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(1) Dr. Dariusz Jacek Jakóbczak, Koszalin University of Technology, Poland.
Reviewers:

(1) Leonardo Simal Moreira, UniFoa Centro Universitário de Volta Redonda, Brazil.
(2) Mojgan Afkhami, University of Neyshabur, Iran.

Complete Peer review History: https://www.sdiarticle4.com/review-history/73198

Received: 10 August 2021

Accepted: 14 September 2021

Original Research Article Published: 16 October 2021

Abstract

In this paper, R is considered a completely primary finite ring and Z(R) is its subset of all zero
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the structures of the unit groups of R for all its characteristics.
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1 Introduction

A comprehensive study on completely primary finite rings can be traced back to Raghavendran’s
publication [1]. Other related studies can be obtained from [2, 3, 4, 5, 6]. We shall denote the
Jacobson radical of a completely primary finite ring R by Z(R) while the rest of notations used
in this paper are standard. The classification of finite rings is still inconclusive with some few
expositions on the structures of unit groups and zero divisors of constructed rings. Chikunji in [7, 8]
obtained the structures of group of units of classes of completely primary finite rings in which the
product of any three zero divisors is zero. In [6], the authors determined the structure of the unit
groups of completely primary finite rings in which the product of any four zero divisors is zero. We
now construct a class of completely primary finite rings in which (Z(R))5 = (0) with (Z(R))4 ̸= (0)
and classify their group of units.

2 Preliminaries

The following are fundamental to the construction of a class of completely primary finite rings as
well as classification of their unit groups in this paper.

a) A completely primary finite ring is a ring in which the set Z(R) of all zero divisors forms a
unique maximal ideal [2]. For more information on these rings, the reader is referred to [1].

b) Let R be a finite ring. Then there is no distinction between left and right zero divisors and
every element is either a zero divisor or a unit [4, section 4].

c) Let R be a finite ring with multiplicative identity 1 ̸= 0 , whose set of zero divisors form an
additive group Z(R) . Then:

(i) Z(R) is the Jacobson radical of R;

(ii) |R| = pkr and |Z(R)| = p(k−1)r for some prime p and some positive integers k, r;

(iii) (Z(R))n = (0);

(iv) The characteristic of the ring R is pn for some integer n with 1 ≤ n ≤ k and if the
characteristic is pk , then R will be commutative.
This is basically Theorem 2 of [1]

d) Let R be as in (c) above and let CharR = pk. Then R has a coefficient subring R0 = GR(pkr, pk)
with CharR0 = CharR and R0/pR0 equals to R/Z(R). R0 is clearly a maximal subring of R [3,
Section 1].

e) Let R be a completely primary finite ring (not necessarily commutative). Then the group of
units R∗ of R contains a cyclic subgroup < b > of order pr − 1 , and R∗ is a semi direct product
of 1 + Z(R) and < b > [8, Proposition 2.1].

Remark 2.1. From (c) and (d) above, it is clear that if (Z(R))5 = (0) with (Z(R))4 ̸= (0), then the
characteristic of R is pk, 1 ≤ k ≤ 5.

3 Results

3.1 Construction of five radical zero commutative completely primary
finite rings

Let R0 = GR(pkr, pk) be a Galois ring of order pkr and characteristic pk where p is a prime integer,
1 ≤ k ≤ 5 and r ∈ Z+. Suppose U, V,W and Y are R0/pR0 - spaces considered as R0 modules
generated by e, f, g and h elements, respectively, such that the corresponding generating sets are
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{u1, . . . , ue}, {v1, . . . , vf}, {w1, . . . , wg} and {y1, . . . , yh} so that R = R0

⊕
U
⊕

V
⊕

W
⊕

Y is
an additive abelian group. Then on the additive group, we define multiplication by the following
relations:

(i) If k = 1, then

uiui′ = ui′ui = vj , uivj = vjui = wk, uiwk = wkui = yl, uiyl = ylui = 0,

vjvj′ = vj′vj = yl, vjwk = wkvj = 0, vjyl = ylvj = 0, wkwk′ = wk′wk = 0,

wkyl = ylwk = 0, ylyl′ = yl′yl = 0

(ii) If k = 2, then

uiui′ = ui′ui = pr0 + pui + vj , uivj = vjui = pui + wk, uiwk = wkui = pui + yl,

uiyl = ylui = pui, vjvj′ = vj′vj = yl, vjwk = wkvj = 0, vjyl = ylvj = 0, wkwk′ = wk′wk = 0

wkyl = ylwk = 0, ylyl′ = yl′yl = 0

(iii) If 3 ≤ k ≤ 5, then

uiui′ = ui′ui = p2r0 + pui + vj , uivj = vjui = p2r0 + pui + pvj + wk,

uiwk = wkui = p2r0 + pui + pwk + yl, uiyl = ylui = p2r0 + pui,

vjvj′ = vj′vj = p2r0 + pvj + yl, vjwk = wkvj = p2r0 + pvj + pwk, vjyl = ylvj = p2r0 + pvj ,

wkwk′ = wk′wk = p2r0 + pwk, wkyl = ylwk = p2r0 + pwk, ylyl′ = yl′yl = p2r0.

Further uiui′ui′′ui′′′uiiv = 0, uir0 = r0ui, vjr0 = r0vj , wkr0 = r0wk, ylr0 = r0yl, where
r0 ∈ R0 and 1 ≤ i, i′ ≤ e, 1 ≤ j, j′ ≤ f, 1 ≤ k, k′ ≤ g, 1 ≤ l, l′ ≤ h. From the

given multiplication in R, we see that if r0 +
e∑

i=1

riui +
f∑

j=1

sjvj +
g∑

t=1

tkwk +
h∑

l=1

zlyl and

r′0 +
e∑

i=1

r′iui +
f∑

j=1

s′jvj +
g∑

t=1

t′kwk +
h∑

l=1

z′lyl are any two elements of R, then

(
r0 +

e∑
i=1

riui +

f∑
j=1

sjvj +

g∑
k=1

tkwk +

h∑
l=1

zlyl

)(
r′0 +

e∑
i=1

r′iui +

f∑
j=1

s′jvj +

g∑
t=1

t′kwk +

h∑
l=1

z′lyl

)

= r0r
′
0 + pa

e∑
i,m=1

(
rir

′
m + pR0

)
+

e∑
i=1

[
r0r

′
i + rir

′
0 + pR0

]
ui +

f∑
j=1

[
(r0 + pR0)s

′
j + sj(r

′
0 + pR0) +

e∑
ν, µ=1

(rνr
′
µ + pR0)

]
vj

+

g∑
k=1

[
(r0 + pR0)t

′
k + tk(r

′
0 + pR0) +

∑
i,j

(ri + pR0)s
′
j + sj(r

′
i + pR0)

]
wk

+

h∑
l=1

(r0 + pR0)z
′
l + zl(r

′
0 + pR0) +

∑
i,k

(ri + pR0)t
′
k + tk(r

′
i + pR0) +

f∑
κ,τ=1

(sκs
′
τ + pR0)

 yl

where a = 1, 2, 3, or 4 depending on whether Char R0 = p2, p3, p4 or p5. It can be verified that
this multiplication turns R into a commutative ring with identity 1.
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Notice that if R0 = GR(pr, p) where Char R = p, then the above multiplication reduces to(
r0 +

e∑
i=1

riui +

f∑
j=1

sjvj +

g∑
k=1

tkwk +

h∑
l=1

zlyl

)(
r′0 +

e∑
i=1

r′iui +

f∑
j=1

s′jvj +

g∑
t=1

t′kwk +

h∑
l=1

z′lyl

)

= r0r
′
0 +

e∑
i=1

[
r0r

′
i + rir

′
0

]
ui +

f∑
j=1

[
(r0)s

′
j + sj(r

′
0) +

e∑
ν, µ=1

(rνr
′
µ)

]
vj

+

g∑
k=1

[
(r0)t

′
k + tk(r

′
0) +

∑
i,j

(ri)s
′
j + sj(r

′
i)

]
wk

+

h∑
l=1

(r0)z′l + zl(r
′
0) +

∑
i,k

(ri)t
′
k + tk(r

′
i) +

f∑
κ,τ=1

(sκs
′
τ )

 yl

In the sequel, we use the ideas of Raghavendran [1] and Chikunji [8] to classify the unit groups of
the rings constructed in this section. Evidently

Z(R) = pR0

⊕
U
⊕

V
⊕

W
⊕

Y

= pR0 +
e∑

i=1

R0ui +

f∑
j=1

R0vj +

g∑
k=1

R0wk +
h∑

l=1

R0yl

is a unique maximal ideal of R and

1 + Z(R) = 1 + pR0

⊕
U
⊕

V
⊕

W
⊕

Y

= 1 + pR0 +

e∑
i=1

R0ui +

f∑
j=1

R0vj +

g∑
k=1

R0wk +

h∑
l=1

R0yl

and

R∗ = (R∗/1 + Z(R))× (1 + Z(R)) =< b > ×(1 + Z(R))

where

< b >= (R∗/1 + Z(R)) = (R/Z(R))∗ = F∗
pr

∼= Zpr−1

Proposition 3.1. Let R be a completely primary finite ring from the class of finite rings described
by the construction and of characteristic p with pui = pvj = pwk = pyl = 0. Then the group of units

R∗ ∼=


Z2r−1 × (Ze

8)
r × (Zg

2)
r, if p = 2

Z3r−1 × (Ze
9)

r × (Zf
3 )

r × (Zh
3 )

r, if p = 3

Zpr−1 × (Ze
p)

r × (Zf
p)

r × (Zg
p)

r × (Zh
p)

r, if p > 3

Proof. Using the fact that R∗ ∼= Zpr−1 × (1 + Z(R)), it suffices to determine the structure of
1+Z(R). Let ε1, . . . , εr be elements of R0 with ε1 = 1 such that ε̄1, . . . , ε̄r form a basis for R0/pR0

regarded as a vector space over its prime subfield Fp. We consider the three cases separately.
Case(i): p = 2. For every t = 1, . . . , r, (1 + εtui)

8 = 1 and (1 + εtwk)
2 = 1. For non-negative

integers αt and λt with αt ≤ 2, and λt ≤ 8, it is clear that

e∏
i=1

r∏
t=1

{
(1 + εtui)

λt

}
·

g∏
k=1

r∏
t=1

{(1 + εtwk)
αt} = {1}
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This indicates that λt = 8 and αt = 2 for all t = 1, . . . , r.
Suppose
Ati =

{
(1 + εtui)

λ : λ = 1, . . . , 8;∀t = 1, . . . , r
}
and

Btk = {(1 + εtwk)
α : α = 1, 2; ∀t = 1, . . . , r} ,

then Ati and Btk are all cyclic subgroups of the group 1+Z(R) and these are of the orders inferred
from their definition. Since the intersection of the cyclic subgroups < 1+ εtui > and < 1+ εtwk >
gives the identity group and that∣∣∣∣∣

e∏
i=1

r∏
t=1

< 1 + εtui >

∣∣∣∣∣ ·
∣∣∣∣∣

g∏
k=1

r∏
t=1

< 1 + εtwk >

∣∣∣∣∣
coincides with |1 + Z(R)|, it follows that

1 + Z(R) =

e∏
i=1

r∏
t=1

< 1 + εtui > ×
g∏

k=1

r∏
t=1

< 1 + εtwk >

∼= (Ze
8)

r × (Zg
2)

r

Case(ii): p = 3. For every t = 1, . . . , r, (1 + εtui)
9 = 1, (1 + εtvj)

3 = 1 and (1 + εtyl)
3 = 1. For

non-negative integers λt, αt and φt with λt ≤ 9, αt ≤ 3 and φt ≤ 3, it is clear that

e∏
i=1

r∏
t=1

{
(1 + εtui)

λt

}
·

f∏
j=1

r∏
t=1

{(1 + εtvj)
αt} ·

h∏
l=1

r∏
t=1

{(1 + εtyl)
φt} = {1}

This indicates that λt = 9, αt = 3 and φt = 3 for all t = 1, . . . , r.
Suppose
Ati =

{
(1 + εtui)

λ : λ = 1, . . . , 9;∀t = 1, . . . , r
}
,

Btj = {(1 + εtvj)
α : α = 1, 2, 3;∀t = 1, . . . , r} , and

Ctl = {(1 + εtyl)
φ : φ = 1, 2, 3; ∀t = 1, . . . , r} ,

then Ati, Btj and Ctl are all cyclic subgroups of the group 1 + Z(R) and these are of the orders
inferred from their definition. Since the intersection of any pair of the cyclic subgroups < 1+εtui >
, < 1 + εtvj >, and < 1 + εtyl > gives the identity group and that∣∣∣∣∣

e∏
i=1

r∏
t=1

< 1 + εtui >

∣∣∣∣∣ ·
∣∣∣∣∣

f∏
j=1

r∏
t=1

< 1 + εtvj >

∣∣∣∣∣ ·
∣∣∣∣∣

h∏
l=1

r∏
t=1

< 1 + εtyl >

∣∣∣∣∣
coincides with |1 + Z(R)|, it follows that

1 + Z(R) =

e∏
i=1

r∏
t=1

< 1 + εtui > ×
f∏

j=1

r∏
t=1

< 1 + εtvj > ×
h∏

l=1

r∏
t=1

< 1 + εtyl >

∼= (Ze
9)

r × (Zf
3 )

r × (Zh
3 )

r

Case(iii): p > 3. For every t = 1, . . . , r, (1 + εtui)
p = 1, (1 + εtvj)

p = 1, (1 + εtwk)
p = 1, and

(1 + εtyl)
p = 1. For non-negative integers αt, φt, δt and λt with αt ≤ p, φt ≤ p, δt ≤ p and

λt ≤ p, it is clear that

e∏
i=1

r∏
t=1

{(1 + εtui)
αt} ·

f∏
j=1

r∏
t=1

{(1 + εtvj)
φt} ·

g∏
k=1

r∏
t=1

{
(1 + εtwk)

δt
}
·

h∏
l=1

r∏
t=1

{
(1 + εtyl)

λt

}
= {1}

This indicates that αt = p, φt = p, δt = p and λt = p for all t = 1, . . . , r.
Suppose
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Ati = {(1 + εtui)
α : α = 1, . . . , p; ∀t = 1, . . . , r} ,

Btj = {(1 + εtvj)
φ : φ = 1, . . . , p; ∀t = 1, . . . , r} ,

Ctk =
{
(1 + εtwk)

δ : δ = 1, . . . , p; ∀t = 1, . . . , r
}
, and

Dtl =
{
(1 + εtyl)

λ : λ = 1, . . . , p;∀t = 1, . . . , r
}
,

then Ati, Btj , Ctk and Dtl are all cyclic subgroups of the group 1 + Z(R) and these are of the
orders inferred from their definition. Since the intersection of any pair of the cyclic subgroups
< 1 + εtui >, < 1 + εtvj >, < 1 + εtwk > and < 1 + εtyl > gives the identity group and that∣∣∣∣∣

e∏
i=1

r∏
t=1

< 1 + εtui >

∣∣∣∣∣ ·
∣∣∣∣∣

f∏
j=1

r∏
t=1

< 1 + εtvj >

∣∣∣∣∣ ·
∣∣∣∣∣

g∏
k=1

r∏
t=1

< 1 + εtwk >

∣∣∣∣∣ ·
∣∣∣∣∣

h∏
l=1

r∏
t=1

< 1 + εtyl >

∣∣∣∣∣
coincides with |1 + Z(R)|, it follows that

1 + Z(R) =

e∏
i=1

r∏
t=1

< 1 + εtui > ×
f∏

j=1

r∏
t=1

< 1 + εtvj > ×
g∏

k=1

r∏
t=1

< 1 + εtwk > ×
h∏

l=1

r∏
t=1

< 1 + εtyl >

∼= (Ze
p)

r × (Zf
p)

r × (Zg
p)

r × (Zh
p)

r

Proposition 3.2. Let R be a completely primary finite ring from the class of finite rings described
by the construction and of characteristic p2 with pui = pvj = pwk = pyl. Then the group of units

R∗ ∼=


Z2r−1 × Zr

2 × (Ze
8)

r × (Zg
2)

r, if p = 2

Z3r−1 × Zr
3 × (Ze

9)
r × (Zf

3 )
r × (Zh

3 )
r, if p = 3

Zpr−1 × Zr
p × (Ze

p)
r × (Zf

p)
r × (Zg

p)
r × (Zh

p)
r, if p > 3

Proof. Using the fact that R∗ ∼= Zpr−1 × (1 + Z(R)), it suffices to determine the structure of
1+Z(R). Let ε1, . . . , εr be elements of R0 with ε1 = 1 such that ε̄1, . . . , ε̄r form a basis for R0/pR0

regarded as a vector space over its prime subfield Fp . We consider the three cases separately:
Case (i): p = 2. For every t = 1, . . . , r, (1 + 2εt)

2 = 1, (1 + εtui)
8 = 1, and (1 + εtwk)

2 = 1. For
non-negative integers αt, λt and δt with αt ≤ 2, λt ≤ 8 and δt ≤ 2, it is clear that

r∏
t=1

{(1 + 2εt)
αt} ·

e∏
i=1

r∏
t=1

{
(1 + εtui)

λt

}
·

g∏
k=1

r∏
t=1

{
(1 + εtwk)

δt
}
= {1}

This indicates that αt = 2, λt = 8 and δt = 2 for all t = 1, . . . , r.

Suppose
At = {(1 + 2εt)

α : α = 1, 2;∀t = 1, . . . , r} ,
Bti =

{
(1 + εtui)

λ : λ = 1, . . . , 8; ∀t = 1, . . . , r
}
, and

Ctk =
{
(1 + εtwk)

δ : δ = 1, 2;∀t = 1, . . . , r
}
,

then At, Bti and Ctk are all cyclic subgroups of the group 1 + Z(R) and these are of the orders
inferred from their definition. Since the intersection of any pair of the cyclic subgroups < 1+2εt >
, < 1 + εtui >, and < 1 + εtwk > gives the identity group and that∣∣∣∣∣

r∏
t=1

< 1 + 2εt >

∣∣∣∣∣ ·
∣∣∣∣∣

e∏
i=1

r∏
t=1

< 1 + εtui >

∣∣∣∣∣ ·
∣∣∣∣∣

g∏
k=1

r∏
t=1

< 1 + εtwk >

∣∣∣∣∣
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coincides with |1 + Z(R)|, it follows that

1 + Z(R) =

r∏
t=1

< 1 + 2εt > ×
e∏

i=1

r∏
t=1

< 1 + εtui > ×
g∏

k=1

r∏
t=1

< 1 + εtwk >

∼= Zr
2 × (Ze

8)
r × (Zg

2)
r

Case(ii): p = 3. For every t = 1, . . . , r, (1 + 3εt)
3 = 1, (1 + εtui)

9 = 1, (1 + εtvj)
3 = 1, and

(1 + εtyl)
3 = 1. For non-negative integers αt, φt, δt and λt with αt ≤ 3, φt ≤ 3, δt ≤ 3 and

λt ≤ 9, it is clear that

r∏
t=1

{
(1 + 3εt)

δt
}
·

e∏
i=1

r∏
t=1

{
(1 + εtui)

λt

}
·

f∏
j=1

r∏
t=1

{(1 + εtvj)
φt} ·

h∏
l=1

r∏
t=1

{(1 + εtyl)
αt} = {1}

This indicates that αt = 3, λt = 9, δt = 3 and φt = 3 for all t = 1, . . . , r.
Suppose
At =

{
(1 + 3εt)

δ : δ = 1, 2, 3;∀t = 1, . . . , r
}
,

Bti =
{
(1 + εtui)

λ : λ = 1, . . . , 9; ∀t = 1, . . . , r
}
,

Ctj = {(1 + εtvj)
φ : φ = 1, 2, 3;∀t = 1, . . . , r} , and

Dtl = {(1 + εtyl)
α : α = 1, 2, 3;∀t = 1, . . . , r} ,

then At, Bti, Ctj and Dtl are all cyclic subgroups of the group 1 + Z(R) and these are of the
orders inferred from their definition. Since the intersection of any pair of the cyclic subgroups
< 1 + 3εt >, < 1 + εtui >, < 1 + εtvj > and < 1 + εtyl > gives the identity group and that∣∣∣∣∣

r∏
t=1

< 1 + 3εt >

∣∣∣∣∣ ·
∣∣∣∣∣

e∏
i=1

r∏
t=1

< 1 + εtui >

∣∣∣∣∣ ·
∣∣∣∣∣

f∏
j=1

r∏
t=1

< 1 + εtvj >

∣∣∣∣∣ ·
∣∣∣∣∣

h∏
l=1

r∏
t=1

< 1 + εtyl >

∣∣∣∣∣
coincides with |1 + Z(R)|, it follows that

1 + Z(R) =

r∏
t=1

< 1 + 3εt > ×
e∏

i=1

r∏
t=1

< 1 + εtui > ×
f∏

j=1

r∏
t=1

< 1 + εtvj > ×
h∏

l=1

r∏
t=1

< 1 + εtyl >

∼= Zr
3 × (Ze

9)
r × (Zf

3 )
r × (Zh

3 )
r

Case(iii): p > 3. For every t = 1, . . . , r, (1 + pεt)
p = 1, (1 + εtui)

p = 1, (1 + εtvj)
p = 1,

(1 + εtwk)
p = 1, and (1 + εtyl)

p = 1. For non-negative integers αt, φt, δt, βt and λt such that
αt ≤ p, φt ≤ p, δt ≤ p, βt ≤ p and λt ≤ p, it is clear that

r∏
t=1

{(1 + pεt)
αt} ·

e∏
i=1

r∏
t=1

{(1 + εtui)
φt} ·

f∏
j=1

r∏
t=1

{
(1 + εtvj)

δt
}
·

g∏
k=1

r∏
t=1

{
(1 + εtwk)

βt

}
·

h∏
l=1

r∏
t=1

{
(1 + εtyl)

λt

}
= {1}

This indicates that αt = p, λt = p, δt = p, βt = p and φt = p for all t = 1, . . . , r.
Suppose
At = {(1 + pεt)

α : α = 1, . . . , p; ∀t = 1, . . . , r} ,
Bti = {(1 + εtui)

φ : φ = 1, . . . , p; ∀t = 1, . . . , r} ,
Ctj =

{
(1 + εtvj)

δ : δ = 1, . . . , p; ∀t = 1, . . . , r
}
,

Dtk =
{
(1 + εtwk)

β : β = 1, . . . , p; ∀t = 1, . . . , r
}
, and

Etl =
{
(1 + εtyl)

λ : λ = 1, . . . , p;∀t = 1, . . . , r
}
,

143



Were et al.; JAMCS, 36(8): 137-154, 2021; Article no.JAMCS.73198

then At, Bti, Ctj , Dtk and Etl are all cyclic subgroups of the group 1 + Z(R) and these are of
the orders inferred from their definition. Since the intersection of any pair of the cyclic subgroups
< 1 + pεt >, < 1 + εtui >, < 1 + εtvj >, < 1 + εtwk > and < 1 + εtyl > gives the identity group
and that∣∣∣∣∣

r∏
t=1

< 1 + pεt >

∣∣∣∣∣ ·
∣∣∣∣∣

e∏
i=1

r∏
t=1

< 1 + εtui >

∣∣∣∣∣ ·
∣∣∣∣∣

f∏
j=1

r∏
t=1

< 1 + εtvj >

∣∣∣∣∣ ·
∣∣∣∣∣

g∏
k=1

r∏
t=1

< 1 + εtwk >

∣∣∣∣∣ ·∣∣∣∣∣
h∏

l=1

r∏
t=1

< 1 + εtyl >

∣∣∣∣∣
coincides with |1 + Z(R)|, it follows that

1 + Z(R) =

r∏
t=1

< 1 + pεt > ×
e∏

i=1

r∏
t=1

< 1 + εtui > ×
f∏

j=1

r∏
t=1

< 1 + εtvj > ×
g∏

k=1

r∏
t=1

< 1 + εtwk > ×

h∏
l=1

r∏
t=1

< 1 + εtyl >

∼= Zr
p × (Ze

p)
r × (Zf

p)
r × (Zg

p)
r × (Zh

p)
r

Proposition 3.3. Let R be a completely primary finite ring from the class of finite rings described
by the construction and of characteristic p2 with p2ui = pvj = pwk = pyl = 0. Then the group of
units

R∗ ∼=

{
Z2r−1 × Zr

2 × (Ze
2)

r × (Zg
2)

r × (Ze+f
8 )r, if p = 2

Zpr−1 × Zr
p × (Ze

p2)
r × (Zf

p)
r × (Zg

p)
r × (Zh

p)
r, if p ̸= 2

Proof. Since R∗ ∼= Zpr−1 × (1 + Z(R)), it suffices to determine the structure of 1 + Z(R). Let
ε1, . . . , εr be elements of R0 with ε1 = 1 such that ε̄1, . . . , ε̄r form a basis for R0/pR0 regarded as
a vector space over its prime subfield Fp. Then the generators with their respective orders are as
indicated below:

Case(i): For p = 2, 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f, 1 ≤ k ≤ g, the generators are 1 + 2εt of order
2; 1 + 2εtui of order 2; 1 + εtwk of order 2 and 1 + εtui + εtvj of order 8. The rest of the proof is
similar to the proof of Proposition 3.2.

Case(ii): For p ̸= 2, 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f, 1 ≤ k ≤ g, 1 ≤ l ≤ h, the generators are
1+ pεt of order p, 1+ εtui of order p

2, 1+ εtvj of order p, 1+ εtwk of order p and 1+ εtyl of order
p. The rest of the proof is similar to the proof of Proposition 3.2.

Proposition 3.4. Let R be a completely primary finite ring from the class of finite rings described
by the construction and of characteristic p3 with pui = pvj = pwk = pyl = 0. Then the group of
units

R∗ ∼=


Z2r−1 × Zr

2 × Zr
2 × (Ze

8)
r × (Zg

2)
r, if p = 2

Z3r−1 × Zr
9 × (Ze

9)
r × (Zf

3 )
r × (Zh

3 )
r, if p = 3

Zpr−1 × Zr
p × (Ze

p)
r × (Zf

p)
r × (Zg

p)
r × (Zh

p)
r × (Ze+f

p )r, if p > 3

Proof. Using the fact that R∗ ∼= Zpr−1 × (1 + Z(R)), it suffices to determine the structure of
1+Z(R). Let ε1, . . . , εr be elements of R0 with ε1 = 1 such that ε̄1, . . . , ε̄r form a basis for R0/pR0

regarded as a vector space over its prime subfield Fp. We consider three cases separately:
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Case(i): p = 2. For every t = 1, . . . , r, (1 + 2εt)
2 = 1, (1 + 4εt)

2 = 1, (1 + εtui)
8 = 1, and

(1+εtwk)
2 = 1. For non-negative integers αt, δt, φt and λt with αt ≤ 2, δt ≤ 2, φt ≤ 8 and λt ≤ 2,

it is clear that

r∏
t=1

{(1 + 2εt)
αt} ·

r∏
t=1

{
(1 + 4εt)

δt
}
·

e∏
i=1

r∏
t=1

{(1 + εtui)
φt} ·

g∏
k=1

r∏
t=1

{
(1 + εtwk)

λt

}
= {1}

This indicates that αt = 2, δt = 2, φt = 8 and λt = 2 for all t = 1, . . . , r.
Suppose
At = {(1 + 2εt)

α : α = 1, 2;∀t = 1, . . . , r} ,
Bt =

{
(1 + 4εt)

δ : δ = 1, 2;∀t = 1, . . . , r
}
,

Cti = {(1 + εtui)
φ : φ = 1, . . . , 8; ∀t = 1, . . . , r} , and

Dtk =
{
(1 + εtwk)

λ : λ = 1, 2;∀t = 1, . . . , r
}
,

then At, Bt, Cti and Dtk are all cyclic subgroups of the group 1 + Z(R) and these are of the
orders inferred from their definition. Since the intersection of any pair of the cyclic subgroups
< 1 + 2εt >, < 1 + 4εt >, < 1 + εtui > and < 1 + εtwk > gives the identity group and that∣∣∣∣∣

r∏
t=1

< 1 + 2εt >

∣∣∣∣∣ ·
∣∣∣∣∣

r∏
t=1

< 1 + 4εt >

∣∣∣∣∣ ·
∣∣∣∣∣

e∏
i=1

r∏
t=1

< 1 + εtui >

∣∣∣∣∣ ·
∣∣∣∣∣

g∏
k=1

r∏
t=1

< 1 + εtwk >

∣∣∣∣∣
coincides with |1 + Z(R)|, it follows that

1 + Z(R) =
r∏

t=1

< 1 + 2εt > ×
r∏

t=1

< 1 + 4εt > ×
e∏

i=1

r∏
t=1

< 1 + εtui > ×
g∏

k=1

r∏
t=1

< 1 + εtwk >

∼= Zr
2 × Zr

2 × (Ze
8)

r × (Zg
2)

r

Case(ii): p = 3. For every t = 1, . . . , r, (1 + 6εt)
9 = 1, (1 + εtui)

9 = 1, (1 + εtvj)
3 = 1, and

(1+ εtyl)
3 = 1. For non-negative integers αt, λt, φt and δt with αt ≤ 3, λt ≤ 9, φt ≤ 3 and δt ≤ 9,

it is clear that

r∏
t=1

{
(1 + 6εt)

δt
}
·

e∏
i=1

r∏
t=1

{
(1 + εtui)

λt

}
·

f∏
j=1

r∏
t=1

{(1 + εtvj)
φt} ·

h∏
l=1

r∏
t=1

{(1 + εtyl)
αt} = {1}

This indicates that δt = 9, λt = 9, φt = 3 and αt = 3 for all t = 1, . . . , r.
Suppose
At =

{
(1 + 6εt)

δ : δ = 1, . . . , 9;∀t = 1, . . . , r
}
,

Bti =
{
(1 + εtui)

λ : λ = 1, . . . , 9; ∀t = 1, . . . , r
}
,

Ctj = {(1 + εtvj)
φ : φ = 1, 2, 3;∀t = 1, . . . , r} , and

Dtl = {(1 + εtyl)
α : α = 1, 2, 3;∀t = 1, . . . , r} ,

then At, Bti, Ctj and Dtl are all cyclic subgroups of the group 1 + Z(R) and these are of the
orders inferred from their definition. Since the intersection of any pair of the cyclic subgroups
< 1 + 6εt >, < 1 + εtui >, < 1 + εtvj > and < 1 + εtyl > gives the identity group and that∣∣∣∣∣

r∏
t=1

< 1 + 6εt >

∣∣∣∣∣ ·
∣∣∣∣∣

e∏
i=1

r∏
t=1

< 1 + εtui >

∣∣∣∣∣ ·
∣∣∣∣∣

f∏
j=1

r∏
t=1

< 1 + εtvj >

∣∣∣∣∣ ·
∣∣∣∣∣

h∏
l=1

r∏
t=1

< 1 + εtyl >

∣∣∣∣∣
coincides with |1 + Z(R)|, it follows that

1 + Z(R) =

r∏
t=1

< 1 + 6εt > ×
e∏

i=1

r∏
t=1

< 1 + εtui > ×
f∏

j=1

r∏
t=1

< 1 + εtvj > ×
h∏

l=1

r∏
t=1

< 1 + εtyl >

∼= Zr
9 × (Ze

9)
r × (Zf

3 )
r × (Zh

3 )
r
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Case(iii): p > 3. For every t = 1, . . . , r, (1 + p2εt)
p = 1, (1 + εtui)

p = 1, (1 + εtvj)
p = 1,

(1 + εtwk)
p = 1, (1 + εtyl)

p = 1, and (1 + εtui + εtvj)
p = 1. For non-negative integers αt, φt, δt,

βt, ηt, and λt with αt ≤ p, φt ≤ p, δt ≤ p, βt ≤ p, ηt ≤ p, and λt ≤ p, it is clear that

r∏
t=1

{
(1 + p2εt)

αt
}
·

e∏
i=1

r∏
t=1

{(1 + εtui)
φt} ·

f∏
j=1

r∏
t=1

{
(1 + εtvj)

δt
}
·

g∏
k=1

r∏
t=1

{
(1 + εtwk)

βt

}
·

h∏
l=1

r∏
t=1

{(1 + εtyl)
ηt} ·

f∏
j=1

e∏
i=1

r∏
t=1

{
(1 + εtui + εtvj)

λt

}
= {1}

This indicates that αt = p, λt = p, φt = p, δt = p, βt = p, and ηt = p for all t = 1, . . . , r.
Suppose
At =

{
(1 + p2εt)

α : α = 1, . . . , p; ∀t = 1, . . . , r
}
,

Bti = {(1 + εtui)
φ : φ = 1, . . . , p; ∀t = 1, . . . , r} ,

Ctj =
{
(1 + εtvj)

δ : δ = 1, . . . , p; ∀t = 1, . . . , r
}
,

Dtk =
{
(1 + εtwk)

β : β = 1, . . . , p; ∀t = 1, . . . , r
}
,

Etl = {(1 + εtyl)
η : η = 1, . . . , p; ∀t = 1, . . . , r} , and

Ftij =
{
(1 + εtui + εtvj)

λ : λ = 1, . . . , p; ∀t = 1, . . . , r
}
,

then At, Bti, Ctj , Dtk, Etl, and Ftij are all cyclic subgroups of the group 1+Z(R) and these are of
the orders inferred from their definition. Since the intersection of any pair of the cyclic subgroups
< 1 + p2εt >, < 1 + εtui >, < 1 + εtvj >, < 1 + εtwk >, < 1 + εtyl >, and < 1 + εtui + εtvj >
gives the identity group and that∣∣∣∣∣

r∏
t=1

< 1 + p2εt >

∣∣∣∣∣ ·
∣∣∣∣∣

e∏
i=1

r∏
t=1

< 1 + εtui >

∣∣∣∣∣ ·
∣∣∣∣∣

f∏
j=1

r∏
t=1

< 1 + εtvj >

∣∣∣∣∣ ·
∣∣∣∣∣

g∏
k=1

r∏
t=1

< 1 + εtwk >

∣∣∣∣∣ ·∣∣∣∣∣
h∏

l=1

r∏
t=1

< 1 + εtyl >

∣∣∣∣∣ ·
∣∣∣∣∣

f∏
j=1

e∏
i=1

r∏
t=1

< 1 + εtui + εtvj >

∣∣∣∣∣
coincides with |1 + Z(R)|, it follows that

1 + Z(R) =

r∏
t=1

< 1 + p2εt > ×
e∏

i=1

r∏
t=1

< 1 + εtui > ×
f∏

j=1

r∏
t=1

< 1 + εtvj > ×
g∏

k=1

r∏
t=1

< 1 + εtwk > ×

h∏
l=1

r∏
t=1

< 1 + εtyl > ×
f∏

j=1

e∏
i=1

r∏
t=1

< 1 + εtui + εtvj >

∼= Zr
p × (Ze

p)
r × (Zf

p)
r × (Zg

p)
r × (Zh

p)
r × (Ze+f

p )r

Proposition 3.5. Let R be a completely primary finite ring from the class of finite rings described
by the construction and of characteristic p3 with p2ui = pvj = pwk = pyl = 0. Then the group of
units

R∗ ∼=

{
Z2r−1 × Zr

2 × Zr
2 × (Ze

2)
r × (Zg

2)
r × (Ze+f

8 )r, if p = 2

Zpr−1 × Zr
p2 × (Ze

p2)
r × (Zf

p)
r × (Zg

p)
r × (Zh

p)
r, if p ̸= 2

Proof. Since R∗ ∼= Zpr−1 × (1 + Z(R)), it suffices to determine the structure of 1 + Z(R). Let
ε1, . . . , εr be elements of R0 with ε1 = 1 such that ε̄1, . . . , ε̄r form a basis for R0/pR0 regarded as
a vector space over its prime subfield Fp. Then the generators with their respective orders are as
indicated below:
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Case(i): For p = 2, 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f, 1 ≤ k ≤ g, the generators are 1 + 2εt of order
2; 1+ 4εt of oder 2, 1+ 2εtui of order 2; 1+ εtwk of order 2 and 1+ εtui + εtvj of order 8. The rest
of the proof is similar to the proof of proposition 3.4.

Case(ii):For p ̸= 2, 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f, 1 ≤ k ≤ g, 1 ≤ l ≤ h, the generators are 1+ pεt
of order p2, 1+ εtui of order p

2, 1+ εtvj of order p, 1+ εtwk of order p and 1+ εtyl of order p. The
rest of the proof is similar to the proof of Proposition 3.4.

Proposition 3.6. Let R be a completely primary finite ring from the class of finite rings described
by the construction and of characteristic p3 with p3ui = pvj = pwk = pyl = 0. Then the group of
units

R∗ ∼=

{
Z2r−1 × Zr

2 × Zr
2 × (Ze

8)
r × (Zf

4 )
r × (Zg

2)
r, if p = 2

Zpr−1 × Zr
p2 × (Ze

p3)
r × (Zf

p)
r × (Zg

p)
r × (Zh

p)
r, if p ̸= 2

Proof. Since R∗ ∼= Zpr−1 × (1 + Z(R)), it suffices to determine the structure of 1 + Z(R). Let
ε1, . . . , εr be elements of R0 with ε1 = 1 such that ε̄1, . . . , ε̄r form a basis for R0/pR0 regarded as
a vector space over its prime subfield Fp. Then the generators with their respective orders are as
indicated below:

Case(i): For p = 2, 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f, 1 ≤ k ≤ g, the generators are 1 + 2εt of order
2; 1 + 4εt of oder 2, 1 + εtui of order 8; 1 + εtvj of order 4 and 1 + εtwk of order 2. The rest of the
proof is similar to the proof of Proposition 3.4.

Case(ii): For p ̸= 2, 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f, 1 ≤ k ≤ g, 1 ≤ l ≤ h, the generators are
1+ pεt of order p

2, 1+ εtui of order p
3, 1+ εtvj of order p, 1+ εtwk of order p and 1+ εtyl of order

p. The rest of the proof is similar to the proof of Proposition 3.4.

Proposition 3.7. Let R be a completely primary finite ring from the class of finite rings described
by the construction and of characteristic p4 with pui = pvj = pwk = pyl = 0. Then the group of
units

R∗ ∼=


Z2r−1 × Zr

4 × Zr
2 × (Ze

8)
r × (Zg

2)
r, if p = 2

Z2r−1 × Zr
27 × (Ze

9)
r × (Zf

3 )
r × (Zh

3 )
r, if p = 3

Zpr−1 × Zr
p3 × (Ze

p)
r × (Zf

p)
r × (Zg

p)
r × (Zh

p)
r, if p > 3

Proof. Using the fact that R∗ ∼= Zpr−1 × (1 + Z(R)), it suffices to determine the structure of
1+Z(R). Let ε1, . . . , εr be elements of R0 with ε1 = 1 such that ε̄1, . . . , ε̄r form a basis for R0/pR0

regarded as a vector space over its prime subfield Fp. We consider the three cases separately:

Case(i): p = 2. For every t = 1, . . . , r, (1 + 2εt)
4 = 1, (1 + 6εt)

2 = 1, (1 + εtui)
8 = 1, and

(1+εtwk)
2 = 1. For non-negative integers αt, δt, φt and λt with αt ≤ 4, δt ≤ 2, φt ≤ 8 and λt ≤ 2,

it is clear that

r∏
t=1

{(1 + 2εt)
αt} ·

r∏
t=1

{
(1 + 6εt)

δt
}
·

e∏
i=1

r∏
t=1

{(1 + εtui)
φt} ·

g∏
k=1

r∏
t=1

{
(1 + εtwk)

λt

}
= {1}

This indicates that αt = 4, δt = 2, φt = 8 and λt = 2 for all t = 1, . . . , r.
Suppose
At = {(1 + 2εt)

α : α = 1, 2, 3, 4; ∀t = 1, . . . , r} ,
Bt =

{
(1 + 6εt)

δ : δ = 1, 2;∀t = 1, . . . , r
}
,

Cti = {(1 + εtui)
φ : φ = 1, . . . , 8; ∀t = 1, . . . , r} , and

Dtk =
{
(1 + εtwk)

λ : λ = 1, 2;∀t = 1, . . . , r
}
,
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then At, Bt, Cti and Dtk are all cyclic subgroups of the group 1 + Z(R) and these are of the
orders inferred from their definition. Since the intersection of any pair of the cyclic subgroups
< 1 + 2εt >, < 1 + 6εt >, < 1 + εtui >, and < 1 + εtwk > gives the identity group and that∣∣∣∣∣

r∏
t=1

< 1 + 2εt >

∣∣∣∣∣ ·
∣∣∣∣∣

r∏
t=1

< 1 + 6εt >

∣∣∣∣∣ ·
∣∣∣∣∣

e∏
i=1

r∏
t=1

< 1 + εtui >

∣∣∣∣∣ ·
∣∣∣∣∣

g∏
k=1

r∏
t=1

< 1 + εtwk >

∣∣∣∣∣
coincides with |1 + Z(R)|, it follows that

1 + Z(R) =

r∏
t=1

< 1 + 2εt > ×
r∏

t=1

< 1 + 6εt > ×
e∏

i=1

r∏
t=1

< 1 + εtui > ×
g∏

k=1

r∏
t=1

< 1 + εtwk >

∼= Zr
4 × Zr

2 × (Ze
8)

r × (Zg
2)

r

Case(ii): p = 3. For every t = 1, . . . , r, (1 + 3εt)
27 = 1, (1 + εtui)

9 = 1, (1 + εtvj)
3 = 1, and

(1+εtyl)
3 = 1. For non-negative integers αt, φt, δt and λt with αt ≤ 27, φt ≤ 9, δt ≤ 3, and λt ≤ 3,

it is clear that

r∏
t=1

{(1 + 3εt)
αt} ·

e∏
i=1

r∏
t=1

{(1 + εtui)
φt} ·

f∏
j=1

r∏
t=1

{
(1 + εtvj)

δt
}
·

h∏
l=1

r∏
t=1

{
(1 + εtyl)

λt

}
= {1}

This indicates that αt = 27, λt = 3, φt = 9 and δt = 3 for all t = 1, . . . , r.
Suppose
At = {(1 + 3εt)

α : α = 1, . . . , 27;∀t = 1, . . . , r} ,
Bti = {(1 + εtui)

φ : φ = 1, . . . , 9;∀t = 1, . . . , r} ,
Ctj =

{
(1 + εtvj)

δ : δ = 1, 2, 3; ∀t = 1, . . . , r
}
, and

Dtl =
{
(1 + εtyl)

λ : λ = 1, 2, 3;∀t = 1, . . . , r
}
,

then At, Bti, Ctj and Dtl are all cyclic subgroups of the group 1 + Z(R) and these are of the
orders inferred from their definition. Since the intersection of any pair of the cyclic subgroups
< 1 + 3εt >, < 1 + εtui >, < 1 + εtvj >, and < 1 + εtyl > gives the identity group and that∣∣∣∣∣

r∏
t=1

< 1 + 3εt >

∣∣∣∣∣ ·
∣∣∣∣∣

e∏
i=1

r∏
t=1

< 1 + εtui >

∣∣∣∣∣ ·
∣∣∣∣∣

f∏
j=1

r∏
t=1

< 1 + εtvj >

∣∣∣∣∣ ·
∣∣∣∣∣

h∏
l=1

r∏
t=1

< 1 + εtyl >

∣∣∣∣∣
coincides with |1 + Z(R)|, it follows that

1 + Z(R) =

r∏
t=1

< 1 + 3εt > ×
e∏

i=1

r∏
t=1

< 1 + εtui > ×
f∏

j=1

r∏
t=1

< 1 + εtvj > ×
h∏

l=1

r∏
t=1

< 1 + εtyl >

∼= Zr
27 × (Ze

9)
r × (Zf

3 )
r × (Zh

3 )
r

Case(iii): p > 3. For every t = 1, . . . , r, (1+pεt)
p3 = 1, (1+εtui)

p = 1, (1+εtvj)
p = 1, (1+εtwk)

p =
1, and (1+εtyl)

p = 1. For non-negative integers αt, λt, φt, βt, and δt with αt ≤ p3, λt ≤ p, φt ≤ p,
δt ≤ p, and βt ≤ p, it is clear that

r∏
t=1

{(1 + pεt)
αt} ·

e∏
i=1

r∏
t=1

{(1 + εtui)
φt} ·

f∏
j=1

r∏
t=1

{
(1 + εtvj)

δt
}
·

g∏
k=1

r∏
t=1

{
(1 + εtwk)

βt

}
·

h∏
l=1

r∏
t=1

{
(1 + εtyl)

λt

}
= {1}

This indicates that αt = p3, λt = p, φt = p, δt = p, and βt = p, for all t = 1, . . . , r.

148



Were et al.; JAMCS, 36(8): 137-154, 2021; Article no.JAMCS.73198

Suppose
At =

{
(1 + pεt)

α : α = 1, . . . , p3; ∀t = 1, . . . , r
}
,

Bti = {(1 + εtui)
φ : φ = 1, . . . , p; ∀t = 1, . . . , r} ,

Ctj =
{
(1 + εtvj)

δ : δ = 1, . . . , p; ∀t = 1, . . . , r
}
,

Dtk =
{
(1 + εtwk)

β : β = 1, . . . , p; ∀t = 1, . . . , r
}
, and

Etl =
{
(1 + εtyl)

λ : λ = 1, . . . , p;∀t = 1, . . . , r
}

then At, Bti, Ctj , Dtk, and Etl, are all cyclic subgroups of the group 1 + Z(R) and these are of
the orders inferred from their definition. Since the intersection of any pair of the cyclic subgroups
< 1+ pεt >, < 1+ εtui >, < 1+ εtvj >, < 1+ εtwk >, and < 1+ εtyl >, gives the identity group
and that∣∣∣∣∣

r∏
t=1

< 1 + pεt >

∣∣∣∣∣ ·
∣∣∣∣∣

e∏
i=1

r∏
t=1

< 1 + εtui >

∣∣∣∣∣ ·
∣∣∣∣∣

f∏
j=1

r∏
t=1

< 1 + εtvj >

∣∣∣∣∣ ·
∣∣∣∣∣

g∏
k=1

r∏
t=1

< 1 + εtwk >

∣∣∣∣∣ ·∣∣∣∣∣
h∏

l=1

r∏
t=1

< 1 + εtyl >

∣∣∣∣∣
coincides with |1 + Z(R)|, it follows that

1 + Z(R) =
r∏

t=1

< 1 + pεt > ×
e∏

i=1

r∏
t=1

< 1 + εtui > ×
f∏

j=1

r∏
t=1

< 1 + εtvj >

×
g∏

k=1

r∏
t=1

< 1 + εtwk > ×
h∏

l=1

r∏
t=1

< 1 + εtyl >

∼= Zr
p3 × (Ze

p)
r × (Zf

p)
r × (Zg

p)
r × (Zh

p)
r

Proposition 3.8. Let R be a completely primary finite ring from the class of finite rings described
by the construction and of characteristic p4 with p2ui = pvj = pwk = pyl = 0. Then the group of
units

R∗ ∼=

{
Z2r−1 × Zr

4 × Zr
2 × (Ze

2)
r × (Zg

2)
r × (Ze+f

8 )r, if p = 2

Zpr−1 × Zr
p3 × (Ze

p2)
r × (Zf

p)
r × (Zg

p)
r × (Zh

p)
r, if p ̸= 2

Proof. Since R∗ ∼= Zpr−1 × (1 + Z(R)), it suffices to determine the structure of 1 + Z(R). Let
ε1, . . . , εr be elements of R0 with ε1 = 1 such that ε̄1, . . . , ε̄r form a basis for R0/pR0 regarded as
a vector space over its prime subfield Fp. Then the generators with their respective orders are as
indicated below:

Case(i): For p = 2, 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f, 1 ≤ k ≤ g, the generators are 1 + 2εt of order
4; 1+ 6εt of oder 2, 1+ 2εtui of order 2; 1+ εtwk of order 2 and 1+ εtui + εtvj of order 8. The rest
of the proof is similar to the proof of Proposition 3.7.

Case(ii): For p ̸= 2, 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f, 1 ≤ k ≤ g, 1 ≤ l ≤ h, the generators are
1+ pεt of order p

3, 1+ εtui of order p
2, 1+ εtvj of order p, 1+ εtwk of order p and 1+ εtyl of order

p. The rest of the proof is similar to the proof of Proposition 3.7.

Proposition 3.9. Let R be a completely primary finite ring from the class of finite rings described
by the construction and of characteristic p4 with p3ui = pvj = pwk = pyl = 0. Then the group of
units

R∗ ∼=

{
Z2r−1 × Zr

4 × Zr
2 × (Ze

8)
r × (Zf

4 )
r × (Zg

2)
r, if p = 2

Zpr−1 × Zr
p3 × (Ze

p3)
r × (Zf

p)
r × (Zg

p)
r × (Zh

p)
r, if p ̸= 2
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Proof. Since R∗ ∼= Zpr−1 × (1 + Z(R)), it suffices to determine the structure of 1 + Z(R). Let
ε1, . . . , εr be elements of R0 with ε1 = 1 such that ε̄1, . . . , ε̄r form a basis for R0/pR0 regarded as
a vector space over its prime subfield Fp. Then the generators with their respective orders are as
indicated below:

Case(i): For p = 2, 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f, 1 ≤ k ≤ g, the generators are 1 + 2εt of order
4; 1+ 6εt of order 2, 1+ εtui of order 8; 1+ εtvj of order 4 and 1+ εtwk of order 2. The rest of the
proof is similar to the proof of Proposition 3.7 .
Case(ii): For p ̸= 2, 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f, 1 ≤ k ≤ g, 1 ≤ l ≤ h, the generators are
1+ pεt of order p

3, 1+ εtui of order p
3, 1+ εtvj of order p, 1+ εtwk of order p and 1+ εtyl of order

p. The rest of the proof is similar to the proof of Proposition 3.7.

Proposition 3.10. Let R be a completely primary finite ring from the class of finite rings described
by the construction and of characteristic p4 with p4ui = pvj = pwk = pyl = 0. Then the group of
units

R∗ ∼=

{
Z2r−1 × Zr

4 × Zr
2 × (Ze

16)
r × (Zf

4 )
r × (Zg

2)
r, if p = 2

Zpr−1 × Zr
p3 × (Ze

p4)
r × (Zf

p)
r × (Zg

p)
r × (Zh

p)
r, if p ̸= 2

Proof. Since R∗ ∼= Zpr−1 × (1 + Z(R)), it suffices to determine the structure of 1 + Z(R). Let
ε1, . . . , εr be elements of R0 with ε1 = 1 such that ε̄1, . . . , ε̄r form a basis for R0/pR0 regarded as
a vector space over its prime subfield Fp. Then the generators with their respective orders are as
indicated below:

Case(i): For p = 2, 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f, 1 ≤ k ≤ g, the generators are 1 + 2εt of order
4; 1+ 6εt of oder 2, 1+ εtui of order 16; 1+ εtvj of order 4 and 1+ εtwk of order 2. The rest of the
proof is similar to the proof of Proposition 3.7.

Case(ii): For p ̸= 2, 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f, 1 ≤ k ≤ g, 1 ≤ l ≤ h, the generators are
1+ pεt of order p

3, 1+ εtui of order p
4, 1+ εtvj of order p, 1+ εtwk of order p and 1+ εtyl of order

p. The rest of the proof is similar to the proof of Proposition 3.7.

Proposition 3.11. Let R be a completely primary finite ring from the class of finite rings described
by the construction and of characteristic p5 with pui = pvj = pwk = pyl = 0. Then the group of
units

R∗ ∼=


Z2r−1 × Zr

8 × Zr
2 × (Ze

8)
r × (Zg

2)
r, if p = 2

Z3r−1 × Zr
81 × (Ze

9)
r × (Zf

3 )
r × (Zh

3 )
r, if p = 3

Zpr−1 × Zr
p4 × (Ze

p)
r × (Zf

p)
r × (Zg

p)
r × (Zh

p)
r, if p > 3

Proof. Using the fact that R∗ ∼= Zpr−1 × (1 + Z(R)), it suffices to determine the structure of
1+Z(R). Let ε1, . . . , εr be elements of R0 with ε1 = 1 such that ε̄1, . . . , ε̄r form a basis for R0/pR0

regarded as a vector space over its prime subfield Fp. We consider the three cases separately:

Case(i): p = 2. For every t = 1, . . . , r, (1 + 4εt)
8 = 1, (1 + 14εt)

2 = 1, (1 + εtui)
8 = 1, and

(1+εtwk)
2 = 1. For non-negative integers αt, λt, φt and δt with αt ≤ 8, λt ≤ 2, φt ≤ 8 and δt ≤ 2,

it is clear that

r∏
t=1

{(1 + 4εt)
αt} ·

r∏
t=1

{
(1 + 14εt)

δt
}
·

e∏
i=1

r∏
t=1

{(1 + εtui)
φt} ·

g∏
k=1

r∏
t=1

{
(1 + εtwk)

λt

}
= {1}

This indicates that αt = 8, λt = 2, φt = 8 and δt = 2 for all t = 1, . . . , r.
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Suppose

At = {(1 + 4εt)
α : α = 1, . . . , 8;∀t = 1, . . . , r} ,

Bt =
{
(1 + 14εt)

δ : δ = 1, 2;∀t = 1, . . . , r
}
,

Cti = {(1 + εtui)
φ : φ = 1, . . . , 8; ∀t = 1, . . . , r} , and

Dtk =
{
(1 + εtwk)

λ : λ = 1, 2;∀t = 1, . . . , r
}
,

then At, Bt, Cti and Dtk are all cyclic subgroups of the group 1 + Z(R) and these are of the
orders inferred from their definition. Since the intersection of any pair of the cyclic subgroups
< 1 + 4εt >, < 1 + 14εt >, < 1 + εtui >, and < 1 + εtwk > gives the identity group and that∣∣∣∣∣

r∏
t=1

< 1 + 4εt >

∣∣∣∣∣ ·
∣∣∣∣∣

r∏
t=1

< 1 + 14εt >

∣∣∣∣∣ ·
∣∣∣∣∣

e∏
i=1

r∏
t=1

< 1 + εtui >

∣∣∣∣∣ ·
∣∣∣∣∣

g∏
k=1

r∏
t=1

< 1 + εtwk >

∣∣∣∣∣
coincides with |1 + Z(R)|, it follows that

1 + Z(R) =

r∏
t=1

< 1 + 4εt > ×
r∏

t=1

< 1 + 14εt > ×
e∏

i=1

r∏
t=1

< 1 + εtui > ×
g∏

k=1

r∏
t=1

< 1 + εtwk >

∼= Zr
8 × Zr

2 × (Ze
8)

r × (Zg
2)

r

Case(ii): p = 3. For every t = 1, . . . , r, (1 + 3εt)
81 = 1, (1 + εtvj)

3 = 1, (1 + εtui)
9 = 1, and

(1+εtyl)
3 = 1. For non-negative integers αt, λt, φt and δt with αt ≤ 81, λt ≤ 3, φt ≤ 9 and δt ≤ 3,

it is clear that
r∏

t=1

{(1 + 3εt)
αt} ·

e∏
i=1

r∏
t=1

{(1 + εtui)
φt} ·

f∏
j=1

r∏
t=1

{
(1 + εtvj)

δt
}
·

h∏
l=1

r∏
t=1

{
(1 + εtyl)

λt

}
= {1}

This indicates that αt = 81, λt = 3, φt = 9 and δt = 3 for all t = 1, . . . , r.
Suppose
At = {(1 + 3εt)

α : α = 1, . . . , 81;∀t = 1, . . . , r} ,
Bti = {(1 + εtui)

φ : φ = 1, . . . , 9;∀t = 1, . . . , r} ,
Ctj =

{
(1 + εtvj)

δ : δ = 1, 2, 3; ∀t = 1, . . . , r
}
, and

Dtl =
{
(1 + εtyl)

λ : λ = 1, 2, 3;∀t = 1, . . . , r
}
,

then At, Bti, Ctj and Dtl are all cyclic subgroups of the group 1 + Z(R) and these are of the
orders inferred from their definition. Since the intersection of any pair of the cyclic subgroups
< 1 + 3εt >, < 1 + εtui >, < 1 + εtvj >, and < 1 + εtyl > gives the identity group and that∣∣∣∣∣

r∏
t=1

< 1 + 3εt >

∣∣∣∣∣ ·
∣∣∣∣∣

e∏
i=1

r∏
t=1

< 1 + εtui >

∣∣∣∣∣ ·
∣∣∣∣∣

f∏
j=1

r∏
t=1

< 1 + εtvj >

∣∣∣∣∣ ·
∣∣∣∣∣

h∏
l=1

r∏
t=1

< 1 + εtyl >

∣∣∣∣∣
coincides with |1 + Z(R)|, it follows that

1 + Z(R) =

r∏
t=1

< 1 + 3εt > ×
e∏

i=1

r∏
t=1

< 1 + εtui > ×
f∏

j=1

r∏
t=1

< 1 + εtvj > ×
h∏

l=1

r∏
t=1

< 1 + εtyl >

∼= Zr
81 × (Ze

9)
r × (Zf

3 )
r × (Zh

3 )
r

Case(iii): p > 3. For every t = 1, . . . , r, (1+pεt)
p4 = 1, (1+εtui)

p = 1, (1+εtvj)
p = 1, (1+εtwk)

p =
1, and (1+εtyl)

p = 1. For non-negative integers αt, λt, φt, βt, and δt with αt ≤ p4, λt ≤ p, φt ≤ p,
βt ≤ p and δt ≤ p, it is clear that

r∏
t=1

{(1 + pεt)
αt} ·

e∏
i=1

r∏
t=1

{(1 + εtui)
φt} ·

f∏
j=1

r∏
t=1

{
(1 + εtvj)

δt
}
·

g∏
k=1

r∏
t=1

{
(1 + εtwk)

βt

}
·

h∏
l=1

r∏
t=1

{
(1 + εtyl)

λt

}
= {1}
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This indicates that αt = p4, λt = p, φt = p, δt = p, and βt = p, for all t = 1, . . . , r.
Suppose
At =

{
(1 + pεt)

α : α = 1, . . . , p4; ∀t = 1, . . . , r
}
,

Bti = {(1 + εtui)
φ : φ = 1, . . . , p; ∀t = 1, . . . , r} ,

Ctj =
{
(1 + εtvj)

δ : δ = 1, . . . , p; ∀t = 1, . . . , r
}
,

Dtk =
{
(1 + εtwk)

β : β = 1, . . . , p; ∀t = 1, . . . , r
}
, and

Etl =
{
(1 + εtyl)

λ : λ = 1, . . . , p;∀t = 1, . . . , r
}
,

then At, Bti, Ctj , Dtk, and Etl, are all cyclic subgroups of the group 1 + Z(R) and these are of
the orders inferred from their definition. Since the intersection of any pair of the cyclic subgroups
< 1+ pεt >, < 1+ εtui >, < 1+ εtvj >, < 1+ εtwk >, and < 1+ εtyl >, gives the identity group
and that∣∣∣∣∣

r∏
t=1

< 1 + pεt >

∣∣∣∣∣ ·
∣∣∣∣∣

e∏
i=1

r∏
t=1

< 1 + εtui >

∣∣∣∣∣ ·
∣∣∣∣∣

f∏
j=1

r∏
t=1

< 1 + εtvj >

∣∣∣∣∣ ·
∣∣∣∣∣

g∏
k=1

r∏
t=1

< 1 + εtwk >

∣∣∣∣∣ ·∣∣∣∣∣
h∏

l=1

r∏
t=1

< 1 + εtyl >

∣∣∣∣∣
coincides with |1 + Z(R)|, it follows that

1 + Z(R) =

r∏
t=1

< 1 + pεt > ×
e∏

i=1

r∏
t=1

< 1 + εtui > ×
f∏

j=1

r∏
t=1

< 1 + εtvj >

×
g∏

k=1

r∏
t=1

< 1 + εtwk > ×
h∏

l=1

r∏
t=1

< 1 + εtyl >

∼= Zr
p4 × (Ze

p)
r × (Zf

p)
r × (Zg

p)
r × (Zh

p)
r

Proposition 3.12. Let R be a completely primary finite ring from the class of finite rings described
by the construction and of characteristic p5 with p2ui = pvj = pwk = pyl = 0. Then the group of
units

R∗ ∼=

{
Z2r−1 × Zr

8 × Zr
2 × (Ze

2)
r × (Zg

2)
r × (Ze+f

8 )r, if p = 2

Zpr−1 × Zr
p4 × (Ze

p2)
r × (Zf

p)
r × (Zg

p)
r × (Zh

p)
r, if p ̸= 2

Proof. Since R∗ ∼= Zpr−1 × (1 + Z(R)), it suffices to determine the structure of 1 + Z(R). Let
ε1, . . . , εr be elements of R0 with ε1 = 1 such that ε̄1, . . . , ε̄r form a basis for R0/pR0 regarded as
a vector space over its prime subfield Fp. Then the generators with their respective orders are as
indicated below:

Case(i): For p = 2, 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f, 1 ≤ k ≤ g, the generators are 1 + 4εt of order
8; 1 + 14εt of order 2, 1 + 2εtui of order 2; 1 + εtwk of order 2 and 1 + εtui + εtvj of order 8. The
rest of the proof is similar to the proof of Proposition 3.11.

Case(ii): For p ̸= 2, 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f, 1 ≤ k ≤ g, 1 ≤ l ≤ h, the generators are
1+ pεt of order p

4, 1+ εtui of order p
2, 1+ εtvj of order p, 1+ εtwk of order p and 1+ εtyl of order

p. The rest of the proof is similar to the proof of Proposition 3.11.

Proposition 3.13. Let R be a completely primary finite ring from the class of finite rings described
by the construction and of characteristic p5 with p3ui = pvj = pwk = pyl = 0. Then the group of
units

R∗ ∼=

{
Z2r−1 × Zr

8 × Zr
2 × (Ze

8)
r × (Zf

4 )
r × (Zg

2)
r, if p = 2

Zpr−1 × Zr
p4 × (Ze

p3)
r × (Zf

p)
r × (Zg

p)
r × (Zh

p)
r, if p ̸= 2
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Proof. Since R∗ ∼= Zpr−1 × (1 + Z(R)), it suffices to determine the structure of 1 + Z(R). Let
ε1, . . . , εr be elements of R0 with ε1 = 1 such that ε̄1, . . . , ε̄r form a basis for R0/pR0 regarded as
a vector space over its prime subfield Fp. Then the generators with their respective orders are as
indicated below:

Case(i): For p = 2, 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f, 1 ≤ k ≤ g, the generators are 1 + 4εt of order
8; 1+ 14εt of oder 2, 1+ εtui of order 8; 1+ εtvj of order 4 and 1+ εtwk of order 2. The rest of the
proof is similar to the proof of Proposition 3.11.

Case(ii): For p ̸= 2, 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f, 1 ≤ k ≤ g, 1 ≤ l ≤ h, the generators are
1+ pεt of order p

4, 1+ εtui of order p
3, 1+ εtvj of order p, 1+ εtwk of order p and 1+ εtyl of order

p. The rest of the proof is similar to the proof of Proposition 3.11.

Proposition 3.14. Let R be a completely primary finite ring from the class of finite rings described
by the construction and of characteristic p5 with p4ui = pvj = pwk = pyl = 0. Then the group of
units

R∗ ∼=

{
Z2r−1 × Zr

8 × Zr
2 × (Ze

16)
r × (Zf

4 )
r × (Zg

2)
r, if p = 2

Zpr−1 × Zr
p4 × (Ze

p4)
r × (Zf

p)
r × (Zg

p)
r × (Zh

p)
r, if p ̸= 2

Proof. Since R∗ ∼= Zpr−1 × (1 + Z(R)), it suffices to determine the structure of 1 + Z(R). Let
ε1, . . . , εr be elements of R0 with ε1 = 1 such that ε̄1, . . . , ε̄r form a basis for R0/pR0 regarded as
a vector space over its prime subfield Fp. Then the generators with their respective orders are as
indicated below:

Case(i): For p = 2, 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f, 1 ≤ k ≤ g, the generators are 1 + 4εt of order
8; 1 + 14εt of order 2, 1 + εtui of order 16; 1 + εtvj of order 4 and 1 + εtwk of order 2. The rest of
the proof is similar to the proof of Proposition 3.11.

Case(ii): For p ̸= 2, 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f, 1 ≤ k ≤ g, 1 ≤ l ≤ h, the generators are
1 + pεt of order p4, 1 + εtui of order p4, 1 + εtvj of order p, 1 + εtwk of order p, and 1 + εtyl of
order p. The rest of the proof is similar to the proof of Proposition 3.11.

4 Conclusion

This study has constructed a class of five radical zero commutative completely primary finite rings
and classified its unit groups for some selected classes. This has been possible through isolation
of the set of invertible elements from the set of zero divisors. classification of the group of units
of other classes will be considered in subsequent work. For the characterization of zero divisors
graphs for such rings, the publication is yet to appear. Since the classification of finite rings is still
incomplete, future researchers may study rings whose subsets of zero divisors are of higher indices
of nilpotence.
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