, it was shown that, the only solution of problem (Pq,µ) is the constant one when µ
is small and in convex domains [3].

Note that, many works has been devoted to study the solutions of problems of type (Pq,µ) with the
Dirichlet boundary conditions see for example [4], [5], [6], [7], [8], [9], [10].

In this paper, we study problem (Pq,µ) for fixed µ when n = 4 and the exponent q = 3 is critical:

(Pµ)

{
−∆u+ µu = Ku3, u > 0 in Ω

∂u
∂ν

= 0 on ∂Ω,

where K is a C3 positive Morse function on Ω.

Our goal is to to provide some sufficient conditions of the function K under which the problem (Pµ)
has a positive solution.

Before stating the theorems, we will introduce the following notations and assumptions.
For a ∈ Ω and λ > 0, let

δ(a,λ)(x) = c0
λ

1 + λ2|a− x|2

where c0 is chosen so that δ(a,λ) is the family of solutions of the following problem

−∆u = u3, u > 0, in R4.

(H1) Let y0 be a maximum of the function K1 = K|∂Ω and maxK(y)y∈Ω ≤ 2K1(y0).
(H2) c3

∂K
∂ν

(y0)− 4
3
πw2K1(y0)H(y0) < 0 where c3, w2 are constants defined bellow.

In the assumption (H2), we also denote by H for the mean curvature of the boundary of Ω .
In the first part of this work, we establish the following existence result.

Theorem 1.1. Suppose that the function K satisfy the assumptions (H1) and (H2). Then problem
(Pµ) has a solution under the level c∞ := (S4/2)

1/2K1(y0)
−1/2.

The proof of this theorem is based on the fact that the associate functional J does not satisfy the
Palais-Smale condition along the flow lines under the level c∞ defined at the point y0 which is in
the boundary. The same argument can be applied if the level c∞ defined at an interior point. This
is our aim in the second part of this paper.

(H3) Assume that y1 is a maximum of the function K in Ω and

maxK(y)y∈∂Ω ≤ K(y1)/2.

We have the following result

Theorem 1.2. We suppose that the assumption (H3) holds, the problem (Pµ) has a solution under
the level d∞ := (S4)

1/2K(y1)
−1/2.
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To briefly outline the remainder of the paper, we introduce the variational function associate to
the problem (Pµ) and present a basic preliminaries in Section 2. In Section 3, we give some careful
expansions of J associated to the problem (Pµ). The proofs of theorems will be carried out in
Section 4.

2 Preliminary Results

Let us define the following variational formulation corresponding to the problem (Pµ) :

J(u) =

∫
Ω
|∇u|2 + µ

∫
Ω
u2( ∫

Ω
K|u|4

)1/2 , u ∈ H1(Ω). (2.1)

It is well known that the critical points of this variational formulation J are solutions of problem
(Pµ) up to constant multipliers. In the sequel, we will assume that the space H1(Ω) is equipped
with the norm ∥.∥ and its corresponding inner product ⟨., .⟩ defined by

∥w∥2 =

∫
Ω

|∇w|2 + µ

∫
Ω

w2, and ⟨w, v⟩ =
∫
Ω

∇w∇v + µ

∫
Ω

wv, w, v ∈ H1(Ω)

We set Σ = {u ∈ H1(Ω) / ∥u∥2 = 1} and Σ+ = {u ∈ Σ / u ≥ 0}.

Note that the functional J defined by (2.1) does not satisfy the Palais-Smale condition on Σ+.
Many authors have studied the failure of The Palais-Smale condition for J (see Brezis-Coron [11],
Lions [12], Rey [13], Struwe [14]).

In the following we will describe the sequences that fail the Palais-Smale condition for J .
For ε > 0 small enough and p ∈ N∗, we define

V (p, ε) =
{
u ∈ Σ+/∃ a1, ..., ap ∈ Ω,∃λ1, ..., λp > 0, s.t. ||u−

p∑
i=1

K(ai)
− 1

2 δi|| < ε,

λi > ε−1, εij < ε and λidi < ε or λidi > ε−1
}

where δi = δ(ai,λi), di = d(ai, ∂Ω) and ε−1
ij = λi/λj + λj/λi + λiλj |ai − aj |2.

Proposition 2.1. (see [15], [12] and [16]) We suppose that there is no critical point of J in Σ+

and let (ur) ∈ Σ+ be a sequence such that J(ur) is bounded and ∇J(ur) → 0. Then, there exist an
extracted subsequence of ur, denoted also (ur), a sequence εr > 0 (εr → 0) and an integer p ∈ N∗

such that uk ∈ V (p, εk).

For sake of simplicity, we will suppose, in the sequel, that If u ∈ V (p, ε), then

λidi < ε when i ≤ q and for i > q, ε−1 < λidi.

3 Some Useful Estimations

In this section, we will study the Euler functional J associated to problem (Pµ). We will determine
some expansions of J which are useful in the proof of our results.

3



Bouh; BJMCS, 14(4), 1-8, 2016; Article no.BJMCS.24037

Proposition 3.1. For ε > 0 small enough and u =
∑p

i=1 K(ai)
− 1

2 δ(ai,λi) ∈ V (p, ε), we have the
following expansion

J(u) =(
S4

2
)1/2

( q∑
i=1

K(ai)
−1 + 2

p∑
i=q+1

K(ai)
−1
)1/2[

1 +
c3
θ

∑
i≤q

1

λiK(ai)2
∂K

∂ν
(ai)−

4πw2

3θ

∑
i≤q

H(ai)

λiK(ai)

+O

(∑
r ̸=k

εkr +
∑
i>q

1

(λidi)3
+ µ

∑
i

log λi

λ2
i

)]
,

where

θ =
S4

2

( q∑
i=1

K(ai)
−1 + 2

p∑
i=q+1

K(ai)
−1
)

; S4 =

∫
R4

δ4(0,1) ;

w2 =

∫
R4

δ4(0,1)y
2 ; c3 =

∫
R4

x4dx

(1 + |x|2)4

Proof. We have

J(u) =

∫
Ω
|∇u|2 + µ

∫
Ω
u2( ∫

Ω
K|u|4

)1/2 =
N

D1/2
, u ∈ H1(Ω). (3.1)

∫
Ω

| ∇u |2=
∑
i

∫
Ω

K(ai)
−1 | ∇δi |2 +

∑
i ̸=j

∫
Ω

K(ai)
−1/2K(aj)

−1/2∇δi∇δj (3.2)∫
Ω

u2 =

∫
Ω

(
∑
i

K(ai)
−1/2δi)

2 =
∑
i

∫
Ω

K(ai)
−1δ2i +

∑
i̸=j

∫
Ω

K(ai)
−1/2K(aj)

−1/2δiδj (3.3)

So

N =
∑
i

∫
Ω

K(ai)
−1 | ∇δi |2 +µ

∑
i

∫
Ω

K(ai)
−1δ2i +O

(∑
i̸=j

∫
Ω

∇δi∇δj + 2
∑
i̸=j

∫
Ω

δiδj
)

D =

∫
Ω

Ku4 =

∫
Ω

K(
∑
i

K(ai)
−1/2δi)

4 =
∑
i

K(ai)
−2

∫
Ω

Kδ4i +O
(∑

i̸=j

∫
Ω

δ3i δj
)

On the other hand, we have∫
Ω

|∇δi|2 =
S4

2
− 5

3
πw2

H(ai)

λi
+O(

1

λ2
i

) for i ≤ q (3.4)∫
Ω

Kδ4i =
S4

2
K(ai)−

2

3
πw2

H(ai)

λi
K(ai)−

2c3
λi

∂K

∂ν
(ai) +O

( 1

λ2
i

)
(3.5)∫

Ω

|∇δj |2 = S4 +O(
1

λ2
j

) for j > q (3.6)∫
Ω

Kδ4j = S4K(aj) +O
( 1

λ2
j

)
(3.7)∫

Ω

∇δj∇δi = O
(
εij
)

;

∫
Ω

Kδ3j δi = O
(
εij
)

; 3

∫
Ω

Kδjδ
3
i = O

(
εij
)

(3.8)

We have also ∫
Ω

δ2i = O
( log λi

λ2
i

)
, and

∫
Ω

δjδi = O(εij). (3.9)

4



Bouh; BJMCS, 14(4), 1-8, 2016; Article no.BJMCS.24037

Thus,

N =
∑
i≤q

K(ai)
−1(S4

2
− 5

3
πw2

H(ai)

λi

)
+
∑
i>q

K(ai)
−1S4

+O
(
µ
∑
i

log λi

λ2
i

+
∑
i ̸=j

εij +
∑
i≤q

1

λ2
i

+
∑
i>q

1

(λidi)3

)
=

S4

2

(∑
i≤q

K(ai)
−1 + 2

∑
i>q

K(ai)
−1)− 5

3
πw2

∑
i≤q

K(ai)
−1H(ai)

λi

+O
(
µ
∑
i

log λi

λ2
i

+
∑
i ̸=j

εij +
∑
i≤q

1

λ2
i

+
∑
i>q

1

(λidi)3

)
=

S4

2

(∑
i≤q

K(ai)
−1 + 2

∑
i>q

K(ai)
−1
)(

1− 5πw2

3θ

∑
i≤q

K(ai)
−1H(ai)

λi

)
+O

(
µ
∑
i

log λi

λ2
i

+
∑
i ̸=j

εij +
∑
i≤q

1

λ2
i

+
∑
i>q

1

(λidi)3

)
and

D =
∑
i≤q

K(ai)
−2
[
K(ai)

S4

2
− 2c3

λi

∂K

∂ν
(ai)−

2πw2K(ai)

3λi
H(ai)

]
+
∑
i>q

K(ai)
−1S4 +O

(∑
i̸=j

∫
Ω

δ3i δj
)

=
S4

2

(∑
i≤q

K(ai)
−1 + 2

∑
i>q

K(ai)
−1
)
−
∑
i≤q

K(ai)
−2
[2c3
λi

∂K

∂ν
(ai) +

2πw2K(ai)

3λi
H(ai)

]
+O

(∑
i̸=j

∫
Ω

δ3i δj
)

=
S4

2

(∑
i≤q

K(ai)
−1 + 2

∑
i>q

K(ai)
−1
)(

1− 2

θ

∑
i≤q

K(ai)
−2
[ c3
λi

∂K

∂ν
(ai) +

πw2K(ai)

3λi
H(ai)

]

+O
(∑

i̸=j

∫
Ω

δ3i δj
))

So

D− 1
2 =

(S4

2

[∑
i≤q

K(ai)
−1 + 2

∑
i>q

K(ai)
−1
])− 1

2

(
1 +

1

θ

∑
i≤q

K(ai)
−2
[ c3
λi

∂K

∂ν
(ai) +

πw2K(ai)

3λi
H(ai)

]

+O
(∑

i̸=j

∫
Ω

δ3i δj
))

Using the formula of N and D−1/2, the proof follows.

Proposition 3.2. Let y0 be defined in Theorem 1.1. For λ0 large enough, we have

J(δ(y0,λ0)) ≤ c∞(1− cλ−1
0 )

Proof. From Proposition 3.1, we have

J(δ(y0,λ0)) =
( S4

2K(y0)

)1/2[
1 +

2

S4K1(y0)λ0

(
c3

∂K

∂ν
(y0)−

4πw2

3
K1(y0)H(y0)

)
+O

(
µ
log λ0

λ2
0

)]

5



Bouh; BJMCS, 14(4), 1-8, 2016; Article no.BJMCS.24037

where θ = S4
2K1(y0)

.

Using the assumption (H2), the proof follows.

Proposition 3.3. For ai ∈ Ω such that λidi is very large, we have

J(δ(ai,λi)) = S
1/2
4 K(ai)

−1/2(1 + o(1)).

Proof. From Proposition 3.1, we have

J(δ(ai,λi)) =
( S4

K(ai)

)1/2[
1 +O

( 1

(λidi)3
+ µ

log λi

λ2
i

)]
Hence, the proof follows.

4 Proof of Our Results

Proof of Theorem 1.1

Using the fact that K1(y0) = maxK1(y), we get

c∞ = (S4/2)K1(y0)
−1/2 < (S4/2)K1(y)

−1/2 for each y ∈ ∂Ω.

In addition, the assumption (H1) gives c∞ < S4K(y)−1/2 for each y ∈ Ω.

Thus, we derive that all the levels of the critical points at infinity are above c∞.

Furthermore, using Propositions 3.1, 3.2 and 3.3, we deduce that J(u) ≥ c∞(1− cε), ∀u ∈ V (p, ε),
p ≥ 1. Hence, we can always choose ε such that for a fixed λ0

J(δ(y0,λ0)) < J(u), ∀u ∈ V (p, ε), p ≥ 1. (4.1)

We argue by contradiction, assuming that under the level c∞(y0) there is no solution of (Pµ).
Let u(s) be the solution of the following equation

∂u

∂s
= −∇J(u) , u(0) =

δ(y0,λ0)

∥ δ(y0,λ0) ∥

Observe that (4.1) implies that u(s) ̸∈ V (p, ε), for each p ≥ 1.

Thus, for each s ≥ 0, we have | ∇J(u(s)) |≥ c (c depends only on ε). Indeed, if there exists a
subsequence (sk) such that ∇J(u(sk)) → 0 with the fact that J(u(sk)) is bounded this implies that
u(sk) ∈ V (p, ε). Therefore,

∂J(u(s))

∂s
= − | ∇J(u(s)) |2≤ −c2 , for each s ≥ 0.

Then, we get J(u(s)) goes to −∞ when s goes to ∞, this we derive a contradiction.

Proof of Theorem 1.2

Using the fact that K(y1) = maxK(y), we get d∞ = S4K(y1)
−1/2 < S4)K(y)−1/2 for each y ∈ Ω.

In addition, the assumption (H1) gives d∞ < (S4/2)K1(y)
−1/2 for each y ∈ ∂Ω.

Thus, from Propositions 3.1, 3.2 and 3.3, we derive that, for a fixed λ1, we can choose ε so that

J(u) > J(δ(y1,λ1)), for each u ∈ V (p, ε), p ≥ 1. (4.2)

Now, we argue by contradiction and using the same argument in the proof of Theorem 1.1, it is
easy to deduce the proof of Theorem 1.2.
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5 Conclusion

Thus its been concluded that under some assumptions on the function K, there exists solutions
of the nonlinear Neumann elliptic problem (Pµ) under levels defined at some boundary or interior
points.
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