
British Journal of Mathematics & Computer Science

22(5): 1-12, 2017; Article no.BJMCS.34009

ISSN: 2231-0851

Geodesically Complete Lie Algebroid

Mahamane Saminou Ali1, Mouhamadou Hassirou2∗

and Bazanfare Mahaman2
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Abstract

In this paper we introduce the notion of geodesically complete Lie algebroid. We give a
Riemannian distance on the connected base manifold of a Riemannian Lie algebroid. We also
prove that the distance is equivalent to natural one if the base manifold was endowed with
Riemannian metric. We obtain Hopf Rinow type theorem in the case of transitive Riemannian
Lie algebroid, and give a characterization of the connected base manifold of a geodesically
complete Lie algebroid.

Keywords: Lie algebroid; Riemannian metric and distance; geodesically complete structure.

2010 Mathematics Subject Classification: 53B20, 53C12, 53C22, 53D17, 58D17.

1 Introduction

Lie groupoids and Lie algebroids are an important and active domain of research in differential
geometry [1, 2, 3, 4, 5].
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Lie algebroids were first introduced by J. Pradines as the infinitesimal counterpart of the notion of
Lie groupoid. The notion generalizes the tangent bundle and Lie algebra. Hence, one can study on
Lie algebroids a lot of notion of differential geometry. As examples, we have covariant derivative by
Fernandes [6], Lagrangian mechanic by A. Weinstein, integrability by M. Crainic and R.L. Fernandes
[7].

M. Boucetta [1] introduced in 2011, the notion of Riemannian metric on Lie algebroid as a
generalization of a Riemannian metric on a vector bundle. Hence, he studies the Levi-Civita
connection of a Riemannian Lie algebroid and shows the existence of two tensors similars to those
introduce by O’Neill in the contexte of Riemannian submersion (see [8] for more detail). He also
studies the geodesic flow of Riemannian Lie algebroid. As in the classic case, he defines the Sasaki
metric and computes the divergence of geodesic flow with respect to this metric. He also states the
first and the second variations formulas and introduces Jacobi sections along a geodesic. He studies
the curvature of Riemannian Lie algebroid and generalizes some classics results, namely Mayers
theorem. At last, he states the study of integrability of Riemannian Lie algebroids; for instance,
he shows that the vanishing of one of the O’Niell’s tensors implies the integrability, and he gives a
large class of Riemannian Lie algebroids which satisfy this condition.

Our aim in this paper is to rewrite some notions known on Riemannian geometry. Here, we give the
notion of geodesically complete Lie algebroid. We will also give a new Riemannian distance on the
connected base manifold of a Riemannian Lie algebroid, like in the case of Riemannian geometry.
This distance is induced by the Riemannian metric of Lie algebroid. Thus, we give the like Hopf
Rinow theorem.

The paper is organised as follow. After an introduction given in the first section, the second section
deals with the basic facts on Lie algebroid and Riemannian Lie algebroid. In the third section, we
give a caracterisation of A-geodesics curves and their relationship with base manifold’s one. The
fourth section deals with geodesically complete Lie algebroid. Thus, after introducing the notion of
maximal A-geodesics and the notion of geodesically complete Lie algebroid, we give a caracterisation
of this class of Lie algebroid. In the last section, we show the existence of Riemannian distance on
the connected base of a Riemannian Lie algebroid. This distance is induced by the Riemannian
metric of the Lie algebroid. Thus for a transitive Riemannian Lie algebroid p : A → M with
anchor map ♯ and Riemannian metric g, we show that this metric and the classical one obtained by
Riemannian manifold are equivalent. Then at last, we give Hopf Rinow type theorem on transitive
Riemannian Lie algebroid and its application for caracterising the leaves of a caracteristic foliation.

2 Some Basic Facts on Riemannian Lie Algebroid

Most of notions introduced in this section come from Boucetta [1] and from J.-P. Dufour and N. T.
Zung’ s book [9].

2.1 Definition and first properties

A Lie algebroid is a vector bundle p : A → M such that :

• the sections space Γ(A) carry a Lie structure [, ];

• there is a bundle map ♯ : A → TM named anchor;

• For all a, b ∈ Γ(A) and f ∈ C∞(M), then

[a, fb] = f [a, b] + ♯(a)(f)b (1)

Note that a Lie algebroid is said to be transitif if the anchor is surjective.
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The anchor ♯ satisfy:

♯[a, b] = [♯(a), ♯(b)]

where a, b ∈ Γ(A) and the bracket in the right is the natural Lie bracket of vector bundle. We have
also:

[fa, b] = f [a, b]− ♯(b)(f)a (2)

and

[fa, gb] = fg[a, b] + f(♯(a)(g))b− g(♯(b)(f))a (3)

for any a, b ∈ Γ(A) and f, g ∈ C∞(M)

In [6], R. Fernandes gives a local splitting of a lie algebroid.

Theorem 2.1. ([6])(local splitting) Let x0 ∈ M be a point where ♯x0 has rank q. There exists
a system of cordinates (x1, · · · , xq, y1, · · · , yn−q) valid in a neighborhood U of x0 and a basis of
sections {a1, · · · , ar} of A over U , such that

♯(ai) = ∂xi (i = 1, · · · , q),

♯(ai) =
∑
j

bij∂yj (i = q + 1, · · · , r),

where bij ∈ C∞(U) are smooth functions depending only on the y′s and vanishing at x0 : bij =
bij(ys), bij(x0) = 0. Moreover, for any i, j = 1, · · · , r,

[ai, aj ] =
∑
u

Cu
ijau

where Cu
ij ∈ C∞(U) vanish if u ≤ q and satisfy

∑
u>q

∂Cu
ij

∂xs
but = 0.

2.2 A-connection on Lie algebroid

The notion of connection on Lie algebroids were first introduced in the context of Poisson geometry
namely by Vaisman in [10] and R. Fernandes in [11, 6]. It’s appeared as a natural extension of the
usual connection on fiber bundle (covariant derivative).

Let E → M be a vector bundle. An A-connection on the vector bundle E → M is an operator
∇ : Γ(A)× Γ(E) → Γ(E) satisfying:

1. ∇a+bs = ∇as+∇bs for any a, b ∈ Γ(A) and s ∈ Γ(E);

2. ∇a(s1 + s2) = ∇as1 +∇as2 for any a ∈ Γ(A) and s1, s2 ∈ Γ(E);

3. ∇fas = f∇as for any a ∈ Γ(A), s ∈ Γ(E) and f ∈ C∞(M);

4. ∇a(fs) = f∇as+ ♯(a)(f)s for any a ∈ Γ(A), s ∈ Γ(E) and f ∈ C∞(M).

Remark 2.1. The notion of A-connection is a generalization of the notion of the usual linear
connection on a vector bundle. Lot of classic notions associate with covariant derivative can be
written in the case of Lie algebroid.

Definition 2.1. Let p : A → M be a Lie algebroid with anchor map ♯. An A-path on A is a smooth
path α : [t0, t1] → A such that:

♯(α) =
d

dt
p(α(t)) (4)

The curve γ : [t0, t1] → M defined by γ(t) = p(α(t)) is the base path of α.
An A-path α is said to be vertical if ♯(α) = 0 for all t ∈ [t0, t1].
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Note that any A-path lies on a fixed leaf of the algebroid.

Hence one can define a space of smooths applications s : [t0, t1] → E, which have the same base
path with α. This applications are called α-sections and the space of α-sections is denoted Γ(E)α.
This notion plays a crucial role in the study of parallel transport on Lie algebroid.

Proposition 2.1. [1] There exists an unique map ∇α : Γ(E)α → Γ(E)α satisfying :

1. ∇α(c1s1 + c2s2) = c1∇αs1 + c2∇αs2, c1, c2 ∈ R,
2. ∇αfs = f ′s+ f∇αs where f : [t0, t1] → R is a smooth function.

3. if s̃ is a local section of E which extends s and ♯(α(t)) ̸= 0 then ∇αs(t) = ∇α(t)s̃+
d
dt
s(t);

4. if s̃ is a local section of E which extend s and α is vertical then ∇αs(t) = ∇α(t)s̃.

For introducing the notion of parallel transport, Boucetta sets the folowing definition

Definition 2.2. • An α-section s is said to be parallel along α if ∇αs = 0.

• The parallel transport along α is denoted by:

τ t
α : Eγ(t0 → Eγ(t),

and τ t
α(s0) = s(t) where s is the unique parallel α-section satifying s(0) = s0.

If α0 ∈ Ax and s is a section of E in a neighborhood of x one can check easily that

∇α0s =
d

dt |t=0

(τα)
−1(s(γ(t))) (5)

where α is any A-path satisfying α(0) = α0.

Then we can introduced the notion of linear A-connection.

Definition 2.3. Let p : A → M be a Lie algebroid. A linear A-connection D is an A-connection
on the vector bundle A → M

If (x1, · · · , xn) is a system of local coordinates in a neighborhood U ⊂ M in which {a1, · · · , ar} is
a base of sections of Γ(A), then the Christoffel’s symbols of the linear connection D can be defined
by:

Daiaj =
r∑

k=1

Γk
ijak.

The most interesting fact of this notion is one can ask about her relationship with the natural
covariant derivative. The answer giving by Fernandes in [[6]] is relative to the notion of compatibility
with Lie algebroid structure.

Definition 2.4. A linear A-connection D is compatible with the Lie algebroid structure of A if
there is a linear connection on TM (covariant derivative) ∇ such that

♯D = ∇♯

Proposition 2.2. [7] Every Lie algebroid admits a compatible linear connection.

Remark 2.2. There is another notion of compatibility between linear A-connection and Lie algebroid
structure introduced by Boucetta in [1] which is less stronger than the above one. A linear A-
connection D is strongly compatible with the Lie algebroid structure if, for any A-path α, the parallel
transport τα preserves Ker♯. A linear A-connection D is weakly compatible with the Lie algebroid
structure if, for any vertical A-path α, the parallel transport τα preserves Ker♯.
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Proposition 2.3. [1]

1. A linear A-connection is strongly compatible with Lie algebroid stucture if and only if, for
any leaf L and any sections α ∈ Γ(AL) and β ∈ Γ(Ker♯L), Dαβ ∈ Γ(Ker♯L).

2. A linear A-connection D is weakly compatible with the Lie algebroid structure if and only if,
for any leaf L and any sections α ∈ Γ(Ker♯L) and β ∈ Γ(Ker♯L), Dαβ ∈ Γ(Ker♯L).

2.3 Riemannian metric

A Riemannian metric on a Lie algebroid p : A → M is the data, for any x ∈ M , of a scalar product
<,>x on the fiber Ax such that, for any local sections a, b ∈ Γ(A), the function < a, b > is smooth.

Morever, one can define the Levi-civitaA-connection which is the linearA-connectionD characterized
by the following properties:

1. D is metric, i.e., ♯(a) < b, c >=< Dab, c > + < b,Dac >,

2. D is torsion free, i.e., Dab−Dba = [a, b].

This Levi-civita A-connection satisfay the following formula :

2 < Dab, c > = ♯(a) < b, c > +♯(b) < a, c > −♯(c) < a, b >

+ < [c, a], b > + < [c, b], a > + < [a, b], c >

The Christoffel’s symbols of the Levi-civita A-connection are defined, in a local coordinates system
(x1, · · · , xn) over a trivializing neighborhood U of M where Γ(A) admits a local basis of sections
{a1, · · · , ar}, by:

Γk
ij =

1

2

r∑
l=1

n∑
u=1

gkl(biu∂xu(gjl) + bju∂xu(gil)− blu(gij))

+
1

2

r∑
l=1

r∑
u=1

gkl(Cu
ijgul + Cu

liguj + Cu
ljgui)

where the structures functions bsi, Cu
st ∈ C∞(U) are given by

♯(as) =

n∑
i=1

bsi∂xi (s = 1, ...., r)

and

[as, at] =

r∑
u=1

Cu
stau (s, t = 1, ..., r),

gij =< ai, aj > and (gij) denote the inverse matrix of (gij).

3 A-geodesic Curves

Definition 3.1. Let p : A → M be a Lie algebroid with a linear A-connection D. An A-geodesic is
an A-path α which satisfy :

Dαα = 0

In local coordinate this A-geodesic are characterized by differential equations as shown by the
following proposition.
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Proposition 3.1. [1] Let (x1, . . . , xn) be a locals coordinates system on an open subset U of M
and {a1, . . . , ar} a local base of sections on U . An A-path is an A-geodesic if : for all i = 1, . . . , n
and j = 1, . . . , r one has:

ẋi(t) =

r∑
j=1

α(t)bji(x1(t), · · · , xn(t)), (6)

α̇j(t) = −
r∑

s,u=1

αs(t)αu(t)Γ
j
su(x1(t), · · · , xn(t)); (7)

where α(t) =
∑r

i=1 αi(t)ai is the local expression of α and p(α(t)) = (x1(t), · · · , xn(t)) is the local
expression of the base path.

Remark 3.1. Note here that for all x ∈ M and a0 ∈ Ax there is an unique A-geodesic α such that
α(0) = a0 and p(α(0)) = x.

Moreover, as consequence of the definition 2.4, the following theorem can be mentioned

Theorem 3.1. Let p : A → M be a Lie algebroid with anchor map ♯. Let D be a linear A-connection
compatible with Lie algebroid structure. If α is an A-geodesic, then her base path is a TM-geodesic.
Moreover if ♯ is injective then for all x ∈ M there is an A-geodesic α such that p(α(0)) = x.

Proof. Let α be an A-geodesic with base path γ. Then we have:

Dαα = 0 ⇒ ♯(Dαα) = 0

Since ♯D = ∇♯ and ♯(Dαα) = ∇♯α♯α one has :

∇γ̇ γ̇ = ∇♯α♯α = 0.

For all x ∈ M and X ∈ TxM there is a TM -geodesic γ such that γ(0) = x and γ̇ = X. Since p is a
surjection there is an A-path α such that d

dt
p(α(t)) = γ̇. Hence ♯(α) = γ̇

thus

∇γ̇ γ̇ = ∇♯α♯α = ♯Dαα = 0

As ♯ is injective one has Dαα = 0.

4 Geodesically Complete Lie Algebroid

As in the classic case, we will call maximal A-geodesic, an A-geodesic which is defined on all R. The
existence of this notion can be found with an application of the theorem 3.1 in the case of maximal
A-geodesic. Hence one has the following lemma.

Lemma 4.1. Let p : A → M be a Lie algebroid with anchor map ♯. If ♯ is injective then for all
x ∈ M there is a maximal A-geodesic α such that p(α(0)) = x.

Proof. For all x ∈ M and Xx ∈ TxM there is a maximal TM -geodesic γ such that γ(0) = x and
γ̇ = Xx. As from the proposition 3.1 there is an A-geodesic α such that γ is the base path and
α(0) = a0. Since γ is maximal then α is also maximal.

Remark 4.1. Any maximal A-geodesic induces a maximal TM-geodesic

Thus, we can set the definition of a geodesically complete Lie algebroid
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Definition 4.1. A Lie algebroid p : A → M is said to be geodesically complete if any A-geodesic is
maximal.

Theorem 4.1. Let p : A → M be a Lie algebroid with anchor map ♯. If the anchor is injective,
then the following assertions are equivalent:

1) A is geodesically complete;

2) M is goedesictally complete.

Proof. 1) ⇒ 2). For x ∈ M,a0 ∈ Ax. Let γ be a TM -geodesic such that γ(0) = x, from the lemma
there is an A-geodesic α such that α(0) = a0 and with base path γ. Since α is defined in R, one
has γ defined in R.
2) ⇒ 1). For all x ∈ M and a0 ∈ Ax. Let α be an A-geodesic such that α(0) = a0. Here base path
γ is a TM -geodesic.

5 Riemannian Distance

Let p : A → M be a Lie algebroid with anchor map ♯ and g be a Riemannian metric on A. Suppose
M be a connected manifold. We denote by Ωxy the set of smooth path γ : [0, 1] → M such that
γ(0) = x and γ(1) = 1; and by Ω̃xy the set of A-path α with base path γ ∈ Ωxy.

Proposition 5.1. For any x, y ∈ M the set Ω̃x,y of A-path with end points x and y is not empty.

Proof. For any x, y ∈ M the set Ωxy of paths on M is not empty. Either for any path, γ ∈ Ωxy

there is an A-path α such that γ is the base path of α, then α ∈ Ω̃xy.

The most important fact is that we can compute the length of any A-path α ∈ Ωxy like in the
classic case of Riemannian manifold. Which give the following definition.

Definition 5.1. Let α : [0, 1] → A be an A-connection with base path γ such that p(α(0)) = x and
p(α(1) = y, then the length L(α) of α is given by:

L(α) =
∫ 1

0

(g(α(t), α(t))
1
2 dt (8)

Now, we can set.

d(x, y) = inf{L(α), α ∈ Ω̃xy} (9)

Then we have the following proposition.

Proposition 5.2. d is a distance on M , ie:

1. d(x, y) ≥ 0 with equality if x = y;

2. d(x, y) = d(y, x);

3. d(x, y) ≤ d(x, z) + d(z, y).

Proof. 1. Supposed d(x, y) = 0 with x ̸= y. Let Ux be an open neighborhood of x ∈ M . Then
∀ϵ > 0 there is an A-path α ∈ Ω̃xy such that L(α) < ϵ
thus ∀n ∈ N there is αn ∈ Ω̃xy such that L(αn) <

1
n

then we have

lim
n→∞

L(αn) = 0 ⇒ lim
n→∞

∫ 1

0

(g(αn, αn))
1
2 dt = 0
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with the continuty of the integrale and the Riemannian metric one has

|α| = lim
n→∞

|αn| = 0 ⇒ ♯α = 0

⇒ γ̇ = 0

⇒ γ = constant

then x = y. Contradiction.

2. It’s easy to see here as in the classic case of Riemannian manifold, that if α is an A-path
with base path γ and ϕ : [t0, t1] → [t0, t1], t 7→ t0 + t1 − t then the A-path α ◦ ϕ with base
path γ ◦ ϕ is the inverse A-path of α. Moreover, α and α ◦ ϕ have the same length. And, if
α is in Ωxy then α ◦ ϕ is in Ωyx.

3. Let α1 : [t0, t1] → A and α2 : [t1, t2] → A be two A-path. Then the union A- path α :
[t0, t2] → A of α1 and α2 (α = α1 ∪ α2) is such that L(α) = L(α1) + L(α2). Suppose that
α1 ∈ Ωxz and α2 ∈ Ωzy, then α ∈ Ωxy. Hence, one has d(x, y) ≤ L(α1) + L(α2). With the
infimum, one has the inequality.

Now, let ♯ be surjective. For any x ∈ M , we denote by Gx the kernel of ♯x. Since g is non-degenerate,
one has :

Ax = Gx ⊕ G⊥
x .

Then we have the following proposition.

Proposition 5.1. The restriction of ♯x to G⊥
x is an isomorphism into TxM .

Proof. Since ♯ is surjective then for all x ∈ M , ♯x is surjective. Let αx, βx ∈ G⊥
x such that

♯x(αx) = ♯x(βx). Then one has:

♯x(αx) = ♯x(βx) ⇒ ♯x(αx − βx) = 0 ⇒ αx − βx ∈ Gx

Since g is non-degenerate, one has αx − βx = 0 and αx = βx.

Moreover, for any x ∈ M and any Xx, Yx ∈ TxM let’s set:

g̃x(Xx, Yx) = gx(αx, βx) (10)

where αx, βx ∈ G⊥
x such that ♯x(αx) = Xx and ♯x(β) = Yx. Then we have a scalar product g̃x

on TxM . This scalar product give rise to a Riemannian metric g̃ on M . Hence, it’s induced
Riemannian distance d̃ on M . One of the important fact of this construction is that, we have the
following equality:

A = G ⊕ G⊥.

As Boucetta gives it in [1].

Proposition 5.2. For any path γ on M there is an A-path on G⊥ and L(γ) = L(α).

Proof. Since ♯ is locally bijective on G⊥ into TM one has

L(γ) =
∫ b

a

(g̃(γ̇(t), γ̇(t)))
1
2 dt =

∫ b

a

(g(α(t), α(t)))
1
2 dt = L(α)

8
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It’s clear that for any A-path α and α the restriction of α on G⊥ we have :

L(α) ≤ L(α).

And we have the following proposition

Proposition 5.3. Let p : A → M a transitive Riemannian Lie algebroid with anchor map ♯ and
Riemannian metric g. Then, the induces Riemannian distances d and d̃ are equivalent on M .

Proof. Let x, y ∈ M and α ∈ Ωxy with base path γ. then one has:

L(α) =

∫ 1

0

√
g(α, α)dt

=

∫ 1

0

√
g(α⊥, α⊥) + g(α⊤, α⊤)dt

where α = α⊥ + α⊤ with α⊤ ∈ G⊥ and α⊥ ∈ G. Then

L(α) ≥
∫ 1

0

√
g(α⊤, α⊤) = L(γ)

With the infimum, one has :

d(x, y) ≥ d̃(x, y) (∗)

In the other hand, one has

L(α) =

∫ 1

0

√
g(α⊥, α⊥) + g(α⊤, α⊤)dt

≤
∫ 1

0

√
g(α⊥, α⊥)dt+

∫ 1

0

√
g(α⊤, α⊤)dt

≤
∫ 1

0

√
g(α⊤, α⊤)dt+ λ

∫ 1

0

√
g(α⊤, α⊤)dt

≤ (1 + λ)

∫ 1

0

√
g(α⊤, α⊤)dt

with the infimum, one has

d(x, y) ≤ (1 + λ)d̃(x, y) (∗∗)

At last with (∗) and (∗∗), one has

d̃(x, y) ≤ d(x, y) ≤ (1 + λ)d̃(x, y)

Theorem 5.1. Let p : A → M be a geodesically complete Riemannian and transitive Lie algebroid
with anchor map ♯ and Riemannian metric g. If M is connected, them it’s a complete metric space.
Hence, any closed and bounded subset of M is compact.

Proof. Since A is geodesically complete then with the remark 4.1 and the proposition 5.1, one can
say that M is geodesically complete. From the above construction, there is an induced Riemannian
metric g̃ and an induced Riemannian distance d̃. With the Hopf Rinow’s theorem we have the
following equivalent assertions

1. M is geodesically complete;

9
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2. (M, d̃) is complete;

3. any bounded and closed subset of M is compacte.

The following corollary is a consequense of theorem 5.1. It gives a part of the Hopf Rinow theorem
on a Riemannian transitive Lie algebroid with base manifold connected.

Corollary 5.1. Let p : A → M be a Riemannian Lie algebroid with anchor map ♯ and Riemannian
metric g. If ♯ is injective and M is a connected manifold, then the following assertions are equivalent
:

1. (A, g) is geodesically complete.

2. (M,d) is complete.

3. Any closed and bounded subset of M is compact.

Proof. By using theorem 4.1, one has 1) ⇔ 2) and the Hopf Rinow theorem gives the last equivalence.

As an application of the theorem 5.1 we have the following corollary. It’s also a consequence of this
theorem.

Corollary 5.2. Let p : A → M be a Riemannian geodesically complete Lie algebroid with anchor
map ♯. Any connected, bounded and closed Leaf of a characteristic foliation is compact and complete.
Moreover, if L is connected, then any closed and bounded subset of L is compact.

Proof. Any leaf L of a characteristic foliation of a Lie algebroid induces a transitive Lie algebroid
pL : AL → L which anchor map is the restriction of the Lie algebroid’s anchor to AL. We conclude
with the theorem 5.1.

6 Example

1. If A = TM then, we have the tangent Lie algebroid. The metric g is a Riemannian metric
on the manifold M . Moreover, if M is connected then we have, for all A-path α with base
path γ, ♯α = γ̇. As ♯ = idTM , then α = γ̇. Hence

L(α) =
∫ 1

0

√
g(α(t), α(t))dt =

∫ 1

0

√
g(γ̇, γ̇)dt = L(γ)

then d = d̃
It’s clear that the geodesically complete structure of A is the natural geodesically complete
structure of the Riemannian manifold (M, g).

2. Let (M,ω) be a symplectic manifold, then there is a Lie algebroid structure on T ∗M induced
by:

• a Lie bracket of differential 1-form on Γ(T ∗M) defined by the isomorphism Π̃ = ω̃−1 :
T ∗M → TM such that ω̃(u) = ω(u, ·).

• the anchor map ♯ = −Π̃.
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The structure is called symplectic Lie algebroid structure (see [12] for more details). For any
A-path α, with base path γ, one has ♯α = γ̇. Since Π is an isometry, then the metrics g and
g̃ are related by g(α, β) = g̃(♯α, ♯β) and we have:

L(α) =

∫ 1

0

√
g(α(t), α(t))dt

=

∫ 1

0

√
g̃(♯α(t), ♯α(t))dt

=

∫ 1

0

√
g̃(γ̇(t), γ̇(t))dt

= L(γ)

and d = d̃.
The geodesically complete structure of A is equivalent to the natural geodesically complete
structure of the Riemannian manifold.

3. If A = T ∗M , and M is a Poisson manifold with Poisson bivector π, then we have the Lie
algebroid of the Poisson manifold (T ∗M, [, ]π, ♯) [10]. Moreover, if g̃ is a Riemannian metric
on M , then there is a natrural isometry, ♯g̃ : T ∗M → TM , which generalises this metric to
T ∗M by : g(α, β) = g̃(♯g̃(α), ♯g̃(β)) [13] and for all A-path α, with base path γ, we have
♯α = γ̇ and ♯g̃α = γ̇. Then,

L(α) =

∫ 1

0

√
g(α(t), α(t))dt

=

∫ 1

0

√
g̃(♯g̃α(t), ♯g̃α(t)dt

=

∫ 1

0

√
g̃(γ̇(t), γ̇(t))dt

= L(γ).

Thus, we have d = d̃. Therefore, there is a natural equivalence between the geodesically
complete structure of A and the geodesically complete structure of M .
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