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Abstract 
 

A non-linear ���� mathematical model was used to study the dynamics of drinking epidemic. We 
discussed the existence and stability of the drinking-free and endemic equilibria. The drinking-free 
equilibrium was locally asymptotically stable if �� � 1  and unstable if �� 	 1 . Global stability of 
drinking-free and endemic equilibria were also considered in the model, using Lassalle’s invariance 
principle of Lyapunov functions. Numerical simulations were conducted to confirm our analytic results. 
Our findings was that, reducing the contact rate between the non-drinkers and heavy drinkers, increasing 
the number of drinkers that go into treatment and educating drinkers to refrain from drinking can be 
useful in combating the drinking epidemic. 
 

 
Keywords:  Equilibrium points; drinking free equilibrium; endemic equilibrium; reproductive number; 

global stability; Lyapunov function. 
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1 Introduction 
 
Alcohol is the world’s third leading cause of ill health and premature death, after low birth weight and 
unsafe sex. In Europe, alcohol is also the third leading risk factor for disease and mortality after tobacco and 
high blood pressure [1,2]. Excessive drinking is not only harmful to personal health, but also leads to a range 
of negative social effects such as violence, antisocial and criminal behavior. Long-term alcoholism will 
produce negative change in the brain, such as intolerance and poor physical dependence. Alcohol damages 
almost all parts of the body and contributes to a number of human disease including liver cirrhosis, 
pancreatitis, heart disease, sexual dysfunction, and eventually death [3]. For most individuals, the 
development of the colorectal cancer (CRC) is sporadic, and one of the risk factors include excessive alcohol 
intake [4]. Damage to the central and peripheral nervous systems can occur from sustained alcohol 
consumption [5-7]. Additionally, heavy drinking women have been found to have a negative effect on the 
reproductive functioning [8,7]. The World Health Organization reports that the harmful use of alcohol 
causes approximately 3.3 million deaths every year (or 5.9% of all the global deaths), and 5.1% of the global 
burden of disease is attributed to alcohol consumption. Although there had been many attempts to reduce the 
problem, alcohol by young people had persisted and in some cases increased over the past several years 
[3,9]. 
 
Mathematical models could mimic the process of drinking and provide useful tools to analyze the spread and 
control of drinking behavior. Several different mathematical models for drinking had been formulated and 
studied [10]. In 2008, [11] proposed a mathematical model to study the dynamics of campus drinking as an 
epidemiological model. They divided their population into three classes: non-drinkers (
), social drinkers 
(�) and problem drinkers (�). According to their results, the reproductive numbers were not sufficient to 
predict whether drinking behavior would persist on campus and that the pattern of recruiting new members 
played a significant role in the reduction of campus alcohol problems. Another model which is relevant to 
this research is that of [12]. They presented a model to investigate the global property of a drinking model 
with public health educational campaigns. They divided their population into five compartments namely 
susceptible drinkers (�), educational drinkers (�), alcoholic drinkers (
), temporary removed drinkers (�), 
and quit drinkers (�). They derived the global stability and the basic reproductive number of their model. 
Their result indicated that the public health educational campaigns of drinking individuals can slow down 
the drinking dynamics. Also, Xian et al. [10] presented a quit drinking model taking into account permanent 
quit drinker’s compartment and relapse, global stability of equilibria was obtained. 
 
In this paper, we use a modified SDTRS model of [13] to model alcoholism as epidemic. In their model, it 
was possible for a heavy drinker in treatment to become a heavy drinker without passing through the 
recovery compartment. In this paper, we assume that heavy drinkers in treatment will only become heavy 
drinkers again after passing through the recovery and susceptible compartments respectively. The paper is 
organized as follows: In section 2, we present the model description and assumptions. Stability analysis of 
the drinking- free and endemic equilibria is discussed in section 3. In Section 4, we use the numerical 
example to show the dynamical behaviour of our results. In Section 5, we performed the sensitivity analysis 
of the basic reproductive number of the model. Section 6 is made up of discussion of our results. We ended 
the paper with a conclusion. 
 

2 Mathematical Model 
 
2.1 Model description 
 
We formulate a mathematical model and divide the population into four compartments: non- drinkers (�), 
heavy drinkers (�), drinkers in treatment (�), and recovered drinkers (�). The interaction between the four 
drinking states are shown in the schematic diagram in Fig. 1.  
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Fig. 1. Schematic diagram of the four drinking classes in the model 
 
2.2 Model assumptions 
 
The following assumptions were made in the model: 
 

(i)  The drinking epidemic occurs in a closed environment. 
(ii)  Sex, race and social status do not affect the probability of becoming a heavy drinker. 
(iii)  Heavy drinking is transmitted to non- drinkers when they are in contact with heavy drinkers 
(iv)  Members mix homogeneously (have the same interaction to the same degree)  
(v)  Drinkers in treatment may only become heavy drinkers again after passing through the recovery and 

susceptible compartments respectively and 
(vi)  Drinkers who have stopped drinking enter into recovery compartment. 

 
The drinking epidemic is modelled using the system of nonlinear Differential Equations. 
 ���� = � − ��� − �� + ��                                                                                                                 (1) 

 ���� = ��� − (� + �� + �)�                                                                                    (2) 

 � �� = �� − (� + �! + ")�                                                                                          (3) 

 �$�� = "� − (� + �)�                                                                                                            (4) 

 
with the initial conditions �(0) ≥ 0, �(0) ≥ 0, �(0) ≥ 0 and �(0) ≥ 0, where  
 �= recruitment rate of � �=transmission rate from � to � �=transmission rate from � to � �=natural death rate ��=drinking induced death rate of � �!= drinking induced death rate of � �= proportion of drinkers entering � compartment and  "= recovered rate of � 
 
We assume that the system of nonlinear differential equations (1) − (4) has positive initial conditions, then 
every solution (�((), �((), �((), �(()) of (1) − (4) has the positive properties, that is, �(() ≥ 0, �(() ≥ 0, �(() ≥ 0 and �(() ≥ 0. Hence the feasible region Γ = {(�, �, �, �),�-. : � + � + � + � ≤ 12}, is 

positively invariant set for the system (1) − (4). 
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This implies that:  
 
(() = �(() + �(() +  �(() + �(()                                                                                    (5) 
 
also 
 4
4( = 4�4( + 4�4( + 4�4( + 4�4(  

 

  �5�� = � − �
 − (��� + �!�) ≤ � − �
                                                                        (6) 

 
From (6), it follows that: 
 lim�→∞ �;< 
(() ≤ 12. 

 
Thus, the feasible region of the system (1) − (4) is given by the set Γ. 
 

3 Model Analysis 
 
3.1 Drinking-free equilibrium and basic reproductive number 
 
In this section, we consider the drinking -free equilibrium �� =(

12 , 0, 0, 0). That is a situation where there is 

no drinking problem. We analyze the stability of the drinking-free equilibrium by considering the linearized 
system of ODE’s (1) − (4), taking the Jacobian matrix and obtained 
 

=(�, �, �, �) = >??
@−(�� + �) −�� 0                          ��� �� − (� + �� + �) 0                          000 �0 −(� + �! + ") 0"               −(� + �)ABB

C
                                  (7) 

 
The local stability of the equilibrium may be determined from the Jacobian matrix (7). This implies that the 
Jacobian matrix for the drinking-free equilibrium is given by 
 

=(��) = D−� −� 0                          �0 � − (� + �� + �) 0                          000 �0 −(� + �! + ") 0"               −(� + �)E                                                            (8) 

 
From the characteristic equation of =(�, 0, 0, 0), the following eigenvalues were obtained: F� = −�, 
 F! = � − (� + �� + �), FG = −(� + �! + ") and F. = −(� + �). It can be seen that F�, FG, F. are real and 
negative. We know that �� � 1 , this implies that � � (� + �� + �)and hence F! is therefore real and 
negative. This means that the system (1) − (4) is asymptotically stable. 
 
The basic reproductive number (��), is given by 
 �� = α(2-HI-J)                                                                                                                               (9) 

 

Theorem 1: The drinking-free equilibrium �� K12 , 0, 0, 0L of the system (1) − (4) is asymptotically stable if �� � 1 and unstable if �� 	 1. 
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3.2 Endemic equilibrium 
 
We evaluate the equilibrium points of the ODE (1) − (4)  by setting the right -hand side of equation (1) − (4)  to zero and then solve for �∗, �∗,  �∗and �∗. We obtained: 
 �∗ = 2-HI-∅

α
,  �∗ = 2(2-HI-∅)OP1PQRO(2-HI-∅)S , �∗ = ∅Q2(2-HI-∅)OP1SP(2-HT-U)QRO(2-HI-∅S ,  

 
and 
 �∗ = U∅Q2(2-HI-∅)OP1SP(2-R)(2-HT-U)QRO(2-HI-∅S.                                  (10) 

 
We now consider the case when �� 	 1. At the endemic equilibrium, all the four drinking states are present 
in the population. The steady states consider conditions under which all four drinking states can coexist in 

the equilibrium. We represent �∗ = K�∗，�∗，�∗，�∗L as endemic equilibrium of the system (1) − (4) 

and  K�∗ ≠ 0，�∗ ≠ 0，�∗ ≠ 0，�∗ ≠ 0L . We Substitute the equilibrium points in (10) into equation (7), 

and obtain 
 

=(�∗) =
>??
??@
− W� W2(2-HI-∅)OP1PQRO(2-HI-∅)SX + �X −� W2-HI-∅

α
X 0                          �

� W2(2-HI-∅)OP1PQRO(2-HI-∅)SX � W2-HI-∅
α

X − (� + �� + �) 0                          000 �0 −(� + �! + ") 0"               −(� + �)ABB
BBC         (11) 

 
Let 
�� = − Y� W2(2-HI-∅)OP1PQRO(2-HI-∅)SXZ − �, 
�! = −� W2-HI-∅

α
X ,  
�G = 0, 
�. = �, 

 
!� = � W2(2-HI-∅)OP1PQRO(2-HI-∅)SX ,  
!! = � W2-HI-∅
α

X − (� + �� + �), 
!G = 0,   
!. = 0, 

 
G� = 0, 
G! = �, 
GG = −(� + �! + "), 
G. = 0 
 
.� = 0, 
.! = 0, 
.G = ", 
.. = −(� + �) 

 

Substituting 
[\ into (12), we obtain 
 

     =(�∗) = D
�� 
�! 
�G   
!� 
!! 
GG
G� 
G! 
GG

�.
!.
G.
.� 
.! 
.�
..

E                                                                                        (12) 

 
The characteristic equation of (13) can be computed as follows 
 

|=(�∗) − F^| = _
�� − F 
�! 0 
�.
!� 
!! − F 0                000 
G!0 
GG − F
.G 0      
.. − F_ = 0 

 F. + (
�� + 
!! + 
GG + 
..)FG + (
�!
!� − 
GG
.. − 
��
.. − 
!!
.. − 
��
GG − 
!!
GG −
��
!!)F! + (
��
GG
.. + 
!!
GG
.. + 
��
!!
.. + 
��
!!
GG − 
�!
!�
GG −
�!
!�
..)F + (
�!
!�
GG
.. + 
�.
!�
G!
.G − 
��
!!
GG
..) = 0 
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We can write the characteristic equation above as: 
 

  F. + �̀FG + `!F! + `GF + `. = 0                                                                             (13) 
 
Where:              �̀ =  
�� + 
!! + 
GG + 
.. `! = 
�!
!� − 
GG
.. − 
��
.. − 
!!
.. − 
��
GG − 
!!
GG − 
��
!! `G = 
��
GG
.. + 
!!
GG
.. + 
��
!!
.. + 
��
!!
GG − 
�!
!�
GG − 
�!
!�
.. `. = 
�!
!�
GG
.. + 
�.
!�
G!
.G − 
��
!!
GG
.. 
 
Using the Routh –Hurwitz criterion [13,14]. It can be seen that all eigenvalues of the characteristic equation 
(13) has negative real part if and only if: 
 �̀ 	 0, `. 	 0 , �̀`! − `G 	 0 , ( �̀`! − `G)`G − �̀!`. 	 0                                                      (14) 
 
Theorem 2: �∗ is asymptotically stable if and only if inequalities (14) is satisfied. 
 
3.3 Global stability of the equilibrium points 
 
3.3.1 Global stability of the drinking free equilibrium 
 
We prove the global stability when � ≤ �. 

 
Theorem 3: The global stability ��  is asymptotically stable in the region  
 

Γ = a(�, �, �, �) ∈ �-. : � + � + � + � ≤ 12c if � ≤ � (note that � ≤ � implies �� � 1). 
 
Proof: It should be noted that  � � 1  in Γ  for time (() 	  1. Consider the Lyaponov function: 
 d = � + � 4d4( = (�� − � − ��)� − (� − �! + ")� ≤ (� − � − ��)� − (� − �!)� 
 �e�� � 0 for  � ≤ �  and  

�e�� = 0 only if � = 0 and � = 0. Therefore, the only trajectory of 

 

the system in which 
�e�� = 0 is ��. Hence, Lasalle’s invariance principle, ��  is globally asymptotically stable 

in Γ [15-17,14]. 
 
3.3.2 Global stability of the endemic equilibrium (f∗) 
 
We determine the global stability of the endemic equilibrium in this section, by using the first three 
equations of the system (1) − (4) that is: 
 ���� = � − ��� − �� + ��    ���� = ��� − (� + �� + �)�� �� = �� − (� + �! + ")�                                                                                                              (15) 

 
in the region Γ∗ = {(�, �, �),�-G : � + � + � ≤ 1, � 	 0 , � ≥ 0 , � ≥ 0},Γ∗   is positively invariant, i.e.  
every solution of the model (15), with initial conditions in Γ

∗ remains there for time (( 	 0). 
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We also consider  
 

Γ
∗∗ = a(�, �, �): � + K2-HI2 L � + K2-HT-U2 L � = 1, � 	 0 , � ≥ 0 , � ≥ 0c  where Γ∗∗ ⊂ Γ∗,Γ∗∗  is positively 

invariant,E∗ ∈ Γ∗ and  � = �. 
 
Theorem 4: The endemic equilibrium point  �∗  of model (15) is globally asymptotically stable if           �� 	 1(This means that  ∅ ≤ �). 
 
Proof: From theorem 1, if   �� 	 1 in  Γ∗∗, then �� is unstable. Also   Γ∗∗ is positively invariant subset of Γ∗ 
and the i-limit set of each solution of model (14) is a single point in Γ∗∗ since there is no periodic solutions, 
homoclinic loops and oriented phase polygons inside Γ

∗∗ if ∅ ≤ �. Therefore �∗ is globally asymptotically 
stable [15,16]. 
 

4 Numerical Example 
 
In this section, we use numerical simulations to show the dynamical behaviour of our results, by assuming 
that our total population is 100% and choose  � = 0.50, � = 0.25 , � = 0.15  and � = 0.1 . The other 
parameters that would be used in this section are displayed in Table 1 and Table 2 respectively. 
 

Table 1. Model parameters at drinking free equilibrium 
 

Parameter Description Value Source � � � � �� �! " � 

Recruitment rate of � 
Transmission rate from � to � 
Transmission rate from � to � 
Natural death rate 
Drinking induced death rate of � 
Drinking induced death rate of � 
Recovered rate of � 
Proportion of drinkers entering � compartment 

0.4 0.7 0.1 0.25 0.35 0.3 0.09 0.7 

Q18S Q18S Q18S Q18S Q18S Q18S Q18S 
[18] 

 

Table 2. Model parameters at endemic equilibrium 
 

Parameter Description Value Source � � � � �� �! " � 

Recruitment rate of � 
Transmission rate from � to � 
Transmission rate from � to � 
Natural death rate 
Drinking induced death rate of � 
Drinking induced death rate of � 
Recovered rate of � 
Proportion of drinkers entering � compartment 

0.4 0.7 0.01 0.025 0.035 0.03 0.1 0.5 

Q18S Q18S Q18S Q18S Q18S Q18S Q18S Q18S 
 

5 Sensitivity Analysis of the Basic Reproductive Numbers 
 
We investigate the nature of the model by conducting sensitivity analysis of the reproductive number ( ��).  
 
(a) At the drinking –free equilibrium, � = 0.7, �� = 0.35, ∅ = 0.7 and � = 0.25, �� = 0.5385 � 1.  
 

(i)  If the value of �  is increased to any figure greater than 1.31  and the values of  ∅, �, ��  are 
maintained  �� 	 1. 

(ii)  If the value of ∅ is reduced to 0.068 and the values of � , ��  and  �  are maintained the same, �� 	 1. 
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(b) At the endemic equilibrium, � = 0.7,  �� = 0.035, � = 0.025,  and ∅ = 0.5,   �� = 1.25 	 1. 
 

(i)  If �  is reduced to 0.5 and �, ��, ∅ are maintained the same, �� � 1. 
(ii)  If the values of �, � and  ��are maintained at 0.7 and 0.025 and 0.035  and ∅ is increased to 0.8,  �� � 1. 

 

6 Discussion of Results 
 
We use ���� model to study the dynamics of drinking as an epidemic. We discussed the existence and 
stability of drinking free and endemic equilibria and performed the sensitivity analysis of the reproductive 
numbers. Based on the data in Table 1, the basic reproductive number of the drinking free equilibrium is 
estimated to be �� = 0.5385 � 1. This implies that only non-drinkers population is present and the heavy 
drinkers, drinkers in treatment and recovered drinkers’ populations reduces to zero (� = 0, � = 0, � = 0). 
This means that the model is asymptotically stable at �� � 1 and satisfies Theorem1. This has been verified 
numerically in Fig. 2. In the stability analysis of the drinking free equilibrium, the eigenvalues are F� =−0.25, F! = −0.6,  FG = −0.64 and F. = −0.35. This also indicates that the drinking free equilibrium is 
asymptotically stable.  
 
Considering the situation when �� 	 1, the reproductive number of the endemic equilibrium is estimated to 
be �� = 1.25 	 1 using the data in Table 2. This shows the situation in which the non-drinkers, heavy 
drinkers, drinkers in treatment and recovered drinkers coexist in the population(�∗, �∗, �∗, �∗) =(0.8, 0.6909, 2.2287, 6.3678)S. This indicates the existence of drinking problem in the population. People 
with drinking problem will continue to transform more non-drinkers into heavy drinkers and the drinking 
free equilibrium becomes unstable at �� 	 1. This is in line with our analytical results and has also been 
verified numerically in Fig. 3. 
 

 
 

Fig. 2. When no = o. pqrp, only non-drinkers exist. The populations of heavy drinkers, drinkers in 
treatment and recovered drinkers, approach zero and reach disease free equilibrium 
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Fig. 3. When no = s. tp, all the distinct drinking classes coexist and therefore approach endemic 
equilibrium 

 
At the sensitivity analysis of the basic reproductive number of the endemic equilibrium, if  � is reduced from 0.7 to 0.5 and �, ��, ∅ maintained the same,  �� � 1. Furthermore, if ∅ is increased from 0.5 to 0.8, �� � 1. 
Also�� 	 1 at the drinking -free equilibrium, if either � is increased to any figure greater than 1.31 or ∅ is 
reduced below 0.1. 
 

7 Conclusion 
 
Our model shows that, drinking epidemic cannot only be controlled by reducing the contact rate between the 
non-drinkers and heavy drinkers but also increasing the number of drinkers that go into treatment and 
educating drinkers to refrain from drinking can be useful in combating the epidemic. 
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