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Abstract 
 

Numerous plant diseases caused by pathogens like bacteria, viruses, fungi protozoa and pathogenic 
nematodes are propagated through media such as water, wind and other intermediary carries called 
vectors, and are therefore referred to as vector borne plant diseases.  
Insect vector borne plant diseases are currently a major concern due to abundance of insects in the tropics 
which impacts negatively on food security, human health and world economies. Elimination or control of 
which can be achieved through understanding the process of propagation via Mathematical modeling.  
However existing models are linear and rarely incorporates climate change parameters to improve on 
their accuracy.  Yields of plants can reduce significantly if they are infected by vectors borne diseases 
whose vectors have very short life span without necessarily inducing death to plants. Despite this, there is 
no reliable developed mathematical model to describe such dynamics.  
This paper formulates and analyzes a dynamical nonlinear plant vector borne dispersion disease model 
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that incorporates insect and plant population at equilibrium and wind as a parameter of climate change, to 

determine 0R , local and global stability in addition to sensitivity analysis of the basic reproduction 

number 0R .  

 
 
Keywords: Basic reproduction number; sensitivity analysis; disease free equilibrium point (DFEP); 

endemic equilibrium point (EEP); local and global stability. 
 

1 Introduction 
 
Numerous plant diseases caused by pathogens namely: bacteria, viruses, fungi, protozoa and pathogenic 
nematodes are spread through media such as water, wind and other intermediary carriers called vectors, and 
are thus referred to as vector borne diseases [1].  
 
Diseases that spread from one host to another are called infectious diseases, most of which are very 
destructive to plants and animals. Vector borne plant diseases have important transmission properties which 
include: survival rate of the vector, reproduction rate of the vector, time of the year and vectors / insects 
activity level specifically biting rate, rate of development and reproduction of pathogen on the vector 
amongst others [2]. 
 
The most common vectors are insects such as aphids, whiteflies, plant hoppers and leafhoppers with aphids 
as the most important group. Aphids have been estimated to cause 70% of the vector borne plant diseases 
[3]. 
 
Vectors (insects) are susceptible to external environmental influences which include the climate change and 
affect the spread of plant diseases. The climate parameters that vary include temperature, precipitation 
(humidity) and wind. 
 
Climate change could first affect disease directly by either decreasing or increasing the encounter rate 
between the vectors and hosts by changing the ranges of the two species.  
 

Disease severity should be positively correlated with increase in virulence and aggressiveness of the vector. 
These two effects on disease will be mediated by host resistance and encounter rates which are potentially 
affected by climate change. 
 

Mathematical models provide a powerful tool used to understand the dynamics of disease spread through a 
population and in decision making in regards to disease prediction and disease control [4]. Empirical models 
like regression models and deterministic models with climate variables as predictors and epidemic 
parameters as response variables are used to predict the success of the hosts and vectors across the range of 
conditions with a possibility of extrapolation when the mechanism of the relationship is clearly understood. 
Simulation models based on theoretical relationships are used to predict outcomes under a range of scenario. 
 

Kermack and McKendrick in [5] developed a classical model for micro parasite host interactions in 
mammals which forms the basis of plant epidemiological models. The first models of temporal development 
of epidemic plant diseases were developed by Van der Plank in [6] and have formed the basis for plant 
disease modeling. Subsequently, various models have been developed. Earlier theories on vector- borne 
diseases in [7,8,9,10,11] highlight the importance of the direct interactions between the vector’s dynamics 
and disease prevalence in the host. The focus in this work is on the dynamics of the vector host disease 
system without considering the dynamics of the enemies of the vector.  
 

There have also been many studies modeling specific crop diseases and biological controls. For example 
Tomato leave curl virus in India in [11] and Cassava mosaic virus in sub – Saharan Africa in [12] and in 
both cases the climate change factors were not considered. 
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Other researchers have studied the biological control of the vectors to reduce disease incidences using 
models. Gourley in [9] developed a model to investigate how pulsed application of biological larvicides or 
chemical insecticides on different life stages affects disease prevalence. Wei [13] modeled vector borne 
diseases with horizontal transmission and time delay while Cui developed and analyzed a simple vector- host 
epidemic model with direct transmission [14]. 

 

The above three models were extended by Lashari and Zama in their study of the global and back bifurcation 
of a vector borne disease model with horizontal transmission in host population [15]. Moore in [16] 
developed a model to determine how a predator of the vector affects the prevalence of a vector-borne disease 
in the absence of predators. Zhou in [4] improved on Moore’s model [16] by developing a model to study 
the disease control threshold and limit cycles with persistence of disease or without disease. However, both 
[4,16] focus was on total host population dividing host and vector into susceptible and infectious. Lawrence 
and Wallace in [17] modeled the spatiotemporal dynamics of African Cassava Mosaic disease in which he 
incorporated wind but as an agent to the movement of the vector. Clearly the climate change variables have 
been modeled in isolation in any given model. We want to develop a general model to investigate the effect 
of a combination of the climate change factors on the spread of vector –borne plant diseases. 

 

The research developed a Mathematical model incorporating the climatic change variables to be used to 
evaluate the dynamics of vector- borne diseases in plants. The climate change variables, temperature and 
precipitation influence the biting rate (a) are considered under the parameter for biting rate while wind was 
factored  in as an agent to the movement of the vector, emigration or immigration hence incorporated in the 

model as  q . Climate induced death to insects was also examined. Since insects have very short life 

spans, the study developed a deterministic general model for the perennial plant disease with assumption that 
vectors reproduce very fast and attain equilibrium.  The plant population is constant. Section 2 describes 
model development. Section 3 describes model analysis where also basic reproduction will be determined 
using the next generation method and analytical global stability by the Lyapnov method. Finally Section 4 
expounds  results. 

 

2 Model Development 

 
The model development begins with model description, model assumption, flow chart and listing of model 
equations. 

 

2.1 Model description 

 
Let N�(t) and N�(t) be the total population of the vectors and plants respectively. The plant population is 
subdivided into three compartment classes: susceptible plant classS�(t) , exposed plant classE�(t)  and 
infected plant classI�(t). The vector population is subdivided into two compartment classes: susceptible 
vector classS� (t)and infected plant classI�(t). 

 

The recruitment rate of plants and vectors are given by m
�

 and π respectively. The rates at which E�(t) 

recover naturally to S�(t)  is given by  . Climate induced death occur at a rate δ  in 
S�(t) and ��(t)respectively. The constant natural death rate in subclasses S�(t), E�(t)and I�(t) is given 
bym

�
. The rate at which E�(t) progresses to I�(t)ist. The constant natural death rate in subclasses S�(t)and 

I�(t) is given bym
�

. The immigration and emigration rate of vector is given byq, this implies that q can be 

either be positive or negative. The infection rates for plants and vectors are β
�
and β

�
respectively while the 

vector biting rate is given by a. 
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2.2 Model assumptions 
 
The model was formulated under the following assumptions; 
 

i. Homogeneous mixing of the plants and vectors. 
ii. It is possible for exposed plants to recover from natural immunity. 

iii. The plant population is constant while vector population is not constant. 
iv. Rate of immigration and emigration is constant and can be estimated. 
v. Vector population is assumed to increase very fast and then attain equilibrium. 

vi. Effects of competitions from other vectors are assumed to be insignificant. 
vii. The susceptible plants are infected when they come into contact with infected insect vectors. 

viii. Susceptible insect vectors become infected only when they get in contact with an infected plant and 
exposed plants. There is no vertical infection through birth and from insect to insect directly. 

 
Modification parameter k is such that � ≥ 1, implying that the climate factors increases force of infection. 
 

2.3 Flow chart diagram and the model equations 
 
We considered the five state variables and parameters described in section 2.1 and model assumptions listed 
in section 2.2 to represent the model flow chart diagram in the Fig. 1 in the next page; 
 

 
 

Fig. 1. Flow chart diagram of the ISIES model 

 
The model was described by the following differential equations draw from the flow diagram 
 

dS�

dt
= m

�
N� + E� − �kλ� + m

�
�S�                                                                                                            (1) 

 
dE�

dt
= kλ�S� − � + t + m

�
�E�                                                                                                                    (2) 
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dI�

dt
= tE� − m

�
I�                                                                                                                                              (3) 

 
dS�

dt
= pN� ± qS� − �kλ� + d + m

�
�S�                                                                                                      (4) 

 
dI�

dt
= kλ�S� ± qI� − �d + m

�
�I�                                                                                                                 (5) 

 
where 
 

N�(t) = S�(t) + I�(t), N�(t) = S�(t) + E�(t) + I�(t), λ� = ab
�

I� and λ� = ab
�

(E� + hI�). 

 

The insects have very short life span, they reproduce within a very short time and therefore it is plausible to 
assume the dynamics of the insects analyzed at steady states. We equated equations (4 − 5) to zero to obtain 
the expressions below at steady state, 

 

��
∗ = ��

∗ + ��
∗;��

∗ =
p��

∗

kλ� + d + m
�

± q
; ��

∗ =
kλ�p��

∗

�kλ� + d + m
�

± q��d + m
�

± q�
; 

λ�
∗ =

ab
�
kλ�p��

∗

(kλ� + d + m
�

± q)(d + m
�

± q)
 

 

After substituting λ�
∗  at steady state, the system of equations(1 − 5) reduces to; 

 

dS�

dt
= m

�
N� + E� − �

ab
�

��p��
∗λ�

(kλ� + d + m
�

± q)(d + m
�

± q)
+ m

�
� S�                                                                                                  (6) 

 

dE�

dt
=

ab
�

��p��
∗λ�S�

(kλ� + d + m
�

± q)(d + m
�

± q)
− � + t + m

�
�E�                                                                 (7) 

 

dI�

dt
= tE� − m

�
I�                                                                                                                                              (8) 

 

With initial conditions as, S�(0) =  (S�)�, E�(0) =  (E�)� and I�(0) =  (I�)� . The sum of system of 

equations [(6) − (8)] which is the rate of change of total population is given by 
���

��
= 0. 

 

3 Model Analysis 

 
We analyzed the model by proving various theorems and carrying out algebraic computation dealing with 
different attributes. 

 

3.1 Positivity and boundedness of the solutions 

 
We proved positivity and boundedness by stating and proving the theorem below. 

 

Theorem1: The region Z given by Z = {S�(t), E�(t), I�(t)ЄR� 
� ;N� = C} is positively invariant and 

attracting with respect to model system [(6) − (8)], 
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Proof. 
 
Let { S�(t), E�(t) and I�(t)}  be any solutions of the system with non-negative initial conditions         
{S�(0) ≥  0, E�(0) ≥ 0, I�(0) ≥ 0,}. 
 

Since,���

��
= m

�
N� + E� − �

�b���p��
∗λ�

(�λ��d�m�± q)(d�m�± q)
+ m

�
� S�, it follows that  . On 

integration, we obtained S�(t) = e
∫ ��

�b���p��
∗ λ�(�)

(�λ�(�)�d�m�± q)(d�m�±q)
�m����

�
�

≥ 0 . Clearly, 

S�(t) = e
∫ ��

�b���p��
∗ λ�(�)

(�λ�(�)�d�m�± q)(d�m�±q)
�m����

�
�

is a non-negative function of t, thus S�(t) stays positive. 
 

The positivity of E�(t) and I�(t)was proved along the same lines hence considering equation (7) 
���

��
≥

− � + t + m
�

�E�  on integratingE�(�) = ������t�m��� , where ��  is a constant of integration. Applying 

initial condition we obtain �� = E�(0). Hence E�(�) = E�(0)����t�m��� and E�(�) = E�(0)����t�m���   ≥
0. 
 
Similarly,I�(t) = I�(0)e�m�� ≥ 0. 
 

Taking the time derivative of our total population along its solution path gives 
���

��
=

���

��
+

���

��
+

���

��
= 0, 

 
This implies that, N�(t) = C,where � is the constant of integration. 
 
Hence, lim�→∞ N(t) = C 
 
This proves the boundedness of the solutions inside Z and implies that all the solutions of our system [(6) −
(8)], starting in Z and will remains in Z for all t ≥ 0. Thus Z is positively invariant and attracting, and hence 
it is sufficient to consider the dynamics of our system in Z. This completes the proof. 
 

3.2 Disease-free equilibrium point (DFEP) 
 
The disease-free equilibrium point (DFEP) of the system [(6) − (8)], was obtained by setting all 
theE� and I� classes to zero to obtain μN� − μ��

� = 0which yields,��
� =  N�. 

 
The DFEP for our system is given by E� = (��

�, ��
�, ��

�) = (N�, 0,0). 
 
The DFEP (E�) is the infection free equilibrium point of the system [(6) − (8)], which indicates that in 
absence of insects, the system [(6) − (8)] will consist of one compartment class. 
  

3.3 The basic reproduction number (Ro)  
 
We used the next-generation matrix method to determine the basic reproduction number (R0) of the model 
Carlos Castillo-Chavez in [18]. Using the notation ƒ for a matrix of new infections terms and � for the 
matrix of the remaining transfer of infection terms in our system, we obtained 
 

ƒ = �

ab
�

��p��
∗λ�S�

(kλ� + d + m
�

± q)(d + m
�

± q)

0

� and v = �
� + t + m

�
�E�

− tE� + m
�

I�
�. 
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We then obtained the matrices F and V by finding the Jacobian matrices of ƒ and �  evaluated at DFEP 
respectively.  

� = �

��b
�
b

�
��p��

∗N�

(d + m
�

± q)�

��b
�
b

�
��p��

∗hN�

(d + m
�

± q)�

0 0

� ��� � = �
 + t + m

�
0

− t m
�

�. 

 

We computed  ���  the inverse of V hence ��� = �

�

�t�m�

0

t

m�(�t�m�)

�

m�

�. 

 
The eigenvalues of the matrix (����) are 
 

q(1) = 0 andq(2) =
��b

�
b

�
��p��

∗N�

(d + m
�

± q)�( + t + m
�

)
+

��b
�
b

�
��p��

∗htN�

m
�

(d + m
�

± q)�( + t + m
�

)
. 

 
The basic reproduction number (R�) is given by the spectral radius ζ (the dominant eigenvalue) of the matrix 
FV −1 denoted by ζ  hence 
 

R� = ζ(F���) =
��b

�
b

�
��p��

∗N�

(d + m
�

± q)�( + t + m
�

)
�1 +

ht

m
�

�. 

 
The basic reproduction number(R�) is the average number of susceptible plants which can be infected by an 
infected insect in absence of interventions. 
 

3.4 Existence of endemic equilibrium point for the model (EEP) 
 
We state and prove the following theorem 
 
Theorem 2: A positive endemic equilibrium exists whenever R� > 1. 
 
Proof. 
 
Let the endemic equilibrium point be �∗ = (��

∗, ��
∗, ��

∗)  and the force of infection at equilibrium point 

beλ�
∗ = ab

�
(��

∗ + h��
∗). The system of equation (6)– (8)were equated to zero then solved in terms of λ∗  to 

obtain; 
 

��
∗ =

m
�

N�[kλ�
∗ (d + m

�
± q) + �d + m

�
± q�

�
]

ab
�

��p��
∗λ�

∗ + m
�

[kλ�
∗ (d + m

�
± q) + �d + m

�
± q�

�
]

+
[kλ�

∗ (d + m
�

± q) + �d + m
�

± q�
�

]��
∗

ab
�
��p��

∗λ�
∗ + m

�
[kλ�

∗ (d + m
�

± q) + �d + m
�

± q�
�

]
 

 

��
∗ =

ab
�

��p��
∗λ�

∗m
�

N�

� + t + m
�

�{ab
�
��p��

∗λ�
∗ + m

�
[kλ�

∗ (d + m
�

± q) + �d + m
�

± q�
�
]} − ab

�
��p��

∗λ�
, 

 

��
∗ =

tab
�

��p��
∗λ�

∗m
�

N�

m
�

[� + t + m
�

�{ab
�

��p��
∗λ�

∗ + m
�

(kλ�
∗ (d + m

�
± q) + �d + m

�
± q�

�
)} − ab

�
��p��

∗λ�]
, 
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λ�
∗ =

λ�
∗m

�
R�(d + m

�
± q)�( + t + m

�
)

� + t + m
�

�{ab
�
��p��

∗λ�
∗ + m

�
[kλ�

∗ (d + m
�

± q) + �d + m
�

± q�
�

]} − ab
�

��p��
∗λ�

 

λ�
∗ = 0, Corresponds to DFE, while the expression for λ�

∗  below correspond to endemic equilibrium point. 
 

λ�
∗ =

m
�

�d + m
�

± q�
�

� + t + m
�

�(R� − 1)

� + t + m
�

��ab
�

��p��
∗ + m

�
�k�d + m

�
± q��� − ab

�
��p��

∗
 

 

Since � + t + m
�

��ab
�
��p��

∗ + m
�

�k�d + m
�

± q��� − ab
�
��p��

∗ > 0,  the condition necessary and 

sufficient for λ�
∗ > 0  is m

�
�d + m

�
± q�

�
� + t + m

�
�(R� − 1) > 0  that is R� > 1 . That completes the 

proof. 
 
The endemic equilibrium point (EEP) for our system E∗ = (��

∗, ��
∗, ��

∗)  is obtained by substituting,   

λ�
∗ =

m��d�m�± q�
�

��t�m��(����)

��t�m����b���p��
∗�m����d�m�± q�����b���p��

∗
 in ��

∗, ��
∗ ��� I�

∗. 

 

3.5 Local stability of the disease free equilibrium point (DFE) 
 
To determine the local stability of the disease free equilibrium point we stated and proved the following 
theorem. 
 
Theorem 3: The DFEP of the system [(6) − (8)]is locally asymptotically stable R� < 1 and unstable 
otherwise. 
 
Proof. 
 
To establish the local stability of the system[(6) − (8)], we used the Jacobian of the model evaluated at  �∗

�. 
Stability of this steady state was then determined based on the signs of eigenvalues of the corresponding 
Jacobian which are functions of the model parameters. The Jacobian matrix evaluated at disease free 
equilibrium point E� is obtained as 
 

�(E�) =

⎝

⎜
⎜
⎛

−
ab

�
��p��

∗N�

(d + m
�

± q)�
+ m

�
−

a�b
�
b

�
��p��

∗N�

(d + m
�

± q)�
+  −

a�b
�
b

�
h��p��

∗N�

(d + m
�

± q)�

0
a�b

�
b

�
��p��

∗N�

(d + m
�

± q)�
− � + t + m

�
�

a�b
�
b

�
h��p��

∗N�

(d + m
�

± q)�

0 t − m
� ⎠

⎟
⎟
⎞

 

 
Using the Mathematica software the eigenvalues of the matrix �(E�) are; 
 

�(1) = −
ab

�
��p��

∗N�

(d + m
�

± q)�
+ m

�
, 

 �(2) =
1

2
(− t −  − 2m

�
+

R�m�
�t +  + m

�
�

ht + m
�

− �(t + )� +
2�(− 1 + 2h)t − �R�m�

�t +  + m
�

�

ht + m
�

+
R�

�m
�

��t +  + m
�

�
�

�ht + m
�

�
� )), 
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q(3) =
1

2
(− t −  − 2m

�
+

R�m�
�t +  + m

�
�

ht + m
�

 )

+ �(t + )� +
2�(− 1 + 2h)t − �R�m�

�t +  + m
�

�

ht + m
�

+
R�

�m
�

��t +  + m
�

�
�

�ht + m
�

�
�  

Clearly, �(1) < 0 . We used Mathematica software to make R� the subject of the expressions for 
q(2) and q(3) as below, 
 

1

2
(− t −  − 2m

�
+

R�m�
�t +  + m

�
�

ht + m
�

)

<  �(t + )� +
2�(− 1 + 2h)t − �R�m�

�t +  + m
�

�

ht + m
�

+
R�

�m
�

��t +  + m
�

�
�

�ht + m
�

�
�  

 
We found that condition necessary and sufficient for q(2) ��� q(3) to be less than zero is R� < 1. This 
completed the proof. 
 

3.6 Global stability of the disease free point 
 
To prove the global stability, we stated and proved the following theorem. 
 
Theorem 4: The conditions necessary and sufficient for the DFE to be globally asymptotically stable in 

Lyapunov senseare �
m�

t
+ h� ≤ 0 or 

�b���p��
∗ ��

���

��(���h��)�d�m�± q��d�m�± q�
�
m�

t
+ h� < m

�

(�����
� )�

��
+ m

�
I� + I�

m�
�

t
+

m
�

N�
��

�

��
+ E�

��
�

��
 and unstable otherwise. 

 
Proof. 
 
We proposed the following Lyapunov function for the system [(6) − (8)] 
 

L(S�, E�, I�) = S� − ��
� − ��

���
��

��
� + E� + ��I�                              (9) 

 

L(S�, E�, I�) is positive definite and satisfies  the conditions. For  
��(��,��,��)

��
  to be negative definite, it must 

satisfy 
 

dL(S�
�, E�

�, I�
�)

dt
= 0 and 

dL(S�, E�, I�)

dt
< 0 

 
Where, ��and ��were positive constants to be determined. The time derivative of the Lyapunov function is 
obtained as, 
 

��(��,��,��)

��
= �1 −

��
�

��
�

���

��
+ �� �1 −

��
�

��
�

���

��
+ ��

���

��
,             (10) 

 

On substituting for 
���

��
,

���

��
 and 

���

��
 in equations (6) -(8)  and considering m

�
N� = m

�
��

� we obtained; 
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dL(S�, E�, I�)

dt

= − m
�

(S� − S�
�)�

S�

− �t + m
�

�E� + ���tE� − m
�

I�� − m
�

N�

��
�

S�

− E�

��
�

S�

+ �
ab

�
��p��

∗(E� + hI�)

�k(E� + hI�) + d + m
�

± q��d + m
�

± q�
� ��

� 

 
 
Setting E� to zero we obtain 
 

− �t + m
�

� +
ab

�
��p��

∗��
�

�k(E� + hI�) + d + m
�

± q��d + m
�

± q�
+ ��t = 0. 

 

�� = 1 +
m

�

t
−

ab
�

��p��
∗��

�

t�k(E� + hI�) + d + m
�

± q��d + m
�

± q�
 

 
Then 
 

dL(S�, E�, I�)

dt
= − m

�

(S� − S�
�)�

S�
− m

�
I� − I�

m
�

�

t
− m

�
N�

S�
�

S�
− E�

S�
�

S�

+
ab

�
K�pN�

∗S�
�I�

�k(E� + hI�) + d + m
�

± q��d + m
�

± q�
�
m

�

t
+ h�, 

 

The conditions necessary and sufficient for 
��(��,��,��)

��
< 0 are 

�
m�

t
+ h� ≤ 0 or +

�b���p��
∗ ��

� ��

��(���h��)�d�m�± q��d�m�± q�
�
m�

t
+ h� < m

�

(�����
� )�

��
+ m

�
I� + I�

m�
�

t
+ m

�
N�

��
�

��
+ E�

��
�

��
.  

This completed the proof. 
 

3.7 Bifurcation analysis 
 
This bifurcation was explored using the Centre Manifold theory in [19]. The change of variables was first 
made for simplicity. Let S� = y�, E� = y� and I� = y�, so that, 
 

N�  =  y�  +  y�  +  y�.  
 
Further, by using vector notation, y =  ( y�, y�, y�)�, the insect vector disease model[(6) − (8)]was written 

in the form 
��

��
= �(�), with F = (p�, p�, p�)�, as follows: 

 

y�̇ = p� = m
�

N� + y� − �
�b���p��

∗λ�
∗∗

(�λ�
∗∗�d�m�± q)(d�m�± q)

+ m
�

� y�,                        (11) 

 

y�̇ = p� =
�b���p��

∗λ�
∗∗��

(�λ�
∗∗�d�m�± q)(d�m�± q)

− � + t + m
�

�y�                                         (12) 

 
y�̇ = p� = ty� − m

�
y�                                                                                                  (13) 

 
With λ�

∗∗ = ab
�
(y� + hy�). 
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The method entailed evaluating the Jacobian of the system [(9) − (11)] at the disease free equilibrium 

point, by J(E∗
�) , has eigenvalues�−

��t�m��m�

��b��m��ht�
+ m

�
, −

��t�m��ht�htm��m�
�

m��ht
 , 0� , denoted by �(�∗

�) . This 

gave: 
 

J(E∗
�).=

⎝

⎜
⎜
⎛

−
ab

�
∗��p��

∗N�

(d + m
�

± q)�
+ m

�
−

a�b
�
∗b

�
��p��

∗N�

(d + m
�

± q)�
+  −

a�b
�
∗b

�
h��p��

∗N�

(d + m
�

± q)�

0
a�b

�
∗b

�
��p��

∗N�

(d + m
�

± q)�
− � + t + m

�
�

a�b
�
∗b

�
h��p��

∗N�

(d + m
�

± q)�

0 t − m
� ⎠

⎟
⎟
⎞

 

We considered the case where R� = 1. Suppose, further, that b
�

= b
�
∗is chosen as a bifurcation parameter. 

Solving for �∗ from R�
∗ = 1 gives  

 

b
�
∗ =

�d + m
�

± q�
�

� + t + m
�

�m
�

��b
�

��p��
∗N��m

�
+ ht�

 

 

Using Mathematica software the Jacobian of  
��

��
= F(y) at the disease free equilibrium point, with β = β∗, 

denoted by J(E∗
�), has eigenvalues �−

��t�m��m�

��b��m��ht�
+ m

�
, −

��t�m��ht�htm��m�
�

m��ht
, 0�. We obtained one zero 

eigenvalue and two negative eigenvalues hence, the Centre Manifold theory was used to analyze the 
dynamics of the model [19].  
 
Eigenvectors of Jβ∗: For the case, when R� = 1 it can be shown that the Jacobian[J(E∗

�)] at b
�

= b
�
∗(denoted 

byJβ∗) has a right eigenvector given by u = [u�, u�, u�]� , where, 

 

u� =
−

��b�
∗b���p��

∗����

(d�m�± q)� −
��b�

∗b�h��p��
∗����

(d�m�± q)� + u�

�b�
∗��p��

∗��

(d�m�± q)� − m
�

< 0, u� = u� > 0, u� =
tu�

m
�

> 0, 

 
Further, Jβ∗ has a left eigenvector(v = [v�, v�, v�]), where, 

 

v� = 0,   v� = v� > 0, v� =

��b�
∗b�h��p��

∗����

(d�m�± q)�

m
�

> 0. 

 
Since(v� =  0), we only need to compute the partial derivatives of p� and p� (at the disease free equilibrium 
point). For the system [(9) − (11)]the associated non-zero partial derivative of f�  (at the disease free 
equilibrium) is given by 
 

����

��� ���
=

����

��� ���
=

��b�b���p��
∗

�d�m�± q�
�   and 

����

��� ���
=

����

��� ���
=

��b�b�h��p��
∗

�d�m�± q�
� .    

 
This implies that, 
 

r = � v�u�u�

∂�p�

∂x� ∂x�

�

�,���

, 
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r = �v�u�u�

a�b
�
b

�
��p��

∗

�d + m
�

± q�
� + v�u�u�

a�b
�
b

�
��p��

∗

�d + m
�

± q�
� + v�u�u�

a�b
�
b

�
h��p��

∗

�d + m
�

± q�
�

+ v�u�u�

a�b
�
b

�
h��p��

∗

�d + m
�

± q�
� �. 

 

Since u� are less than zero, it follows that, 
 

r = 2v� �u�u�

∂�p�

∂y� ∂y�
+ u�u�

∂�p�

∂y� ∂y�
� < 0. 

 

Also, 

� = ∑ ����
����

�����∗
(0,0)�

�,����   

 

∂�p�

∂y� ∂b
�
∗ =

a�b
�

��p��
∗N�

(d + m
�

± q)�
; 

∂�p�

∂y� ∂b
�
∗ =

a�b
�

��ph��
∗N�

(d + m
�

± q)�
 

 

q = � v�u�

∂�p�

∂y� ∂b
�
∗ =

�

���

v�u�

∂�p�

∂y� ∂b
�
∗ + v�u�

∂�p�

∂y� ∂b
�
∗, 

 

q = 2v� �u�

a�b
�
��p��

∗N�

(d + m
�

± q)�
+ u�

a�b
�

��ph��
∗N�

(d + m
�

± q)�
�. 

 
Since v�, u� and u� were greater than zero it followed that, q > 0. 
 
Hence, from the theorem of Castillo-Chavez and Song in [18] and considering the following general system 

of ordinary differential equations with a parameter  b
�
∗ it follows that when b

�
∗ <  0  with �b

�
∗� ≪ 1, (0,0) is 

unstable, and there exists a negative and locally asymptotically stable equilibrium; when 0 < b
�
∗ ≪ 1, (0,0) 

is stable and there exists a positive unstable equilibrium. 
 

3.8 Global stability of the endemic equilibrium point (EEP) 
 
To determine global stability we stated and proved the following theorem. 
 
Theorem 6: The conditions necessary and sufficient for the EEP to be globally asymptotically stable in 

Lyapunov sense is  
��(��,��,��)

��
≤ 0 is � > � and unstable otherwise,  

 
where, 
 

P = m
�

(S� − ��
∗)�

S�

+ {1 +
m

�

t
}m

�
I�} +

ab
�

��p��
∗(E� + hI�)S�

�kλ� + d + m
�

± q��d + m
�

± q�

+ �
��b

�
b

�
��p��

∗(��
∗ + h��

∗)

�kab
�
(��

∗ + h��
∗) + d + m

�
± q��d + m

�
± q�

� ��
∗

��
∗

S�

+ 
��

∗

S�

E� + {1 +
m

�

t
}t

��
∗E�

I�

, 

 

 

� =
��b

�
b

�
��p��

∗��
∗

�kab
�
(E� + hI�) + d + m

�
± q��d + m

�
± q�

{E� + hI�

S���
∗

E�

+ 
��

∗��
∗

S�

+ {1 +
m

�

t
}m

�
��

∗

+ �t + m
�

���
∗ +

��b
�
b

�
��p��

∗(��
∗ + h��

∗)��
∗

�kab
�
(��

∗ + h��
∗) + d + m

�
± q��d + m

�
± q�
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Proof. 
 

We proposed the following Lyapunov function, 
 

K(S�, E�, I�) = S� − ��
∗ − ��

∗��
S�

��
∗ + �E� − ��

∗ − ��
∗��

E�

��
∗� + X� �I� − ��

∗ − ��
∗��

I�

��
∗�, 

�∗ = (��
∗, ��

∗, ��
∗) 

 

where, X�  is a  positive constant to be determined. The Lyapunov function  K(S�, E�, I�)  satisfies the 

conditions, �(��
∗, ��

∗, ��
∗) = 0 ��� K(S�, E�, I�) >  0,  hence it is positive definite. For  

��(��,��,��)

��
  to be 

negative definite, it must satisfy, 
dK(��

∗, ��
∗, ��

∗)

dt
= 0       and 

dK(S�, E�, I�)

dt
< 0. 

 
Determining the time derivative of the lyapunov equation we obtained, 
 

dK(S�, E�, I�)

dt
= �1 −

��
∗

S�

�
dS�

dt
+ �1 −

��
∗

E�

�
dE�

dt
+ �� �1 −

��
∗

I�

�
dI�

dt
, 

 

Substituting for 
���

��
,

���

��
 and 

���

��
 and considering that at endemic equilibrium point �∗ = (��

∗, ��
∗, ��

∗)   for 

the system satisfies equations (6) - (8) 
 

m
�

N� = −��
∗ + �

�b���p��
∗λ�

∗

(�λ�
∗ �d�m�± q)(d�m�± q)

+ m
�

� ��
∗, 

 
ab

�
��p��

∗λ�
∗ ��

∗

(kλ�
∗ + d + m

�
± q)(d + m

�
± q)

= � + t + m
�

���
∗, 

 
t��

∗ = m
�

��
∗ and  λ�

∗ = ab
�
(��

∗ + h��
∗),  we obtained, 

 
dK(S�, E�, I�)

dt

= −m
�

(S� − ��
∗)�

S�

+ �− �t + m
�

� + ��t�E�

+
��b

�
b

�
��p��

∗(��
∗ + h��

∗)��
∗

�kab
�

(��
∗ + h��

∗) + d + m
�

± q��d + m
�

± q�
− ��m�

I�

+
��b

�
b

�
��p��

∗��
∗

�kab
�

(E� + hI�) + d + m
�

± q��d + m
�

± q�
{E� + hI�}

−
ab

�
��p��

∗(E� + hI�)S�

�kλ� + d + m
�

± q��d + m
�

± q�

S���
∗

E�

− �
��b

�
b

�
��p��

∗(��
∗ + h��

∗)

�kab
�
(��

∗ + h��
∗) + d + m

�
± q��d + m

�
± q�

� ��
∗

��
∗

S�

− 
��

∗

S�

E� − ��t
��

∗E�

I�

+ 
��

∗��
∗

S�

+ ��m�
��

∗ + �t + m
�

���
∗, 

 

Setting E� to zero we obtained the following equation, 

− �t + m
�

� + ��t = 0; �� = {1 +
m

�

t
}. 

 

Hence, 
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dK(S�, E�, I�)

dt

= −m
�

(S� − ��
∗)�

S�

− {1 +
m

�

t
}m

�
I�} −

ab
�

��p��
∗(E� + hI�)S�

�kλ� + d + m
�

± q��d + m
�

± q�

− �
��b

�
b

�
��p��

∗(��
∗ + h��

∗)

�kab
�
(��

∗ + h��
∗) + d + m

�
± q��d + m

�
± q�

� ��
∗

��
∗

S�

− 
��

∗

S�

E� − {1 +
m

�

t
}t

��
∗E�

I�

+
��b

�
b

�
��p��

∗��
∗

�kab
�

(E� + hI�) + d + m
�

± q��d + m
�

± q�
{E� + hI�

S���
∗

E�

+ 
��

∗��
∗

S�

+ {1

+
m

�

t
}m

�
��

∗ + �t + m
�

���
∗ +

��b
�
b

�
��p��

∗(��
∗ + h��

∗)��
∗

�kab
�

(��
∗ + h��

∗) + d + m
�

± q��d + m
�

± q�
, 

Let, 
 

P = m
�

(S� − ��
∗)�

S�

+ {1 +
m

�

t
}m

�
I�} +

ab
�

��p��
∗(E� + hI�)S�

�kλ� + d + m
�

± q��d + m
�

± q�

+ �
��b

�
b

�
��p��

∗(��
∗ + h��

∗)

�kab
�
(��

∗ + h��
∗) + d + m

�
± q��d + m

�
± q�

� ��
∗

��
∗

S�
+ 

��
∗

S�
E� + {1 +

m
�

t
}t

��
∗E�

I�
, 

 

� =
��b

�
b

�
��p��

∗��
∗

�kab
�

(E� + hI�) + d + m
�

± q��d + m
�

± q�
{E� + hI�

S���
∗

E�

+ 
��

∗��
∗

S�

+ {1 +
m

�

t
}m

�
��

∗ + �t + m
�

���
∗

+
��b

�
b

�
��p��

∗(��
∗ + h��

∗)��
∗

�kab
�
(��

∗ + h��
∗) + d + m

�
± q��d + m

�
± q�

, 

 
dK(S�, E�, I�)

dt
= − � + �, 

 
The conditions necessary and sufficient for the EEP to be globally asymptotically stable in Lyapunov sense 

that is  
��(��,��,��)

��
≤ 0 is � > �. This completes the proof. 

 

3.9 Sensitivity analysis 
 
The analytical sensitivity analysis of R� with various parameters was obtained by partial differentiation as 
follows, 
 

�R�

�
= −

��b
�
b

�
��p��

∗N�

�d + m
�

± q�
�

� + t + m
�

�
� �1 +

ht

m
�

� < 0; 
�R�

�d
= −

2��b
�
b

�
��p��

∗N�

�d + m
�

± q�
�

� + t + m
�

�
� �1 +

ht

m
�

� < 0 

 

When  q > 0,
���

�q
= −

��b�b���p��
∗��

�d�m��q�
�

��t�m��
� �1 +

ht

m�

� < 0 and when q < 0 then  

 

�R�

�q
=

��b
�
b

�
��p��

∗N�

�d + m
�

+ q�
�
� + t + m

�
�

� �1 +
ht

m
�

� > 0; 
dR�

dt
=

a�b
�
b

�
K�pN�

∗N�(h + m
�

[h − 1])

m
�

(d + m
�

± q)�� + t + m
�

�
� > 0 

 

�R�

�b
�

=
��b

�
��p��

∗N�

(d + m
�

± q)�( + t + m
�

)
�1 +

ht

m
�

� > 0;  
�R�

�b
�

=
��b

�
��p��

∗N�

(d + m
�

± q)�( + t + m
�

)
�1 +

ht

m
�

� > 0 

 
�R�

�K
= 2

��b
�
b

�
Kp��

∗N�

(d + m
�

± q)�( + t + m
�

)
�1 +

ht

m
�

� > 0; 
�R�

�a
= 2

ab
�
b

�
��p��

∗N�

(d + m
�

± q)�( + t + m
�

)
�1 +

ht

m
�

� > 0 
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The parameters which are greater than one are directly proportional to R� while those that are less than zero 
are inversely proportional to R�. Climatic factors therefore affect immigration or emigration of insect 
vectors, their biting rate, infection rates and induced death rates.  
 

4 Results and Discussion 
 
The expression for basic reproduction number(R�) obtained in model analysis estimates the number of 
secondary exposed plants and/or infectious plant that would be obtained if one infectious plant or exposed 
plant is introduced into the completely susceptible plant population. If R� > 1, the disease would invade the 
plant population and reach endemic equilibrium point (EEP) and should worry stakeholders. If  R� < 1, the 
disease would die out.If R� = 1, the number of infected plants would remain constant. 
 
The DFEP was found to be locally stable wheneverR� < 1, which means that any starting values are near 
DFEP, they would move toward DFE asymptotically over time. The conditions necessary for global stability 
of DFEP and EEP were obtained, inferring that if those conditions are satisfied, any values they take would 
move toward equilibrium points asymptotically over time. 
 

5 Conclusions 
 
In this paper, we formulated a non-linear deterministic model for plant vector borne diseases by 
incorporating temperature and precipitation under the biting rate and wind as an agent of immigration and 
emigration, obtained the conditions for positivity and boundedness, local and global stability of the solution. 
The expression of vector population at equilibrium point was obtained and incorporated in model to consider 
shorter life span of vector. The expression for the basic reproduction number(��) was obtained. The basic 
reproduction number(��)  estimates the number of secondary infection caused when one infected individual 
is introduced in a completely susceptible population. This study carried out analytical sensitivity analysis to 
determine how various parameters in the model affects  �� .  Estimated numerical results, normalized 
sensitivity analysis and simulations to validate the model will be in our next paper. This study developed a 
deterministic model , future studies can consider a stochastic model. 
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Appendix 1: List of variables and parameters 
 

Variables Descriptions 
N�(t) The total population of the vectors 
N�(t) The total population of the plants 
S�(t), The population of susceptible plant 
E�(t) The population of exposed plant 
I�(t). The population of infected plant 
S� (t) The population of susceptible vectors 
I�(t) The population of infected vectors 

Parameters Descriptions 
π The recruitment rate of  vectors 
m

�
 The recruitment rate of plants  

 The rates at which E�(t) recover naturally to S�(t). 
δ The rate at which climate induced death occur in both  S�(t) and ��(t) 
m

�
 The constant natural death rate in subclasses S�(t), E�(t) ��� I�(t) 

t The rate at which E�(t) progresses to I�(t). 
m

�
 The constant natural death rate in subclasses S�(t) ��� I�(t) 

q The immigration and emigration rate of vector (this implies that the rate can be either be 
positive or negative). 

β
�
 The infection rates for plants 

β
�
 The infection rates for vectors  

a The vector biting rate  
λ� The number of individual plants which become infected at given time(force of infection of 

plants) 
λ� The number of individual plants which become infected at given time(force of infection of 

plants) 

k                  The rate of change of force of infection due to climatic factors. Assumption is 1K  
 

Appendix 2: Definition of terms 
 

Term Definition 
Susceptible population The populations who are free of infection but are at a risk of contracting the 

infection. 
Exposed population The populations that has contracted the infection but are at a lower risk of 

transmitting it and/or with no signs of infection 
Infected population The population with the disease causing pathogen and capable of transmitting 

the infection to other plants or vectors on contact  
Basic reproduction 
number/ratio 

The number of cases one generates on average over the course of infectious 
period in a completely susceptible population 

Bifurcation It occurs when  a smooth change is made to parameter values causes the 
system to change its behavior 

Disease free equilibrium point It is infection free point 
Endemic equilibrium point The stationary  point at which the disease has completely invaded the 

population 
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