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Abstract

A non-linearSHTR mathematical model was used to study the dynamics okidg epidemic. We
discussed the existence and stability of the drinking-treé endemic equilibria. The drinking-free
equilibrium was locally asymptotically stable Rfy < 1 and unstable iR, > 1. Global stability of
drinking-free and endemic equilibria were also considénethe model, using Lassalle’s invariange
principle of Lyapunov functions. Numerical simulations &epnducted to confirm our analytic results.
Our findings was that, reducing the contact rate betweemaon-drinkers and heavy drinkers, increasing
the number of drinkers that go into treatment and echgatiinkers to refrain from drinking can be
useful in combating the drinking epidemic.
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1 Introduction

Alcohol is the world’s third leading cause of ill healthdapremature death, after low birth weight and
unsafe sex. In Europe, alcohol is also the third lead#kgfactor for disease and mortality after tobaced a
high blood pressure [1,2]. Excessive drinking is not only halrtofpersonal health, but also leads to a range
of negative social effects such as violence, antisocial cainginal behavior. Long-term alcoholism will
produce negative change in the brain, such as intolerance angipmical dependence. Alcohol damages
almost all parts of the body and contributes to a numbenuafian disease including liver cirrhosis,
pancreatitis, heart disease, sexual dysfunction, and evgntehth [3]. For most individuals, the
development of the colorectal cancer (CRC) is sporadit oae of the risk factors include excessive alcohol
intake [4]. Damage to the central and peripheral nervous msystan occur from sustained alcohol
consumption [5-7]. Additionally, heavy drinking women haverbé&aind to have a negative effect on the
reproductive functioning [8,7]. The World Health Organiaatireports that the harmful use of alcohol
causes approximately 3.3 million deaths every year (or 598 the global deaths), and 5.1% of the global
burden of disease is attributed to alcohol consumption. Adindioere had been many attempts to reduce the
problem, alcohol by young people had persisted and in s@®es increased over the past several years
[3,9].

Mathematical models could mimic the process of drinking andgeaywseful tools to analyze the spread and
control of drinking behavior. Several different matheméatimadels for drinking had been formulated and
studied [10]. In 2008, [11] proposed a mathematical modsiudy the dynamics of campus drinking as an
epidemiological model. They divided their population into ¢hetasses: non-drinkerd’), social drinkers
(S) and problem drinkersP]. According to their results, the reproductive numbersewmt sufficient to
predict whether drinking behavior would persist on campus andhéaattern of recruiting new members
played a significant role in the reduction of campus alcphablems. Another model which is relevant to
this research is that of [12]. They presented a model tctigege the global property of a drinking model
with public health educational campaigns. They divided their latipn into five compartments namely
susceptible drinkersS}, educational drinkersE], alcoholic drinkers 4), temporary removed drinkerg),
and quit drinkers@). They derived the global stability and the basic reprtidel number of their model.
Their result indicated that the public health educationaipaagns of drinking individuals can slow down
the drinking dynamics. Also, Xian et al. [10] presented adyiitking model taking into account permanent
quit drinker’'s compartment and relapse, global stghifitequilibria was obtained.

In this paper, we use a modified SDTRS model of [13] to maldeholism as epidemic. In their model, it
was possible for a heavy drinker in treatment to becomeasyherinker without passing through the
recovery compartment. In this paper, we assume that heamkedr in treatment will only become heavy
drinkers again after passing through the recovery and sildeepbmpartments respectively. The paper is
organized as follows: In section 2, we present the moelription and assumptions. Stability analysis of
the drinking- free and endemic equilibria is discussedection 3. In Section 4, we use the numerical
example to show the dynamical behaviour of our results. dtid®e5, we performed the sensitivity analysis
of the basic reproductive number of the model. Sectionnfade up of discussion of our results. We ended
the paper with a conclusion.

2 Mathematical M odel

2.1 Model description

We formulate a mathematical model and divide the populatimnfgur compartments: non- drinkers)(
heavy drinkersK), drinkers in treatmenf}, and recovered drinker®). The interaction between the four
drinking states are shown in the schematic diagram inlFig.
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Fig. 1. Schematic diagram of the four drinking classesin the model
2.2 Model assumptions

The following assumptions were made in the model:

(i) The drinking epidemic occurs in a closed environment.

(i) Sex, race and social status do not affecpttedability of becoming a heavy drinker.

(iif) Heavy drinking is transmitted to non- drinkers whaay are in contact with heavy drinkers

(iv) Members mix homogeneously (have the same interatdi the same degree)

(v) Drinkers in treatment may only become heavyldrie again after passing through the recovery and
susceptible compartments respectively and

(vi) Drinkers who have stopped drinking enter into recoverypartment.

The drinking epidemic is modelled using the systemooflinear Differential Equations.

as

E=b—aSH—,uS+r]R D
dH
— =aSH — (u+ 6, + ¢)H )
daT
= PH—(u+ 6, +y)T (3)
= yT—(u+mR C)

with the initial conditionss(0) = 0, H(0) = 0, T(0) = 0 andR(0) = 0, where

b= recruitment rate of

a=transmission rate froi$i to H

n=transmission rate fro to S

u=natural death rate

6,=drinking induced death rate Hf

&,= drinking induced death rate Bf

¢= proportion of drinkers enteririycompartment and
y=recovered rate df

We assume that the system of nonlinear differential ems(il) — (4) has positive initial conditions, then
every solution§(¢), H(t), T(t), R(t)) of (1) — (4) has the positive properties, thatit) > 0,

H(t) = 0,T(t) = 0 andR(t) = 0. Hence the feasible regidh= {(S,H,T,R)eR¥:S+H+T +R < %}, is
positively invariant set for the systefh) — (4).
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This implies that:
N@t)=S@E)+H@®)+ TE) +R(t) (5)
also

dN _ds dH  dT dR
dt ~dt  dt  dt dt

S =b—uN — (8;H +6,T) < b—uN (6)
From(6), it follows that:

lim;_,, Sup N(t) < %.
Thus, the feasible region of the systém — (4) is given by the sdk.

3 Model Analysis

3.1 Drinking-free equilibrium and basic reproductive number

In this section, we consider the drinking -free equillibrE, =(§,0, 0,0). That is a situation where there is

no drinking problem. We analyze the stability of the drinkiregfequilibrium by considering the linearized
system of ODE’S1) — (4), taking the Jacobian matrix and obtained

[—(aH-f-u) —as 0 n
_ aH aS—(u+6;+¢) 0O 0
0 0 Y —(u+mn)

The local stability of the equilibrium may be deténed from the Jacobian matrix (7). This implies that the
Jacobian matrix for the drinking-free equilibrium is giv®n

—K —a 0 n

10 a—-(u+d+t¢) O 0
JE =\ o ~ 8,47 0 ®

0 0 14 —(u+mn)

From the characteristic equationjéf, 0, 0, 0), the following eigenvalues were obtaindg:= —yu,

Ah=a—(u+6+¢)A;=—(+8,+y)andl, = —(u+n). It can be seen thdt, A5, 1, are real and
negative. We know thaR, < 1, this implies thatx < (u + §; + ¢)and hencel,is therefore real and
negative. This means that the syst@n— (4) is asymptotically stable.

The basic reproductive numbe,}, is given by

o

Ro = Gsre ©)

Theorem 1. The drinking-free equilibriunt, (E,O, 0, O) of the systenf1) — (4) is asymptotically stable if
R, < 1 and unstable ik, > 1.
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3.2 Endemic equilibrium

We evaluate the equilibrium points of the ODE — (4) by setting the right -hand side of equation
(1) — (4) to zero and then solve 6, H*, T*andR*. We obtained:

§* = ut81+0 o u(utbi+@)—ab .. Olu(u+s,+0)—ab]
a ' aln-(u+81+0)]’ a(u+82+y)n-(u+81+0]’
and
R* = yO[u(u+8,+0)—ab] (10)

a(u+m)(u+82+y)[n—(u+8,+0]°

We now consider the case when> 1. At the endemic equilibrium, all the four drinking stades present
in the population. The steady states consider conditions wideh all four drinking states can coexist in
the equilibrium. We represeit = (S* ,HY, T, R*) as endemic equilibrium of the systéi) — (4)
and (S* #0,H #0,T"#0,R" # 0) . We Substitute the equilibrium points in (10) into equaion
and obtain

u(u+81+0)—ab u+61+0
- [a [a[n—(p.+61+(2))]] ] —a[ M ] 0 n ]
. u(u+8,+0)—-ab u+81+90 _ I
J(EY) = [a[r]—(u+61+®)]] a[ o ] (ntd+¢) 0 0 | (11)
0 0 —(u+6;,+y) 0 |
0 0 14 —(u+mn)
Let
_ u(u+61+90)—ab _ _ u+61+0 _ _
A =—|a [a[n—(u+51+®)]]] WAy = a[ o ]’ A3 = 0,45, =1,
_ u(u+81+0)—-ab _ ut+8,1+0] _ _
Ay =a [—a[n—(u+51+®)]] s Ay =a [_a ] (L+ 81+ ¢), A3 =0, Ay, =0,
A31 =0,43, = ¢, A33=—(W+ 6, +7),43,. =0
Ay = 0,44, = 0,443 =y, A = —(L+1)
Substitutingd;; into (12), we obtain
Ay A Agz A
A1 Ay Ass Ay,
E*) = 12
JEVI= 10 Ay Ass s (12)

A4-1 A4-2 A41A44

The characteristic equation of (13) can be computedilasvio

A11 -4 AlZ 0 A14
A Ay — 2 0 0
EY) = Al = 21 22 =0
|]( ) | 0 A32 A33 -2 0
0 0 Aus Ags— 1

2+ (A + Ay "2'A33 + A )2 + (A1pAz1 — AszAys — A1 Ags — AgpAsy — A1 Azs — AppAss
—A1142)A + (A11433444 + AppA33A4s + A11AgpAus + A1 A As3 — A1 421455
—A12421 4,07 + (A12A21 433408 + A1aAz1A3p A3 — A11A52A33444) =0
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We can write the characteristic equation above as:

A‘L + C1/13 + C2/12 + C3A + C4 = 0 (13)
Where:

€= Ay + Ay + A3+ As,

Cy = A1pA31 — AssAss — A1 Asy — AgpAsy — A1 Ass — AppAss — A1 4p;

C3 = Ay1433444 + A3pA33444 + A11 422444 + A11 422435 — A13A21 433 — A12421 44

Cy = A1pA31 433444 + A14A51 437443 — A11425A3344,

Using the Routh —Hurwitz criterion [13,14]. It can be seehalaigenvalues of the characteristic equation
(13) has negative real part if and only if:

Cl > 0, C4 > 0 ,C1C2 - C3 > 0 ) (C1C2 - C3)C3 - C12C4 > 0 (14)
Theorem 2: E* is asymptotically stable if and only if inequalities (143asisfied.
3.3 Global stability of the equilibrium points

3.3.1 Global stability of thedrinking free equilibrium

We prove the global stability when< p.

Theorem 3: The global stabilityg, is asymptotically stable in the region
r={(SHTR) ERLS+H+T+R< %} if @ < u (note thaix < i impliesk, < 1).

Proof: It should be noted that < 1 inT for time(t) > 1. Consider the Lyaponov function:
L=H+T
dL
=@S—pu—6)H—-(u—386,+yT

dt
<(@—p—6)H— (u—38,)T

% <0for ¢« <u and % = 0 only if H = 0 andT = 0. Therefore, the only trajectory of

the system in whic% = 0 iSE,. Hence, Lasalle’s invariance principl, is globally asymptotically stable
in T [15-17,14].

3.3.2 Global stability of the endemic equilibrium (E*)

We determine the global stability of the endemic equilibritnmthis section, by using the first three
equations of the syste@) — (4) that is:

§=b—aSH—uS+nR
&= aSH — (u+ 6, + )H (15)
daT

Z=¢H—-(u+ 6, +1)T

in the regionI™ = {(S,H,T)eR3:S+H+T<1,S>0,H=>0,T =0}, " is positively invariant, i.e.
every solution of the model (15), with initial conditiondihremains there for time ¢ 0).
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We also consider

r={(s,H1):5 + (%‘51) H+ (@)T =1,5>0,H>0,T >0} where["" < I",I"" is positively

invariantE* e I'" and b = .

Theorem 4: The endemic equilibrium poinE* of model (15) is globally asymptotically stable if
R, > 1(This means that) < a).

Proof: Fromtheorem 1, if R, > 1in I'**, thenE, is unstable. AlsoI'™* is positively invariant subset of
and thew-limit set of each solution of model (14) is a singlénpan I"™* since there is no periodic solutions,
homoclinic loops and oriented phase polygons inEidéf @ < a. ThereforeE™ is globally asymptotically
stable [15,16].

4 Numerical Example

In this section, we use numerical simulations to show timamjcal behaviour of our results, by assuming
that our total population is 100% and choo$e= 0.50,H = 0.25, T = 0.15 andR = 0.1. The other
parameters that would be used in this section are displayable 1 and Table 2 respectively.

Table 1. Modd parametersat drinking free equilibrium

Parameter Description Value Sour ce
b Recruitment rate of 0.4 [18]
a Transmission rate fror$i to H 0.7 [18]
n Transmission rate froR to S 0.1 [18]
u Natural death rate 0.25 [18]
6, Drinking induced death rate &f 0.35 [18]
6, Drinking induced death rate &f 0.3 [18]
y Recovered rate df 0.09 [18]
¢ Proportion of drinkers enteririg compartment 0.7 [18]

Table 2. Model parameters at endemic equilibrium

Parameter Description Value Source
b Recruitment rate of 0.4 [18]
a Transmission rate frorfi to H 0.7 [18]
n Transmission rate from to S 0.01 [18]
u Natural death rate 0.025 [18]
61 Drinking induced death rate &f 0.035 [18]
o, Drinking induced death rate &f 0.03 [18]
y Recovered rate df 0.1 [18]
¢ Proportion of drinkers enteririy compartment 0.5 [18]

5 Sensitivity Analysis of the Basic Reproductive Numbers

We investigate the nature of the model by conductingtbétysanalysis of the reproductive numbeR().
(a) At the drinking —free equilibriun® = 0.7, §; = 0.35,@ = 0.7 andu = 0.25, R, = 0.5385 < 1.

(i) If the value ofa is increased to any figure greater thHa®l and the values of@, u, 6, are
maintainedR, > 1.

(ii) If the value of@ is reduced t®.068 and the values af, §; and u are maintained the same,
Ry > 1.
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(b) At the endemic equilibriune = 0.7, §; = 0.035,u = 0.025, and® = 0.5, R, = 1.25 > 1.

(i) If « isreduced td.5 andy, §;, @ are maintained the saniy < 1.
(ii) If the values ofx, u and §;are maintained a7 and0.025 and0.035 and@ is increased 0.8,
Ry < 1.

6 Discussion of Results

We useSHTR model to study the dynamics of drinking as an epideiMe discussed the existence and
stability of drinking free and endemic equilibria and perfairttee sensitivity analysis of the reproductive
numbers. Based on the data in Table 1, the basic repreglunimber of the drinking free equilibrium is
estimated to b&, = 0.5385 < 1. This implies that only non-drinkers population is presenxt the heavy
drinkers, drinkers in treatment and recovered drinkespufations reduces to zertl & 0,T = 0,R = 0).
This means that the model is asymptotically stabR, at 1 and satisfies Theoreml. This has been verified
numerically in Fig. 2. In the stability analysis of tHenking free equilibrium, the eigenvalues are=
—0.25, 1, = —0.6, A; = —0.64 and4, = —0.35. This also indicates that the drinking free equilibriis
asymptotically stable.

Considering the situation whety > 1, the reproductive number of the endemic equilibrium isneded to
beR, = 1.25 > 1 using the data in Table 2. This shows the situation in twthie non-drinkers, heavy
drinkers, drinkers in treatment and recovered drinkers doeristhe populatio(S*,H*,T*,R*) =
(0.8,0.6909,2.2287,6.3678)]. This indicates the existence of drinking problem in the padpualaPeople
with drinking problem will continue to transform more ndrinkers into heavy drinkers and the drinking
free equilibrium becomes unstableRat> 1. This is in line with our analytical results and has also been
verified numerically in Fig. 3.

Time Series Plot of Popualtion of Drinkers for RO<1
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Fig. 2. When R, = 0.5385, only non-drinkersexist. The populations of heavy drinkers, drinkersin
treatment and recovered drinkers, approach zero and reach disease free equilibrium
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Time Series Plot of Population of Drinkers for RO>1
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Fig. 3. When Ry = 1.25, all thedistinct drinking classes coexist and ther efor e approach endemic
equilibrium
At the sensitivity analysis of the basic reproductive neind$ the endemic equilibrium, i is reduced from
0.7 t0 0.5 andy, §;, ® maintained the same®, < 1. Furthermore, iff is increased from.5 t0 0.8, R, < 1.

AlsoR, > 1 at the drinking -free equilibrium, if eitheris increased to any figure greater than 1.3¢ &
reduced below 0.1.

7 Conclusion

Our model shows that, drinking epidemic cannot only berobbedl by reducing the contact rate between the
non-drinkers and heavy drinkers but also increasing the nupofbdrinkers that go into treatment and
educating drinkers to refrain from drinking can be useful intmting the epidemic.
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