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ABSTRACT 
 

Focusing on the initial development of quantum mechanics, we will give a brief historical synopsis 
of the theory foundations, based on the Fourier framework and stating the philosophical 
conclusions inspired by that same mathematical formalism. We will then proceed, introducing an 
alternative way of describing the undulatory aspects of quantum entities, using local Gaussian 
Morlet wavelets. As we shall see, this change implies different philosophical interpretations about 
quantum reality and, even more, about the contemporary accepted differences between the 
quantum and the macroscopic realms. From these we will witness the formal and heuristic power of 
wavelet local analysis applied to the physical description of Nature. The ideas presented in this 
paper are initial standpoints of what can hopefully be expected to be a more mature and unifying 
physical theory, still undergoing development. 
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1. INTRODUCTION 
 

It is always a motive of wonder and surprise 
when a mathematical formulation adequately 
describes physical reality and inspires human 
thought about Nature’s inner processes. And 
perhaps, even more important, when it deeply 
influences the relationship between man as a 
sentient creature and the world he tries to 
understand.  
 

In this paper, we shall give an historical synopsis 
of the development of quantum mechanics based 
on Fourier’s ontology [1], and focusing on the 
philosophical conclusions one usually finds 
whenever the theory is described or taught by 
the orthodox stand. Afterward, we will present an 
alternative way of describing the undulatory 
aspects of quantum entities using Gaussian 
Morlet wavelets. As we shall see, this will imply 
different philosophical conclusions about the 
quantum reality and even about the 
contemporary different accepted outlooks 
between atomic and macroscopic phenomena. 
The present work proceeds from past 
investigations [2] and pretends to clarify and 
develop the conclusions then drawn, hoping to 
stimulate further experimental and theoretical 
research on the foundations of quantum 
mechanics. It should be mentioned that some 
theoretical, mainly formal issues are still to be 
clarified, concerning the adequacy of the present 
theory to quantum phenomena. These do not 
seem to be fundamental drawbacks but mainly 
technical difficulties, only requiring more 
sophisticated use of wavelet analysis or further 
research on the applicability conditions of our 
proposals. We will say more about this in the 
Conclusion. 
 

2. THE FOURIER FORMALISM AT                  
THE BEGINNING OF QUANTUM 
MECHANICS  

 

In 1927, in a lecture held at the Volta Conference 
at Como [3], Italy, Niels Bohr argued that the 
phenomenon of physical quantization put in 
evidence universal limitations on our knowledge 
about Nature. This was the “epistemological 
lesson taken from quantum mechanics”, as he so 
eloquently put it. His narrative began by stating 
that the quantized nature of atomic systems was 
a consequence of the quantum of action given by 
Planck’s constant h, that has a very small value, 

but which is, nevertheless, non-null. Due to the 
fact that h is different from zero it became 
possible to quantify energy, as Planck concluded 
earlier in 1900; to consider light behaving like 
corpuscles, as Einstein suggested in 1905; and 
to universally associate each particle with its own 
matter wave, as de Broglie conjectured in his 
Ph.D. thesis in 1924.   
 

By 1927, at the time Bohr was fully developing 
his own philosophical views about Nature, the 
Planck-Einstein relation between energy and 
frequency, � = ℎ�,  was well known and de 
Broglie had already introduced his famous 
relation � = ℎ/�, between linear momentum and 
matter wavelengths, for all corpuscles. It was 
then quite remarkable that Niels Bohr, from the 
initial work of Heisenberg could develop, during 
the summer of 1927, a mathematical framework 
describing in a relational way, both corpuscular 
and undulatory aspects of quantum entities. 
Indeed, based on Fourier nonlocal analysis 
applied both to space and time, Bohr derived in a 
very beautiful way the same uncertainty relations 
Heisenberg told him about some months earlier, 
in March of 1927.  
 

Bohr’s basic idea was to associate spatial � and 
temporal �  frequencies, present in the 
fundamental phenomenological formulas of 
quantum physics, viz. de Broglie’s 
 

� = ℏ�                                     (1) 
 

and Planck’s 
 

� = ℏ�                                     (2) 
 

with infinite nonlocal harmonic plane waves, 
spreading over the entirety of space and time: 
 

� = ���(�����).                                    (3) 
 

From it, by simple use of Fourier analysis 
 

�(�) = ∫ �(�)������
∞

�∞
,                        (4) 

 

and assuming a gaussian form for the distribution 
of the spatial frequency k,  
 

�(�) = ��
�

��

���
�                                      (5) 

 

One gets, by substitution, 
 

�(�) ∝ ��
�

��

�/��
�                                       (6) 
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or 
 

�(�) ∝ ��
�

��

���
�                                      (7) 

 
implying that  
 

�� �� = 1.                                     (8) 
 
For the time parameter, and following the same 
procedure, Bohr also derived 
 

�� �� = 1.                                                 (9) 
 

Taking in consideration de Broglie and Planck 
formulas, (1) and (2), we finally get by 
substitution and for the ideal case: 
 

∆�∆�� = ℏ  and  ∆�∆� = ℏ,                     (10) 
 
These, in the general situation, simply written 
 

∆�∆�� ≥ ℏ  and  ∆�∆� ≥ ℏ,                       (10’) 
 
giving the usual mathematical form for the 
Heisenberg uncertainty relations. 
 
These relations were derived assuming that the 
only waves that have a well determined spatial 
frequency (that is, ∆� = 0) and a well determined 
temporal frequency (that is, ∆� = 0 ) are 
harmonic plane waves, that is, pure sine and 
cosine waves, spreading over the entirety of the 
universe, along whole space and time. An 
idealization which in fact corresponds to the 
kernel of Fourier analysis. 
 
One immediate consequence of these implicit 
assumptions, contained in the Heisenberg 
relations, is that if a quantum particle, a neutron 
for instance, has a pure single energy value (that 
is, ∆� = 0), and a single momentum value (that 
is, ∆�� = 0), then it is omnipresent in space and 
time. On the contrary, if one wishes to know the 
particle position and time with absolute precision 
(that is, ∆� = 0  and ∆� = 0 ), then the particle 
might have any value from an infinite number of 
momenta and energy values (that is, ∆�� = ∞ 
and ∆� = ∞). Therefore, in Fourier and indeed 
Bohr’s mathematical and conceptual framework 
we are logically prohibited from simultaneously 
knowing the exact position and the exact 
momentum of the neutron. 
 
Bohr, with considerable philosophical insight, 
concluded that quantum behavior was not fully 
addressable using a causal space-time 

framework, as usually applied to macroscopic 
systems. At the Como conference, in 1927, he 
presented to an audience of physicists his                
own original interpretation about quantum 
phenomena, formulating his famous 
Complementary Principle, mathematically 
expressed, in the terms of Fourier analysis, as 
the Heisenberg relations.  
 
As it was then formulated, the Complementary 
Principle states that, at the quantum level, the 
possibility of a space-time coordinate description 
is complementary to the possibility of a causal 
description. This can be seen from the 
uncertainty relations if one takes linear 
momentum and energy as major concepts in the 
dynamical causal description of an atomic entity 
behavior. The causal description will, of course, 
be masked by any effort to coordinate such                   
an entity in space and time. Thus, in Bohr’s        
initial and most fundamental views on 
complementarity, space-time coordination stands 
as mutual exclusive to a dynamical causal 
modeling of any sort. 
 
At the same time, Max Born proposed a 
probabilistic interpretation for Heisenberg and de 
Broglie quantum waves, already associated with 
corpuscles. It is not thus difficult to accept                   
that with Born probabilistic interpretation, the 
epistemological standpoint of Bohr eventually 
took the theory to a very extreme idealistic form. 
In fact, into what is today commonly known as 
the Copenhagen interpretation. In a way, it is 
very much due to Bohr’s latest thoughts on the 
subject, that we now have infinite elusive 
probability waves devoid of any physical content, 
representing the state of knowledge of conscious 
observers about the world. These waves, 
although being only virtual and “unreal” entities, 
are nevertheless capable of interacting with slits 
and other physical entities, readily disposable for 
all practical purposes by means of a “collapse”, 
once an observation has taken place. In fact, the 
metaphysical nature of the so-called psi waves 
implies that atomic objects are only potential 
entities, not really existing before being 
observed; only coming into existence due to the 
mysterious consciousness powers of human 
observers. 
 
Louis de Broglie [4], in the celebrated fifth Solvay 
Conference held in September 1927, presented 
even then an alternative view to Bohr’s platonic 
beliefs about quantum waves. Based upon his 
own earlier work, de Broglie thought that the 
quantum waves associated with atomic 
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phenomena would be real physical perturbations 
in a subquantum medium, guiding or piloting, in a 
nonlinear way, the trajectory of corpuscles. This 
represented a causal nonlinear theory, where the 
statistically empirical aspects were only a 
consequence of the experimenter´s lack of 
knowledge about the initial velocities of particles. 
Although de Broglie’s theory was quite 
sophisticated, thus offering domain for further 
improvement, it had a major drawback. de 
Broglie waves, despite being real physical 
entities, were still infinite Fourier sine and cosine 
oscillations, spreading throughout the whole of 
space and time. Consequently, Heisenberg 
indetermination scheme would still hold, although 
de Broglie reasoned that such restriction would 
be caused only by the measuring devices, 
imprinting a perturbation on the measured 
systems. The overall positivist view of Bohr and 
the Copenhagen school would however prevail 
and see this as an highly suggestive evidence for 
the presence of human knowledge constraints. 
And, even more, as evidence for the incomplete 
nature of atomic objects, metaphysically held 
from existence in their potential state. As a result, 
de Broglie’s real pilot wave theory was refused, 
to be only later and partially reinstated by David 
Bohm pilot-wave theory. This, while preserving 
the causal part, therefore dispensing the wave’s 
“collapse” by a conscious observer, would still 
place quantum waves in a metaphysical 
configuration space, respecting altogether the 
Fourier ontology. 
 

3. WAVELET FORMALISM APPLIED TO 
QUANTUM MECHANICS 

 

At the beginning of this century and giving 
sequence to de Broglie’s research program, a 
nonlinear proposal for understanding quantum 
phenomena was presented [2]. This theory, 
formally included traditional quantum mechanics 
as a particular case, describing the same 
phenomena as orthodoxy, replacing 
Schrödinger’s wave equation with a nonlinear 
master wave equation. Since we are now dealing 
with a nonlinear equation, the sum of two of its 
solutions is not, in general, a solution of the 
equation. Relevant to the present discussion is 
the fact that within the same approach for 
understanding Nature, and following de Broglie 
original suggestion, a quantum object is 
perceived as a complex inter-relational structure. 
A system constituted both by a corpuscular part 
and an extended undulatory part. The 
corpuscular part of the quantum particle, the 
acron, contains practically all the energy in the 

system, while the extended finite wave, named 
theta wave, subquantum wave, de Broglie wave, 
pilot wave or vacuum wave, is practically devoid 
of energy. Still, due to a nonlinear process, the 
subtle wave guides the high energetic corpuscle 
into the regions where the intensity of the theta 
wave is higher. 
 
In this non-linear approach to quantum 
phenomenology - and here is the crucial point - 
the extended undulatory part is mathematically 
represented, not by a nonlocal harmonic infinite 
wave, but by a finite gaussian modulated wave, 
called a Morlet wavelet [5], written: 

 

� = ��
�

(����)�

��� ��(�����)
.         (11) 

 
In this expression, �  stands for the average 
velocity of the finite wave, which in general 
equals the velocity of the particle. The letter � 
stands for the spatial angular frequency, � is the 
angular frequency and � is the wavelet’s spatial 
extension parameter, giving a value of how much 
the wave spreads throughout space, before 
decaying. 
 
We stress that in this model there will be no 
infinite waves, because real physical 
perturbations need to be finite. Furthermore, as 
shown in ref. [2], the Gaussian Morlet wavelet is 
a solution of the nonlinear Schrodinger equation, 
the so called master equation: 
 

−
ℏ�

��
∇�� +

ℏ�

��

∇�(��∗)
�

��

(��∗)
�

��
� + �� = �ℏ��         (12) 

 
Solutions of this nonlinear equation for some 
simple quantum systems, such as the harmonic 
potential and the hydrogen atom, were obtained 
by Rica da Silva [6], along with an interpretation 
of the experimental situation. 
 
Using a wavelet for quantum wave 
representation has two major consequences: 
 
The first is that there wouldn’t be an absolute 
need for wave packaging in order to form a 
system localized in space and time, while still 
presenting both corpuscular and undulatory 
properties. The two kinds of properties, local and 
undulatory, would be intrinsically given from first 
principles.  
 
The second consequence is that these same two 
kinds of properties would migrate to larger 
systems; these ones composed using wavelet 



 
 
 
 

Castro et al.; PSIJ, 16(4): 1-9, 2017; Article no.PSIJ.37038 
 
 

 
5 
 

packaging, corresponding, in a most natural way, 
to the physical situation where a larger system 
has smaller component systems. The 
mathematical formulation of such a composition 
allowing for the derivation of a new set of 
uncertainty relations, containing Heisenberg’s 
relations as a particular case. 
 

We now proceed to compare the two kinds of 
uncertainty relations. Those, resultant from 
nonlocal Fourier ontology, championed by 
orthodox quantum mechanics and to which Bohr 
gave so much philosophical meaning, and the 
ones coming from local analysis using wavelets 
and resulting from the above nonlinear quantum 
physics description. 
 

First of all, it is interesting to see that the 
mathematical formulation in (11) contains the 
nonlocal harmonic plane wave used in orthodox 
quantum mechanics, as a particular case. It is 
thus heuristically richer. In fact, as the size of the 
wavelet increases, when  � → ∞, one obtains: 
 

� = ��
�

(����)�

����
� ��(�����)

    
�→∞
�⎯�     ���(�����)  (13) 

 

Which is the usual mathematical expression of 
an harmonic plane wave. 
 

Following a process in all similar to Bohr’s, it is 
possible to derive a general set of uncertainty 
relations, going beyond the Fourier ontology, 
assuming furthermore that a finite wave may 
have a single pure frequency 
  

�(�) = �
�

��

����
�  

�����
                                   (14) 

 

Since any regular function, may be written in 
terms of wavelets, we have 
 

�(�) = ∫ �(�)
∞

�∞
�

�
��

����
�  

����
��.        (15) 

 

Where ���  represents the spatial spreading of 
the mother wavelet used in the wavelet 
packaging. 
 

And choosing, as before, a gaussian form for the 
height function, �(�), after some easy calculation 
we arrive at the general uncertainty relations: 
 

∆�� =
ℏ�

∆��
��

ℏ�

���
�

     and    ∆�� =
ℏ�

∆���
ℏ�

���
�

.         (16) 

 
The plot of the first relation can be seen in Fig. 1, 
for different values of ��� 

 
 

Fig. 1. First general uncertainty relation for 
different values of ��� 

 
In Fig. 1 we show several instances for the first 
general uncertainty relation in (16). Each line 
reaches the vertical Δ� axis on a different value 
of ���, which increases upwards. The horizontal 
axis represents the linear momentum measure 
error ∆��. The usual uncertainty relations, as is 
well known, would be represented by an 
hyperbola, the dashed line in the plot. It is clear 
that, for each curve, the largest value of Δ� will 
be equal to ���  when ∆��  = 0, so that ���  also 
represents the maximum value for the position 
measure error Δ�. 
 
From these general uncertainty relations, one 
sees that when the size of the mother wavelet is 
relatively large  the general 
uncertainty relations transform into the traditional 
Heisenberg relations: 
 

∆�∆�� ≥ ℏ  and  ∆�∆� ≥ ℏ. 
 
On the other hand, the general uncertainty 
relations (16) may also be written in the form: 
 

∆�� =
ℏ

Δ�
�1 − Δ��/���

� ,                     (17) 

 
 

Δ� =
ℏ

Δ�
�1 − Δ��/���

�  ,                     (18) 

 
 
in which we have considered ��� = ����  in the 
second relation. 
 
From (17) it can be seen that if the space 
coordinate uncertainty  Δ�  (or, inversely 
understood, the space coordinate accuracy) is of 
the same magnitude as the spatial spreading of 
the mother wavelet ��� , one can have a linear 
momentum accuracy as large as one wants, 
independently of the spatial coordinate accuracy. 
This happens even if the spatial required 

px

x
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accuracy Δ� is very high, in which case we must 
make ���  very small. That is, and following a 
similar reasoning for the time energy relation: 
 

If    Δ� ≃ ���    then     ∆�� ≃ 0,       ∀ Δ�   (19) 
 

And similarly, 
 

If    Δ� ≃ ���      then      ∆� ≃ 0,       ∀ Δ�.  (20) 
 

This implies that, in (19) (and in (20)), for the 
particular limiting situation where we have 
Δ� ≃ ��� ≃ 0  (Δ� ≃ ��� ≃ 0) we may also have 
∆�� = 0 (∆� = 0). In this natural way, one has 
regained the possibility of describing a physical 
situation, using spatial and temporal coordination 
and also dynamic information about the system. 
We have done a quantum measurement with an 
ideal zero error for the determination of both 
position and momentum and for the 
determination of both time and energy.  In other 
words, we have accomplished ∆� = 0 ∧ ∆�� = 0 
(∆� = 0 ∧  ∆� = 0), reaching beyond Niels Bohr 
Complementary Principle. In its mathematical 
formulation, this Principle claims that if ∆� =
0 then ∆�� = ∞  (if ∆� = 0 then ∆� = ∞ ), and 
otherwise, if ∆�� = 0 then  ∆� = ∞ (if ∆� = 0 then  
∆� = ∞). That is, we can either have ∆� = 0 ∨
 ∆�� = 0  (or ∆� = 0 ∨  ∆� = 0 ), but not all 
accuracies at the same time. 

Significantly, if one takes in (17) the spatial 
accuracy Δ�  to be of an order of magnitude 
smaller than the mother wavelet spatial 
spreading ���  (Δ�  in (18) to be of an order of 
magnitude smaller than the mother wavelet 
temporal spreading ���) , one gets the 
Heisenberg standard relations. That is, 
 

If Δ� ≪ ���  and  Δ� ≃ 0  then  ∆�� → ∞ , (21) 
 
and similarly, 
 

If  Δ� ≪ ���   and  Δ� ≃ 0   then   ∆� → ∞ (22) 
 

This means that in this situation there will be                   
an inverse proportional relation between error 
and accuracy measurement for dynamical 
(undulatory) quantities and space-time 
coordination quantities. 
 
Fig. 2 shows a 3D plot of Δ�, accordingly to the 
first generalized relation in (16). The case shown 
in (19), that is, for the situation where we have 
low values for Δ� and ∆�� (i.e. high accuracy for 
both physical measures) corresponds to the left 
low corner in the graphic, where we also have a 
low value for ��� . Note that it will always be 
Δ� ≤ ���.  The same would analogously result for 
the time energy relation.       

  

 
 

Fig. 2. Plot of �� as a function of ��� and ∆�� 
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Inspired by what Niels Bohr thought a century 
ago while proposing his own interpretation of the 
Heisenberg’s relations, we will now argue 
philosophically in a quite different way, providing 
our own interpretation based on the relations (17) 
and (18). 
 

Since the Heisenberg relations may be seen as a 
particular case of the general uncertainty 
relations, presented in this paper, one may infer 
that if we change from nonlocal Fourier 
representation to local wavelet representation, it 
will stand to reason that the Complementary 
Principle will lose its universal status. This occurs 
even in the quantum case, since for the 
Complementary Principle to hold, it would be 
necessary to guarantee that the case considered 
in (19) and (20) never occurs at the atomic level, 
when in fact there are good reasons to suppose 
it does [7].  
 

From all this, it thus seems reasonable to invoke 
a first alternative general principle stating the 
following: 
 

Nature is an ontological complete structure, 
without any logical mutual exclusiveness, 
that is, an ontological unified structure which 
is consistent and intelligible. 

 

We again emphasize that the expressions (19) 
and (20) define a situation where causal 
dynamical description and space-time description 
are simultaneously feasible. Something very 
much akin to what seems to happen at the 
macroscopic scale. 
 
Since for (17) and (18) we are still assuming the 
basic phenomenological fundamental formulas, 
(1) and (2): 
 

�� = ℏ�,  
  
� = ℏ�,  

 
and given that we have just sustained a sort of 
unification statement about Nature, we will now 
go a step further, hypothesizing the existence of 
only one physical description scheme, similarly 
applicable to both scales, atomic and 
macroscopic.  
 
We consequently propose a second general 
principle stating that: 
 

Nature can be physically described at all 
scales using both a causal undulatory 
scheme and a space-time local scheme, with 

variable accuracy dependence between the 
two descriptions. 

  

The accuracy dependence between those 
descriptions are of course given by (17) and (18), 
to which we may now call the Relations of 
Completeness, while naming the two posited 
statements the Completeness Principles about 
Nature. It should be noted that as long as Niels 
Bohr Complementary Principle is accepted only 
on an epistemological level, and therefore not as 
an absolute statement about Nature, it will be a 
correct particular case of the second 
Completeness Principle. 
 

An obvious critique to the second statement is 
that things do not seem to adopt undulatory 
behaviors at the macroscopic scale. This 
however is not entirely true. Even if in most 
cases, macroscopically observable undulatory 
behaviors do not express themselves under our 
presently normal experimental use of objects, 
that does not mean that they aren’t observable 
under other conditions. This is, for instance, the 
case of the so-called Doubochinski's pendulum 
and similar coupled oscillatory systems [8] 
showing quantified amplitude behaviours. 
Furthermore, Croca et al. [9] have found that the 
Titius Bode regularity in the solar system can be 
adequately explained using an undulatory 
formalism involving stationary pilot-waves. 
 

4. CONCLUSION 
 

We have seen how different ontological 
standpoints about the nature of quantum waves, 
and their respective mathematical descriptions, 
can lead to quite different philosophical 
conclusions about Nature. This seems to be 
indeed the case for wavelet local analysis once 
applied to quantum description, which has 
proven itself richer than the former Fourier 
scheme. Independently of how far long the reach 
of our proposed insights and interpretations 
might be, it seems undoubtable that accepting 
the realism and finiteness of quantum waves 
may lead to an unifying picture of Physics. 
Perhaps Louis de Broglie could have realized it, 
had he dismissed Fourier standard analysis to 
adopt wavelet analysis at first hand. It should 
again be noticed that the herein proposed pilot-
wave theory using wavelet analysis, must be 
further worked for a set of cases already 
described by standard quantum mechanics. 
These include the relativistic treatment of the 
Master equation (12) and a more detailed 
description of the states of the hydrogen and 
helium atoms [6]. 
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Another key point to be dealt with concerns the 
formal relation between the present theory and 
orthodox quantum mechanics. It should again be 
emphasized that although both theories uses 
undulatory formalisms, orthodox quantum 
mechanics describes Nature referring to Hilbert 
space, a pure conceptual configuration space. 
This, of course, comes from Bohr’s choice of an 
idealistic ontology as to the nature of atomic 
entities. From a formal point of view, Hilbert 
space can be defined using Schrödinger’s 
equation linear properties, that is, the fact that 
any linear composition of solutions is still a 
solution for that same equation. Furthermore, 
linearity of ordinary quantum mechanics enables 
the multiplication of a solution by a normalization 
factor, with ʃψ*ψd

3
x = 1. This relation guarantees 

that the quantum particle exists somewhere in 
space. Although this linearity will not hold, in 
general, for the Master equation (12), it can be 
argued that Schrödinger’s equation results in all 
situations where the non linear term in the 
Master equation is constant or null. This will 
depend on the steepness of the waveform 
intensity and, one should add, also on a very 
large sigma value, for which the wavelet spatial 
and temporal spreading becomes very large. Our 
own approach comes closer to prior ones, 
attempted by Vigier and de Broglie, in which the 
nonlinear term in their basic equation becomes of 
great importance in the very small region 
occupied by the particle [10]. A small distance 
away from the particle, in usual conditions such 
as in the atomic structure, the nonlinear term 
becomes negligible, and the linear description is 
recovered. One should finally add that the 
proposal for some nonlinear extension of 
orthodox quantum mechanics is not new. Several 
authors, such as de Broglie [10], Vigier [11], 
Smolin [12] and Weinberg [13] have proposed 
comparable modifications, such that strictly linear 
quantum mechanics, and its supporting Hilbert 
space, becomes recoverable in most situations. 
We hope to have contributed to a general 
physical theory, offering a wider and richer 
mathematical formalism applicable to all scales 
in Nature. 
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