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ABSTRACT
With thousands of people moving from one area to another day by day, in a chain of regions tightly
more interconnected than other regions in a given large domain, an epidemic may spread rapidly around
it from any point of borders. It might be sometimes urgent to impose travel restrictions to inhibit the
spread of infection. As we aim to protect susceptible people of this chain to contact infected travelers
coming from its neighbors, we follow the so-called travel-blocking vicinity optimal control approach with
the introduction of the notion of patch for representing our targeted group of regions when the epidemic
modeling framework is in the form of a Susceptible-Infected-Removed-Susceptible (SIRS) discrete-time
system to study the case of the removed class return to susceptibility because of their short-lived
immunity. A discrete version of the Pontryagin’s maximum principle is employed for the characterization
of the travel-blocking optimal control. Finally, with the help of discrete progressive-regressive iterative
schemes, we provide cellular simulations of an example of a domain composed with 100 regions and
where the targeted chain includes 7 regions.

Keywords: Multi-regions model; epidemic model; optimal control; travel-blocking; patches; SIRS
model; discrete-time model.
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1 INTRODUCTION

Susceptible-Infected-Removed-Susceptible
(SIRS) compartmental models can model
the evolution of different diseases as in [1]
which modeled dynamics of the non-typhoidal
Salmonella disease, and in the other example
[2] which studied the special case of Japanese
encephalitis. Generally, these epidemic models
are utilized when there is an hypothesis that
the removed population could move to the
susceptible class after being healed from a
disease due to the loss of their immunity. Other
studies which were based on SIRS models can
be found in [3, 4, 5]. Also, since our modeling
framework here, is in the form of a discrete-time
SIRS epidemic system, we cite works of Masaki
Sekiguchi in [6] and with Emiko Ishiwata in [7].
In fact, as explained in the recently published
paper [8] which also deals with SIRS difference
equations plus a controlled class compartment,
the reason behind such considerations is due to
the fact that in epidemics, data are often collected
at discrete times.

In order to describe the spatial-temporal
dynamics of infection which emerges in different
geographical regions and to show the influence
of one region on another via infection mobility,
a new modeling approach using multi-regions
discrete-time epidemic models has been recently
presented for this subject in [9, 10], and also
in [11, 12, 13, 14] using cellular simulations for
the study of this type of models when they are
in the form of SIR, S-Exposed-IRS (SEIRS),
SEIS and SIS discrete systems respectively. The
investigation of the advantages of such epidemic
modeling problems has been done for special
emerging diseases such as Ebola and Human
Immunodeficiency Virus infection and Acquired
Immune Deficiency Syndrome (HIV/AIDS) in [15]
and [16] respectively.

Here, we deal with the optimal control problem
of an epidemic that is described using the
model devised in [17] and where the authors
tried to exhibit the effectiveness of movements
restrictions of the infected individuals coming
from the vicinity of a region based on their

so-called travel-blocking vicinity optimal control
strategy. However, this mentioned reference has
not discussed the case when there is an urgent
need to control a group of regions or a patch and
not only one region. This leads us also to exploit
the recent work in [18] and where the notion of
patch has been widely explained in the case of
SIR model framework. One would still wonder
what is the exact difference between the control
of a region and the control of a patch here. For
this, we start by defining the patch as follows.

Let Ω be our global domain of interest, in form
of a grid of M2 colored cells, uniform in size and
connected via movements of their populations.
This is just a simplified representation of such
connections and which is useful even in the
case when these cells are not necessarily
joined together. The cells will represent sub-
domains of Ω or regions, or more concretely,
cities or countries, and we denote them by
(Cpq)p,q=1,..,M . Let then the patch be defined

by P =

m∪
p,q=1

Cpq with m < M , subject

to a SIRS discrete-time system associated
to Cpq and with optimal controls functions
introduced as effectiveness rates of the travel-
blocking operations followed between P and its
neighbors. We will need thereafter, the definition
of a vicinity set Vpq which is composed by all
neighboring cells of Cpq and which are denoted
by (Crs)r=p+k,s=q+k′ with (k, k′) ∈ {−1, 0, 1}2
except when k = k′ = 0. Thus, instead of
showing the impact of the travel-blocking vicinity
optimal approach on reducing contacts between
susceptible people of a targeted cell Cpq and
infected people coming from cells of its vicinity as
done in [18], we will be interested here to prove
the effectiveness of such policies when they are
applied in the borders of the targeted regions
chain P with Crs of Vpq.

In order to achieve our objective, we apply a
discrete version of the Pontryagin’s maximum
principle for the characterization of the travel-
blocking optimal control. Cellular simulations are
used to illustrate an example of the application of
these modeling and optimal control approaches
in a domain composed with 100 regions while the
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chain aiming to control includes 7 regions.

2 A DISCRETE-TIME MULTI-
REGIONS EPIDEMIC MODEL

As described in introduction, the domain Ω can

be defined by
M∪

p,q=1

Cpq.

We note the susceptibles, infectives and removed
people associated to a cell Cpq using the
states S

Cpq

i , I
Cpq

i , and R
Cpq

i , and we note that
the transition between them, is probabilistic,
with probabilities being determined by the
observed characteristics of specific diseases.
In addition to the death, there are population
movements among these three epidemiological

compartments, from time unit i to time i + 1.
Susceptible individuals are assumed to be not
yet infected but can be infected only through
contacts with infected people from Vpq, thus,
the infection transmission is assumed to occur
between individuals present in a given cell Cpq,
and is given by ∑

Crs∈Vpq

βrsI
Crs
i S

Cpq

i

where βrs is the constant proportion of adequate
contacts between a susceptible from a cell Cpq

and an infective coming from its neighbor cell
Crs ∈ Vpq with
Vpq=

{
Crs ∈ Ω/r = p + k, s = q + k′,

(
k, k′) ∈ {−1, 0, 1}2

}
\

Cpq .

SIRS dynamics associated to domain or cell Cpq

are described based on the following multi-cells
discrete model

For p, q = 1, . . . ,M , we have

S
Cpq

i+1 = S
Cpq

i − βpqI
Cpq

i S
Cpq

i −
∑

Crs∈Vpq

βrsI
Crs
i S

Cpq

i

−dS
Cpq

i + θR
Cpq

i (2.1)

I
Cpq

i+1 = I
Cpq

i + βpqI
Cpq

i S
Cpq

i +

∑
Crs∈Vpq

βrsI
Crs
i S

Cpq

i

− (α+ γ + d) I
Cpq

i (2.2)

R
Cpq

i+1 = R
Cpq

i + γI
Cpq

i − (d+ θ)R
Cpq

i (2.3)

i = 0, ..., N − 1
with S

Cpq

0 ≥ 0, I
Cpq

0 ≥ 0 and R
Cpq

0 ≥ 0 are the
given initial conditions.
Here, d > 0 is the natural death rate while
α > 0 is the death rate due to the infection,
γ > 0 denotes the natural recovery rate from
infection and θ > 0 denotes the immunity loss
rate. By assuming that is all regions are occupied
by homogeneous populations, α, d and γ are
considered to be the same for all cells of Ω.

3 A TRAVEL-BLOCKING VICI-
NITY OPTIMAL CONTROL
APPROACH

Let I = {1, 2, ...,M}, IH ⊂ I a subset of I, and
consider P = {Cpq/p, q ∈ IH} denoting a patch

of controlled cells, with its complementary in Ω,
defined as P̄ = {Cij/i, j ∈ I\IH}.

The main goal of the travel-blocking vicinity
optimal control approach is to restrict movements
of infected people coming from the set Vpq and
aiming to reach the patch P without including
cells Crs which belong to Vpq

∩
P . For this, we

introduce control variables upqCrs which limits
contacts between susceptible of the patch P and
infected individuals from cells Crs which belong
to Vpq

∩
P̄ .

In this section, we introduce controls variables
in the above mentioned model to restrict contacts
between susceptible people of the controlled
cells Cpq ∈ P and infected ones which belong to
Crs ∈ P̄ ∩Vpq. Then, for a given cell Cpq ∈ P , the
discrete-time system (2.1)-(2.2)-(2.3) becomes

3



Bidah et al.; AJRID, 1(2): 1-12, 2018; Article no.AJRID.44975

S
Cpq

i+1 = S
Cpq

i − βpqI
Cpq

i S
Cpq

i −
∑

Crs∈P∩Vpq

βrsI
Crs
i S

Cpq

i

−
∑

Crs∈P̄∩Vpq

upqCrs
i βrsI

Crs
i S

Cpq

i − dS
Cpq

i + θR
Cpq

i (3.1)

I
Cpq

i+1 = I
Cpq

i + βpqI
Cpq

i S
Cpq

i +

∑
Crs∈P∩Vpq

βrsI
Crs
i S

Cpq

i

+

∑
Crs∈P̄∩Vpq

upqCrs
i βrsI

Crs
i S

Cpq

i − (d+ α+ γ) I
Cpq

i (3.2)

R
Cpq

i+1 = R
Cpq

i + γI
Cpq

i − (d+ θ)R
Cpq

i (3.3)

i = 0, ..., N − 1

Since our goal concerns the minimization of the number of the infected people and the cost of the
vicinity optimal control approach, we consider an optimization criterion associated to the patch P ,
and we define it by the following objective function

JP (u) =
∑

Cpq∈P

A1I
Cpq

N +

N−1∑
i=0

A1I
Cpq

i +
∑

Crs∈P̄∩Vpq

Ars

2
(upqCrs

i )2

 (3.4)

where A1 > 0 and Ars > 0 are the constant severity weights associated to the number of infected
individuals and controls respectively.

We note that here, u =
(
upqCrs
i

)
Crs∈P̄

∩
Vpq , i=1,...,N−1,p,q∈IH

which belongs to the control set UP defined as

UP =
{
u/umin ≤ upqCrs

i ≤ umax, i = 1, ..., N − 1, Crs ∈ P̄ ∩ Vpq

}
Then, we seek optimal control u such that

JP (u
∗) = min{JP (u)/u ∈ UP }

The sufficient conditions for the existence of optimal controls in the case of discrete-time epidemic
models have been announced in [8].

As regards to the necessary conditions and the characterization of our discrete optimal control, we
use a discrete version of the Pontryagin’s maximum principle [19].

For this, we define an Hamiltonian H associated to a patch P by

H =
∑

Cpq∈P

A1I
Cpq

i +
∑

Crs∈P̄∩Vpq

Ars

2
(upqCrs

i )2

+ ζ
Cpq

1,i+1

S
Cpq

i − βpqI
Cpq

i S
Cpq

i −
∑

Crs∈P∩Vpq

βrsI
Crs
i S

Cpq

i
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−
∑

Crs∈P̄∩Vpq

upqCrs
i βrsI

Crs
i S

Cpq

i − dS
Cpq

i + θR
Cpq

i


+ ζ

Cpq

2,i+1

I
Cpq

i + βpqI
Cpq

i S
Cpq

i +
∑

Crs∈P∩Vpq

βrsI
Crs
i S

Cpq

i

+
∑

Crs∈P̄∩Vpq

upqCrs
i βrsI

Crs
i S

Cpq

i − (d+ α+ γ) I
Cpq

i


+ ζ

Cpq

3,i+1

(
R

Cpq

i + γI
Cpq

i − (d+ θ)R
Cpq

i

)]
i = 0, ..., N − 1

with ζ
Cpq

k,i , k = 1, 2, 3, the adjoint variables associated to S
Cpq

i , ICpq

i and R
Cpq

i respectively, and
defined based on formulations of the following theorem.

Theorem 3.1. (Necessary Conditions & Characterization) Given optimal controls upqCrs∗ and solutions
SC∗

pq , IC
∗
pq and RC∗

pq , there exists ζ
Cpq

k,i , i = 0...N, k = 1, 2, 3, the adjoint variables satisfying the
following equations

△ζ
Cpq

1,i = −[(1− d) ζ
Cpq

1,i+1 +

(
βpqI

Cpq

i +

∑
Crs∈P∩Vpq

βrsI
Crs
i +

∑
Crs∈P̄∩Vpq

upqCrs
i βrsI

Crs
i

)
×
(
ζ
Cpq

2,i+1 − ζ
Cpq

1,i+1

)
] (3.5)

△ζ
Cpq

2,i = −
[
A1 + βpqS

Cpq

i

(
ζ
Cpq

2,i+1 − ζ
Cpq

1,i+1

)
+ (1− d− α− γ) ζ

Cpq

2,i+1

]
(3.6)

△ζ
Cpq

3,i = −
[
(1− d) ζ

Cpq

3,i+1 + θ
(
ζ
Cpq

1,i+1 − ζ
Cpq

3,i+1

)]
(3.7)

with ζ
Cpq

1,N = 0, ζ
Cpq

2,N = A1, ζ
Cpq

3,N = 0 are the transversality conditions.

In addition

upqCrs∗
i = min

(
max

(
umin,

(ζ
Cpq

1,i+1 − ζ
Cpq

2,i+1)βrsI
Crs∗
i S

Cpq∗
i

Ars

)
, umax

)
,

i = 0, ..., N − 1, Crs ∈ Vpq (3.8)

Proof. Using a discrete version of the Pontryagin’s Maximum Principle in [9],[10],[19], and setting
SCpq = SCpq∗, ICpq = ICpq∗, RCpq = RCpq∗ and upqCrs = upqCrs∗ we obtain the following adjoint
equations

△ζ
Cpq

1,i − ∂H
∂S

Cpq

i

= −[(1− d) ζ
Cpq

1,i+1 +

βpqI
Cpq

i +
∑

Crs∈P∩Vpq

βrsI
Crs
i +

∑
Crs∈P̄∩Vpq

upqCrs
i βrsI

Crs
i


×
(
ζ
Cpq

2,i+1 − ζ
Cpq

1,i+1

)
]

5
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△ζ
Cpq

2,i = − ∂H
∂I

Cpq

i

= −
[
A1 + βpqS

Cpq

i

(
ζ
Cpq

2,i+1 − ζ
Cpq

1,i+1

)
+ (1− d− α− γ) ζ

Cpq

2,i+1

]
△ζ

Cpq

3,i = − ∂H
∂R

Cpq

i

= −
[
(1− d) ζ

Cpq

3,i+1 + θ
(
ζ
Cpq

1,i+1 − ζ
Cpq

3,i+1

)]
with △ζk,i = ζk,i+1 − ζk,i, k = 1, 2, 3; the difference operator, and ζ

Cpq

1,N = 0, ζ
Cpq

2,N = A1, ζ
Cpq

3,N = 0;
the transversality conditions.

In order to obtain the optimality condition, we calculate the derivative of H with respect to upqCrs
i ,

and we set it equal to zero

∂H
∂upqCrs

i

= Arsu
pqCrs
i − ζ

Cpq

1,i+1βrsI
Crs
i S

Cpq

i + ζ
Cpq

2,i+1βrsI
Crs
i S

Cpq

i = 0

Then, we obtain

upqCrs
i =

(ζ
Cpq

1,i+1 − ζCpq
2,i+1)βrsI

Crs
i S

Cpq

i

Ars

By the bounds in UP , we finally obtain the characterization of the optimal controls u
pqC∗

rs
i as

upqCrs∗
i = min

(
max

(
umin,

(ζ
Cpq

1,i+1 − ζ
Cpq

2,i+1)βrsI
Crs∗
i S

Cpq∗
i

Ars

)
, umax

)
,

i = 0, ..., N − 1, Crs ∈ Vpq

4 RESULTS

In order to avoid repetitions, we call readers
to [11, 12, 13, 14, 17, 18], to understand our
programming code used in the simulations below.
However, here are some important information to
make our comments clearer.

- M = 10; Ω = 10× 10 grid.
- C1010, the source infection cell, is located at the
lower-right corner of Ω.
- SCpq

0 = 50 except SC1010
0 = 40.

- ICpq

0 = 0 except IC1010
0 = 10.

- C610, C69, C68, C67, C77, C87 and C97 are cells
forming the chain of regions aiming to control.
For other details, see Table 1.

In the absence of control, Fig. 1 depicts dynamics
of the number of susceptible people in the
100 regions, starting from an initial condition
S

Cpq

0 = 50 except in cell C1010 located at

the lower right corner of Ω where we suppose
SC1010
0 = 40. After 150 times, we can see that

the epidemic has emerged in neighboring regions
of C1010 and the value of SCpq in this cell has
even decreased to a value close/or equal to 22
while it has taken values between 20 and 25 in
V1010. As we move away from V1010, these values
change from 30 around it, while taking values
from 45 to 50 as we go far away towards the
opposite corner. In the same figure, at i = 300,
we can observe that in most cells in and around
the infection source corner and the center, SCpq

decreases and changes values from 0 to 10,
while taking values comprised between 20 to 30
in most cells of further vicinities of the center
and values between 35 and 45 in other three
corners and their closest vicinities. This means
that infection has succeeded to enter to most
cells of the considered domain, and the number
of infectives has even increased to larger values
in further time as we can see at next times.

6
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Table 1. Parameters values of α, β, γ and d with the initial conditions S
Cpq

0 , I
Cpq

0 and R
Cpq

0

associated to any cell Cpq of Ω.

S
Cpq

0 I
Cpq

0 R
Cpq

0 α β γ d θ

50 0 0 0.002 0.0001 0.003 0.0001 0.0002

In Fig. 2, we can observe the evolution of ICpq

over 900 times as infection starts from C1010 at
initial time with 10 infected individuals while other
regions are all supposed safe with no sign of
infection. At time i = 150, the infection starts
to increase and takes the value 18 in C1010 and
values from 20 to 25 in its vicinity while there is
yet no sign of infection as we arrive to the center.
At i = 300, it is almost different and the values
comprised between 30 and 35 gain the number of
infected people in most cells in the vicinities of the
center while it takes the value 25 in C1010 and 28
in its vicinity. As we move towards the opposite
corner and go far away from the center, the value
of ICpq changes from 10 to 20. On the other
hand, we should note that at this particular time,

we understand more that as more the infection
arrives to cells with larger number of neighbors
in their vicinities, as more the infection proves its
potential to affect an important number of people
compared to the starting value. After 450 days,
all cells are now infected taking the value 20 in
most cells that are near the center in direction
of the source of infection while changing from
25 to 30 in further cells in opposite borders and
vicinities of their cells.

In Fig. 3, we can observe that at instant i = 150,
the value of RCpq has not increased compared
to its value at initial time except in the corner and
its vicinity with tiny differences as this value does
not exceed even three removed individuals.
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Fig. 1. SCpq behavior in the absence of controls
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At instant i = 300, the number RCpq is not zero
in almost cells and is still under the number of 10
people, except for distant cells that are near the
other corners where it remains zero. At instant
i = 450, the value of 10 people chooses the
cells in opposite borders while RCpq takes values
between 13 and 15 as we move from the center
towards C1010. Finally, at further instants, and
due to natural recovery of infected people, RCpq

increases to 18 individuals in most cells at i =
600 while this number decreases at i = 900 to
12 people since some people lose their immune
responses and move to the susceptible class.

In the presence of controls, we do not see any
difference in simulations between Fig. 4 and
Fig. 1 at initial time. However, the difference
starts to appear after only 150 times, as the
number SCpq has not changed in the controlled
patch. This number has not decreased as it has
done previously in cells that are located at the
seventh and under-seventh lines, namely in cells
at the left-side border of the patch. An interesting
result at this particular time, is that no change

occurred in cells over the patch or at the top
border line, or more precisely, the ones located
at the fifth line of Ω including the center cell. This
means that the travel-blocking vicinity optimal
control approach applied to that patch, may also
protect its neighbors. The same conclusion can
be deduced from this figure at i = 300 since
even the cells that are either located under or
over the controlled patch, have not observed a
decrease of SCpq as it has been seen in case
without controls.

This leads to a decrease in distant cells at i = 450
and that is not important compared to results
in Fig. 1. as we understand that since the
neighboring cells of the patch are protected, then
their vicinities would not observe a significant
decrease of SCpq . Simulations at further instants,
namely at i = 600 and i = 900, are similar
to the ones in Fig. 1. However, the cells in
the controlled patch have not lost most of their
susceptible people since SCpq has decreased by
only 5 individuals.
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Fig. 2. ICpq behavior in the absence of controls
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Fig. 3. RCpq behavior in the absence of controls.
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Fig. 4. SCpq behavior in the presence of optimal controls
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In Fig. 5, the number ICpq has not changed in
the controlled patch at i = 150 and remained
zero even in cells at the borders of the patch.
At i = 300, ICpq remains zero in all cells of
the patch while this number has not changed
significantly and it has not even exceeded 25
infected individuals at the left-side border and it
remains under 10 at distant cells. This shows the
importance of the travel-blocking vicinity optimal
control strategy in protecting even distant cells
to the controlled chain as we see in Fig. 2
that ICpq increased to higher numbers in same
cells. Similar conclusions to this last one, can
be deduced at i = 450. As for further instants,
ICpq in the patch has increased only by three
individuals.

In Fig. 6, RCpq in the patch remains zero and
similar behavior of RCpq to Fig. 3 is shown
in most times except for some cells at/near the
borders of the controlled patch and in vicinities
of these borders, and which proves again that
the travel-blocking vicinity optimal control strategy
protects the patch, its borders and even delay the
impact of the epidemic at distant cells.

5 CONCLUSION

In this paper, we proposed a multi-regions SIRS
discrete epidemic model to describe the spatial-
temporal spread of an epidemic, and we tried
to investigate the effectiveness of the travel-
blocking vicinity optimal control strategy on a
group of regions or patch P that belongs to
a global domain of interest Ω. Based on the
numerical results exhibited in cellular simulations,
we demonstrated that movements restrictions of
infected populations coming from the vicinity of
P , have not only kept this patch safe, but have
even protected its borders for some time, and the
infection has been delayed in very distant cells.
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