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Abstract

The advent of the James Webb Space Telescope (JWST) signals a new era in exploring galaxies in the high-z
universe. Current and upcoming JWST imaging will potentially detect galaxies at z∼ 20, creating a new urgency
in the quest to infer accurate photometric redshifts (photo-z) for individual galaxies from their spectral energy
distributions, as well as masses, ages, and star formation rates. Here we illustrate the utility of informed priors
encoding previous observations of galaxies across cosmic time in achieving these goals. We construct three joint
priors encoding empirical constraints of redshifts, masses, and star formation histories in the galaxy population
within the Prospector Bayesian inference framework. In contrast with uniform priors, our model breaks an
age–mass–redshift degeneracy, and thus reduces the mean bias error in masses from 0.3 to 0.1 dex, and in ages
from 0.6 to 0.2 dex in tests done on mock JWST observations. Notably, our model recovers redshifts at least as
accurately as the state-of-the-art photo-z code EAzY in deep JWST fields, but with two advantages: tailoring a
model based on a particular survey is rendered mostly unnecessary given well-motivated priors; obtaining joint
posteriors describing stellar, active galactic nuclei, gas, and dust contributions becomes possible. We can now
confidently use the joint distribution to propagate full non-Gaussian redshift uncertainties into inferred properties
of the galaxy population. This model, “Prospector-β,” is intended for fitting galaxy photometry where the
redshift is unknown, and will be instrumental in ensuring the maximum science return from forthcoming
photometric surveys with JWST. The code is made publicly available online as a part of Prospector 9.

Unified Astronomy Thesaurus concepts: Bayesian statistics (1900); Computational astronomy (293); Galaxy
evolution (594); Galaxy formation (595); Redshift surveys (1378); Spectrophotometry (1556); Spectral energy
distribution (2129)

1. Introduction

Within months of the first data releases, JWST has already
begun to revolutionize our view of galaxy formation (e.g.,
Finkelstein et al. 2022a; Treu et al. 2022; Windhorst et al.
2023). Fitting spectral energy distributions (SEDs) plays a key
role in grounding new observations to theories of galaxy
evolution. State-of-the-art Bayesian codes, including BAG-
PIPES (Carnall et al. 2018), BEAGLE (Chevallard &
Charlot 2016), and Prospector (Johnson et al. 2021), have
been applied extensively in this context. One of the most
advanced models in this family is Prospector-α (Leja et al.
2017). It incorporates galaxy properties including nonpara-
metric star formation histories (SFHs; Leja et al. 2019), self-
consistent nebular emission (Byler et al. 2017), and a
sophisticated dust model (e.g., Lower et al. 2022), and

critically, fits all parameters at once with Markov Chain Monte
Carlo or nested sampling to produce joint high-dimensional
constraints. Prospector-α has been designed specifically to
extract the most information from high signal-to-noise photo-
metry or spectra with good wavelength coverage. Therefore, it
has been traditionally applied to well-sampled SEDs using
redshifts measured externally, e.g., from spectra or photo-z
codes.
With regard to photo-z codes, considerable efforts have been

devoted to various developments (see Salvato et al. 2019;
Newman & Gruen 2022 for recent reviews, and also Alsing
et al. 2023; Leistedt et al. 2023 for general discussions on
photo-z frameworks). The most common algorithm is inferring
redshift by comparing observations to SED templates, as is
used in LePhare (Arnouts et al. 1999; Ilbert et al. 2006), BPZ
(Benítez 2000), ZEBRA (Feldmann et al. 2006),
EAzY (Brammer et al. 2008), and others. This method suffers
from the fact that template colors are frequently degenerate
with redshift. To mitigate this problem, some codes add on a
magnitude-dependent redshift prior (e.g., BPZ, EAzY), the
probability distribution of which is determined by fitting
redshift distributions of existing catalogs in magnitude bins.
However, few codes have adopted a full Bayesian approach, in
which priors can be assigned to every parameter. Conversely,
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9 The version used in this work corresponds to the state of the Git repository
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cf03610bfe6e361213385cd.
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codes that are capable of mapping the multidimensional
posterior probability distributions for redshift and galaxy
properties simultaneously via advanced sampling techniques,
as mentioned earlier, are not optimized for fitting SEDs when
the redshift is unknown.

The era of JWST creates an urgent new opportunity to
measure the highly uncertain early phases of galaxy formation,
and, for the first time, necessitates allowing redshift solutions
over the range of 0< z 20. Thus there is an increasing need
for accurately inferring joint, correlated constraints between
redshift and important galaxy parameters like mass, star
formation rate (SFR), and dust properties where exquisite
wavelength coverage and/or external spectra are lacking.

In this work, we establish a framework in which empirical
constraints of galaxy evolution are encoded directly into the
inference process as informative priors, so that redshift and
galaxy properties can be constrained simultaneously and
accurately. It is a known challenge that the photo-z accuracy
depends strongly on the assumptions that go into the code (e.g.,
Kodra et al. 2023). Here we propose that the most accurate
assumptions are our previous observations. A common
argument for assuming uniform priors when fitting for high-z
objects is that the epoch in question is largely unexplored and
hence uniform priors are the least sinful (e.g., Finkelstein et al.
2022b). Here we argue for the opposite: priors represent our
belief about which solutions we think are more probable, and it
is thus always preferable to use well-motivated priors if
available.

We present a new model, Prospector-β, optimized to
recover photo-z in deep JWST fields, while taking full
advantage of the capability of Prospector to produce a
high-dimensional SED-model and obtain joint constraints on
all inferred physical parameters. This means that the full
probability distribution can be used to propagate full non-
Gaussian redshift uncertainties into inferred properties of the
galaxy population. Doing so will significantly enhance our
confidence in the inferred properties, and will thus maximize
the information returned from JWST.

We devise three new priors: a mass function prior, a galaxy
number density prior, and a dynamic nonparametric SFH prior
that reflects the consistent observational finding that massive
galaxies form much earlier than low-mass galaxies (Cowie
et al. 1996; Thomas et al. 2005). Our SFH prior also respects
the observed cosmic star formation rate density by encouraging
rising histories early in the universe, and falling histories late in
the universe.

Moreover, we identify and characterize an age–mass–
redshift degeneracy that contaminates the results of standard
uniform priors. We show that our model is able to break this
degeneracy, while recovering redshifts at least as accurately as
EAzY in JWST surveys.

The Letter is structured as follows. Section 2 states the
simulated and the observed photometry on which we assess our
model performance. Section 3 details the construction of the
three observationally informed priors. Section 4 describes the
procedure of SED fitting. Section 5 reports the results.
Section 6 summarizes our findings and concludes with
implications for future works. When applicable, we adopt the
best-fit cosmological parameters from the 9 yr results from the
Wilkinson Microwave Anisotropy Probe mission: H0= 69.32
km s−1 Mpc−1, ΩM= 0.2865, and ΩΛ= 0.7135 (Bennett et al.
2013).

2. Data

While the framework devised in this Letter is applicable to
any data, we scope the current work to JWST surveys in light
of the immediate need to explore the parameter space that has
just been opened by JWST. With this in mind, we construct our
simulation imitating a JWST survey to quantify the effect of the
proposed priors.
The mock catalog is based on JAGUAR, which describes the

evolution of galaxies across 0� z� 15 and M7 log
M 13 (Williams et al. 2018). It uses observed stellar mass

and UV luminosity functions at 0< z< 10 (Bouwens et al.
2015; Oesch et al. 2018) to model the evolution of stellar mass,
UV absolute magnitude, UV continuum slope, and galaxy
number counts. The relevant parameters then become the
inputs to BEAGLE (Chevallard & Charlot 2016) to generate
SEDs in JAGUAR.
We note that BEAGLE and Prospector incorporate

different stellar population synthesis: the former uses Bruzual
& Charlot (2003), while the latter calls FSPS (Conroy &
Gunn 2010; Choi et al. 2016; Dotter 2016). The underlying
nebular emission, stellar templates, and isochrones all differ. In
order to isolate the effect of the prior and avoid concerns about
template differences, we reconstruct the mock catalog using
identical inputs for FSPS. The stellar populations are modeled
with a Chabrier initial mass function (Chabrier 2003), and a
two-component dust model (Charlot & Fall 2000). The SFH is
parameterized by a delayed-τ model.
We add noise typical for a deep field JWST + HST survey,

then impose a z� 0.5 cut and a signal-to-noise �5 cut based on
the flux in the F444W band, which result in about 56,000 mock
galaxies. Further details on the mock catalog can be found in
the Appendix.
In addition to the simulations, we test our model on JWST

data as well. The observations are recently acquired in a
Director’s Discretionary (DD) program (JWST-DD-2756, PI:
Chen). We crossmatch the sources to collect spectroscopic
redshifts from the NASA/IPAC Extragalactic Database, Treu
et al. (2015), and Richard et al. (2021). Data reduction follows
Weaver et al. (2023). The observed fluxes in the F444W band
span roughly from 16.5 to 30.5 AB mag, with a 5σ depth of
25.5 AB mag. Star-forming galaxies constitute the majority of
this sample.

3. Galaxy Evolution Priors

In this section, we detail the construction of three
observationally informed priors on galaxy stellar mass, the
observable number density, and galaxy star formation history
SFH(M,z). We contrast each with the respective uniform prior
in Figure 1.

3.1. Stellar Mass Function

Galaxy stellar mass can be strongly constrained from
photometry when the distance is known (Bell & de Jong 2001;
Pforr et al. 2012; Conroy et al. 2013; Mobasher et al. 2015; Li
& Leja 2022); however, when the distance is unknown,
inferring mass becomes challenging (mass refers to stellar mass
hereafter). An informative prior can be helpful in this case. In
nature, low-mass galaxies are far more numerous than high-
mass galaxies, so a mass function prior allows us to avoid
spurious high-mass, high-z solutions. For a given z, we draw
mass from P(M|z), which is just a mass function, Φ, at that
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redshift normalized such that

ò F =z dM 1, 1
M

M

min

max

( ) ( )

where Mmin and Mmax are the minimum and maximum masses.
We set =M M10min

6 and =M M10max
12 in this work.

In this Letter, we take the mass functions from Leja et al.
(2020), which are continuous in redshift and are derived using
the same stellar population model, Prospector-α. We note
that they are only defined between 0.2� z� 3.0. For z< 0.2
and z> 3, we adopt a nearest-neighbor solution, i.e., the
z= 0.2 and z= 3 mass functions. The nearest-neighbor choice
may be favored in the absence of reliable high-resolution rest-
frame optical selected mass functions at z> 3. Importantly, it
allots a conservatively high probability for yet-to-be-discovered
populations of high-mass, high-z galaxies, hints of which have
already been observed in Labbe et al. (2022).

Conversely, if the goal is to decrease as much as possible the
contamination of interlopers posing as extremely luminous galaxies
at z 10 (Furlanetto & Mirocha 2022), one may consider
transitioning over to theoretical mass functions. To this end, we
additionally provide an option in the public release of our code: the
mass functions can be switched to those from Tacchella et al.
(2018) between 4< z< 12, with the 3< z< 4 transition from Leja
et al. (2020) managed with a smoothly varying average in number
density space. These can easily be replaced with observed mass
functions at high z once they become available. While at this stage
the high-z mass functions remain uncertain, we note that even our
current estimate is inaccurate, including a mass function prior,
which is a better choice than a flat prior. As can be seen from
Figure 1(a), the number density at 109Me at z= 1 already deviates
from the uniform prior by over 1 order of magnitude.

3.2. Galaxy Number Density

The probability of finding a galaxy at redshift z can be
estimated from

ò= = F
¥

P z N z V z M z dM V z, , 2
M

co co
c

( ) ( ) ( ) ( ) ( ) ( )

where N(z) is the expected total number density of galaxies,
Vco(z) is the differential comoving volume, and Mc is the mass

completion limit. We normalize P(z) by letting ∫P(z)= 1. We
show P(z) adopted for this work in Figure 1(b).
As shown in Figure 2(a), the number density, and hence P

(z), is sensitive to the mass-completeness limit of the data. This
means that a careful analysis must be carried out to estimate
Mc(z). In practice one would likely need to obtain Mc from
using SED-modeling heuristics based on the flux-completeness
limits in a given catalog. Many subtleties exist in such
translation due to the complexities of stellar populations (e.g.,
Pozzetti et al. 2010; Leja et al. 2020), the discussion of which is
beyond the scope of this work. For simplicity, we extract Mc

directly from our mock catalog as the mass above which 90%
of the galaxies in a given redshift bin is included.

3.3. Dynamic Star Formation History

An advantage of Prospector-α is the ability to adapt
flexible SFHs. The SFH is set by the mass formed in seven
logarithmically spaced time bins, assuming a continuity prior
that ensures smooth transitions between bins (Leja et al. 2019).
While the flat SFH in Prospector-α is a reasonable null
expectation, it is inconsistent with expectations from real
galaxies: they have rising SFHs in the early universe and falling
SFHs at late times, and also show systematic trends with mass
(e.g., Leitner 2012; Pacifici et al. 2016). As pointed out in
Tacchella et al. (2022a) and Whitler et al. (2023), the inferred
early formation history of high-z galaxies heavily depends on
the SFH prior.
We therefore modify the flat SFH assumption by matching

the expectation value in each bin in lookback time to the
cosmic star formation rate densities (SFRD) in Behroozi et al.
(2019), while still keeping the distribution about the mean
identical to the Student’s-t distribution in Prospector-α.
Taking a step further, we introduce a mass dependence to the
SFH prior, since it is well established that galaxy SFHs depend
both on mass and cosmic time (Behroozi et al. 2019). A
difficulty, though, is that SFH constraints require highly
informative spectroscopy (e.g., Carnall et al. 2019; Leja et al.
2019; Tacchella et al. 2022b; Park et al. 2022). In the spirit of
keeping the priors minimalistic, we opt to model the mass
dependence by shifting the start of the age bins as

d= +t t zlog Gyr log Gyr , 3start univ m( ) ( ( ) ) ( )

Figure 1. The three panels illustrate the difference between the proposed priors on mass, number density, and SFH of this Letter, and uniform priors (black dashed
lines). (a) Mass function at z = 1 (Leja et al. 2020) is shown in red. (b) Observable galaxy number density (i.e., Mc cut applied), as a function of redshift is plotted in
red. Also shown in gray is the number density directly calculated from the mock catalog, which differs from our P(z) due to the different assumptions built in; in
particular, mass functions at z  5. Nevertheless, we are able to improve the parameter inference by assuming a reasonable approximation of the mass functions used
in the mock catalog. (c) Four SFHs from our prior are shown as colored lines. The x-axis is lookback time, tL, normalized by the age of the universe, tuniv, at the
respective z, and the y-axis is also normalized so that all SFRs can be shown on the same scale.
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0.6, for log M M 9.
1 3 logM 3.6, for 9 log M M 12.

0.4, for log M M 12.
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⎨
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tuniv(z) is the age of the universe at an observed z. This does
not, however, mean that the onset of star formation can be
earlier than the Big Bang. The equation refers to the age of the
universe at which the shape of the SFRD is taken as a prior for
the expectation values of the time bins. In practice, we shift the
start of the age bins along the SFRD curve, and then rescale the
age bins to be within the age of the universe at a given z. This
SFH prior effectively encodes an expectation that high-mass
galaxies form earlier, and low-mass galaxies form later, than
naive expectations from the cosmic SFRD. In other words, the
physical motivation is the downsizing scenario in galaxy
formation (Cowie et al. 1996; Thomas et al. 2005). We show
four SFHs from our prior in Figure 1(c) as examples, and
technical details of the δ formalism in Figures 2(b)–(c).

This prior does not, however, account for the quiescent/star-
forming bimodality. We effectively approximate a double-
peaked distribution of SFRs at a given mass and redshift seen
in, e.g., Leja et al. (2022) as a wide single-peaked distribution.
The quiescent fractions calculated from our prior match
roughly with the observed trend at z< 3 (Leja et al. 2022),
which justifies this simplification.

Having presented the new priors, we note that we include the
stellar mass–stellar metallicity relationship measured from the
Sloan Digital Sky Survey as a prior as well (Gallazzi et al.
2005). Following Leja et al. (2019), we take the conservative
approach of widening the confidence intervals from this
relationship by a factor of 2 to account for potential unknown
systematics or redshift evolution.

4. Fitting Mock Galaxies

We fit SEDs with the Prospector-α model, as well as
Prospector-β of this Letter, which essentially replaces the
former’s uniform priors with informative ones. We emphasize

that the physical model shared between Prospector-α and
Prospector-β is more sophisticated than the one used for
generating the mock galaxies. It consists of 16 free parameters
describing the contribution of stars, active galactic nuclei
(AGNs), gas, and dust (Table 1), although the dust emission
and the infrared AGN parameters are only relevant at z 1.
The posteriors are sampled with the dynamic nested sampling
code dynesty (Speagle 2020). We fit 5000 randomly drawn
mock galaxies. This sample size is limited by the time required
of FSPS/nested sampling, which takes >10 hr per fit. This
problem will be circumvented via machine-learning-accelerated
techniques in the near term (Alsing et al. 2020; Wang et al.
2022).
For comparison, we determine redshift using EAzY, which

fits a nonnegative linear combination of a set of templates
(Brammer et al. 2008). We use the vanilla version with the
default set of tweak_fsps_QSF_12_v3.

5. Results

In this section, we report the parameter recoveries using the
Prospector-β priors, and contrast them with the uniform
priors. We also compare to the redshift inferred via the vanilla
EAzY templates to put the redshift recovery in context of
previous results in the literature. The medians of posterior
distributions are quoted in all analyses.
We show histograms of residuals for redshift in Figure 3, and

key physical parameters in Figure 4. The scatter in residuals is
quantified using the normalized median absolute deviation
(NMAD) given its advantage of being less sensitive to outliers
than rms. It is defined as

s q= ´ D1.48 median , 5NMAD ∣ ∣ ( )

where Δθ= θmed− θtrue, with one exception: wherever we
evaluate the accuracy of redshift inference, we replace Δθ with
Δz= (zmed− ztrue)/(1+ ztrue). We additionally quantify an
outlier fraction, fout, in which we define a catastrophic outlier
as one with Δθ> 0.1, and bias calculated using the mean bias

Figure 2. Here we show the technical details of the implementation of our priors from observations of galaxy evolution. (a) Number densities of galaxies, n, assuming
different evolutions of the mass complete limit, Mc, are plotted as functions of redshift. Shown in black is n based on a constant Mc, while shown in dark orange is
based on a constant mass-to-light ratio. The inserted panel shows Mc as a function of z. (b) A schematic diagram demonstrating our δ formalism, which introduces
mass dependence to the SFH prior. The cosmic SFRD (Behroozi et al. 2019), which we take to be the expectation value, is plotted as a function of the age of the
universe in gray. At an observed redshift, zobs, the expected SFR values of a galaxy are shifted back/forward in time depending on its mass. The constructed SFH prior
favors rising SFHs in the early universe, and falling SFHs in the late universe. (c) Specific SFRs of two galaxies of masses 108Me and 1010.5Me, observed at z = 1, are
plotted as functions of lookback time in blue and red, respectively. The x-axis is the time between the onset of star formation (birth of the galaxy) and z = 1. The
shades indicate the 16–84th and the 2.5–97.5th percentiles of the prior distribution.
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error (MBE) as
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5.1. Assessing Parameter Recovery

We start by evaluating the accuracy of redshift inference,
then proceed to key stellar populations metrics. Results on
redshifts inferred from the mock catalog assuming uniform
priors, and the proposed priors of this Letter are shown in the
upper panels of Figure 3. Redshifts estimated from EAzY are
overplotted as a reference point. The widths of the central
distributions in parameter inference of Prospector-β and
EAzY exhibit no significant differences, as evident from their
NMAD values. It is reassuring to see that Prospector-β and
EAzY share similar performance, although one discrepancy
may be noticed. There exists a small cluster around Δz/
(1+ z)∼ 0.7 in the EAzY redshifts. This is probably a
manifestation of the survey geometry of the mock catalog,
which is mostly comprised of young galaxies at z> 1 with a
rising ultraviolet/optical slope due to nebular emission and
young stars. EAzY tends to mistake these for a rising near-
infrared slope of old/quiescent galaxies at z= 0.1–0.3.
Prospector recovers the correct redshift by correctly putting
star-forming galaxies at high z, since its fiducial model already
installs a hard limit that no stars can be older than the age of the
universe at each time step. On the other hand, EAzY just fits
linear combinations of templates. Its default template set is
optimized for wider/shallower surveys in which more old
quiescent galaxies are present. Adapting a new set of z-
dependent templates in EAzY is likely to alleviate this problem
(e.g., the recent set sfhz, which will be described in G.
Brammer et al. 2023, in preparation). Prospector-β
performs understandably better than EAzY in this special
survey geometry because it is informed by priors based on
galaxy evolution that low-mass, high-z galaxies are more
common and highly star forming.

Similar trends are observed in the lower panels of Figure 3,
where we test our model on data from a JWST DD program.
This perhaps serves as an even more convincing piece of
evidence that our approach can perform as least as well as
EAzY in the context of JWST surveys, with the added bonus of
joint constraints on key stellar populations metrics.

Figure 4 demonstrates that the priors proposed in this Letter
result in a more accurate recovery of mass, mass-weighted age,
and SFR. This is straightforward to conclude from the smaller
absolute MBEs because our model is informed by our
expectation from galaxy evolution. Reducing the scattering
requires more informative data; it is thus natural that we see no
significant changes in NMADs. The recovery of the rest of the
parameters in Table 1 shows no material difference between
difference cases, which is reasonable given that we place no
additional prior on them. Discussions on how well these
parameters can be constrained within the Prospector
framework can be found in, e.g., Lower et al. (2020), Tacchella
et al. (2022b), and Lower et al. (2022).
Losing the HST coverage spanning 0.4–1 μm in observed

frame does not deteriorate our model performance, beside a 0.1
dex increase in MBE of the redshift recovery. This is because
the HST data tend to be associated with larger uncertainties,
which means that the likelihood is mostly affected by the
JWST bands.

5.2. Age–Mass–Redshift Degeneracy

What is surprising is that the different choices of
Prospector-α and Prospector-β priors lead to compar-
able redshift recovery despite the aforementioned improve-
ments in recovered age, mass, and SFR. Upon examining cases
where the uniform priors recover true redshifts, one example of
which is shown as Figure 5(a), we believe that the flat priors
work by exploiting an age–mass–redshift degeneracy: an
overestimation in age leads to a galaxy having a higher
mass-to-light ratio; then mass must be overestimated to
produce the same luminosity; however, redshift stays the same
since color is mostly unaffected. This argument is supported by
Figure 5(b). The degeneracy is so strong that the flat priors can
mostly get the redshift right despite the wrong mass or age. We
further discuss the significance of this finding in the following
section.

6. Discussion and Conclusions

We aim to improve the SED fitting performed on less-
informative data by including well-motivated priors based on
observations of galaxy evolution. This Letter presents the
construction, behavior, and influence of three joint priors on
mass, galaxy number density, and dynamic SFH. The priors are
incorporated into the Prospector inference framework. As a

Table 1
Parameters and Priors for Fitting SEDs within Prospector

Parameter Description Prior

M Mlog( ) Total stellar mass formed See Section 3.1
z Redshift See Section 3.2
SFH Ratio of SFRs in adjacent log-spaced time bins See Section 3.3


Z Zlog( ) Stellar metallicity Gaussian approximating the M–Zå relationship of Gallazzi et al. (2005)

n Power-law index for a Calzetti et al. (2000) attenuation curve Uniform: = -min 1.0, =max 0.4
tdust,2ˆ Optical depth of diffuse dust (Charlot & Fall 2000) Truncated normal: =min 0, =max 4, μ = 0.3, σ = 1

t tdust,1 dust,2ˆ ˆ Ratio between the optical depths of birth cloud dust and diffuse dust
(Charlot & Fall 2000)

Truncated normal: =min 0, =max 2, μ = 1, σ = 0.3

flog AGN Ratio between the object’s AGN luminosity and its bolometric
luminosity

Uniform: = -min 5, =max log 3

tlog AGN Optical depth of AGN torus dust Uniform: =min log 5, =max log 150

Z Zlog gas( ) Gas-phase metallicity Uniform: = -min 2.0, =max 0.5

qPAH Fraction of grain mass in PAHs (Draine & Li 2007) Truncated normal: =min 0, =max 7, μ = 2, σ = 2
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result, we are able to better recover stellar mass, age, and SFR.
Below we discuss the key findings in this work.

First, we identify and characterize the age–mass–redshift
degeneracy. This is likely a general feature of galaxy SEDs
(e.g., Nagaraj et al. 2021), and in this analysis, it manifests as a
deceivingly good recovery of redshift using the fiducial
Prospector model that assumes uniform priors.

Second, our Prospector-β model breaks the above age–
mass–redshift degeneracy. This has important ramifications.

Estimating masses and SFHs at high z is crucial to many
studies such as those establishing the onset of galaxy formation
and the reionization history. Breaking this degeneracy means
that we now have a framework in which redshift, mass, SFH,
and other contributions coming from stars, AGNs, gas, and
dust can be accurately and self-consistently derived. An
immediate gain is that we can use joint distributions on all
parameters from Prospector to fit populations models that
include full redshift uncertainties. For instance, it becomes

Figure 3. We compare the photo-z accuracy between Prospector-β and EAzY using both simulated and observed data. (Upper panel) On the left, we show true z
vs. posterior median zmed from a mock catalog. Red contours show results from Prospector-β, while blue contours show these from EAzY. On the right, we show
residuals as histograms. We also include results based on uniform priors, plotted as gray histograms. NMAD, outlier fraction, and MBE are reported in the same colors
as the corresponding histogram. (Lower panel) Same as the upper panel, but for redshifts inferred from a spec-z sample with newly acquired data from a JWST DD
program. In both cases, we find that Prospector-β performs at least as accurately as EAzY.
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possible to improve the mass function methodology from Leja
et al. (2020) via the propagation of non-Gaussian redshift
uncertainties.

Third, we compare Prospector to EAzY redshifts.
Leistedt et al. (2023) also infers photo-z using Prospec-
tor-α and compares to EAzY; in this work, they find that a
Bayesian hierarchical model is required to achieve similar
performance in estimating redshift as EAzY. The fact that the
fiducial Prospector model already shows comparable
results in Figure 4(a) unambiguously demonstrates the
influence of the age–mass–redshift degeneracy. Furthermore,
the advantage of encoding galaxy evolution into the inference
process is also made visible by the more accurate redshifts from
Prospector-β. The less-satisfying performance of EAzY is
likely due to the fact that we deploy the vanilla EAzY templates
on simulations from a deep but small field, in which massive
galaxies are rare. The default EAzY setting may become

insufficient since it is optimized for a more traditional setup
where old quiescent galaxies constitute a significant proportion.
Including redshift dependence into the templates will likely
alleviate this problem (G. Brammer et al. 2023, in preparation).
We do not carry out a comprehensive comparison to EAzY in
further detail as the intention here is merely to have a well-
tested code to act as a point of reference. We additionally
emphasize that the better redshift recovery of Prospector-β
demonstrates another advantage of our approach: modifying
one’s model based on a particular survey renders unnecessary
once galaxy evolution is encoded in the inference process.
Fourth, we would like to highlight the simplicity of our SFH

prior, which is motivated by downsizing in galaxy formation,
and creates rising histories early in the universe and falling
histories late in the universe. Even though the known behavior
of SFH(M, z) is fairly complex, we deliberately choose a simple
parameterization. There is no particular reason to tune this in

Figure 4. Here we demonstrate the performance of Prospector-β in recovering physical parameters, and contrast it with the fiducial Prospector-α model that
assumes uniform priors. Residuals in mass, mass-weighted age, and SFR(0–100Myr) are shown as histograms. Results based on uniform priors are shown in gray,
while those based on Prospector-β are shown in red. NMAD, outlier fraction, and MBE are reported in the same colors as the corresponding histogram. To avoid
counting the error in redshift twice, we only include residuals for the subset where (zmed − ztrue)/(1 + ztrue) � 0.1. We find that Prospector-β results in less bias
consistently in mass, age, and SFR as compared to uniform prior cases.

Figure 5. (a) Posteriors of a sample fit illustrating the degeneracy. The red contours show results assuming the Prospector-β priors, while the gray contours show
those assuming uniform priors. Truths are overplotted on the corner plot in yellow. (b) The 2D histogram shows the average redshift offset when assuming uniform
priors. Overplotted are contours showing the density of points. The fact that the contour lines are right along the line of the age–mass–redshift degeneracy suggests that
uniform priors get the correct redshifts by exploiting this degeneracy.
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detail to the JAGUAR mock universe, which itself may not be
a faithful representation of the true universe. Empirical
constraints on SFH at high z remain weak, so we think that
such simple approach is preferred, allowing data to inform the
inference process to the greatest extent. It is feasible to develop
a full population model for 0< z< 1 galaxies (e.g., Alsing
et al. 2023), and constrain this hyperparameter with data. We
leave this improvement for future studies.

Finally, a word of caution: our tests are performed on a mock
catalog built for a deep JWST survey with a small area, which
means that our mock does not test massive galaxies well since
those are rare in this survey. We hope to calibrate the proposed
model soon on real data, and also in broader surveys.

To conclude, high-z surveys in the era of JWST increasingly
require us to infer more physical information from less-
informative data. Applying Prospector-β to early JWST
observations will downweight solutions that are disfavored by
current observational constraints on galaxy formation, and
hence increase our confidence in the results of our fitting (e.g.,
Labbe et al. 2022; Nelson et al. 2022).

This work is thus a timely addition to address the many
challenges being put forth by JWST surveys. In the near future,
we plan to apply Prospector-β to UNCOVER—an
ultradeep Cycle 1 JWST survey targeting first-light galaxies
(Bezanson et al. 2022). The data will be an even more stringent
test on our model, and will provide a path for future
improvements.
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Facilities: HST(ACS, WFC3), JWST (NIRCam, NIRSpec).
Software:Astropy (Astropy Collaboration et al. 2013, 2018),

Corner (Foreman-Mackey 2016), Dynesty (Speagle 2020),
EAzY (Brammer et al. 2008), Matplotlib (Hunter 2007),
NumPy (Harris et al. 2020), Pandeia, Prospector (Johnson et al.
2021), SciPy (Virtanen et al. 2020).

Appendix

We supply further details on the properties of our mock
catalog in this Appendix. The simulated photometry consists of
seven HST and seven JWST bands spanning ∼0.4–5 μm in the
observed frame listed in Table 2, in which we also summarize
the assumed depths in each filter. We also show the magnitude
in F444W as a function of redshift in Figure 6.

The noise for the mock observations in the JWST bands are
generated using the JWST Exposure Time Calculator as
follows. First, the uncertainty within a 0 16 radius aperture
is calculated given the planned total exposure time in each
filter. A flat, faint fν source and the point-spread function (PSF)
enclosed energy fraction curve is used to convert the flux from
e− s−1 to nJy. This per-filter aperture uncertainty is then

converted to a total flux uncertainty for each object using a per-
object filter aperture correction that is determined using 2D
Sérsic profiles convolved with the PSF. This total flux
uncertainty for each band is then used directly as the mock
filter flux uncertainty, δfX. Noise is randomly drawn assuming a
normal distribution with a standard deviation equal to δfX, and
added to the intrinsic fluxes to yield the mock flux fX.
As for the noise in the HST bands, we similarly assume

Gaussian distributions. The standard deviations are estimated
from available HST observations overlapping the JWST DD
program.
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Figure 6. Magnitudes in F444W are plotted as a function of redshifts for the
the mock galaxies that we test our model on.

Table 2
Depth per Filter in the Mock Catalog

Filter 5σ Depth [AB mag] Instrument

F435W 26.49 HST ACS (WFC)
F606W 26.62 HST ACS (WFC)
F814W 27.16 HST ACS (WFC)
F105W 25.51 HST WFC3 (IR)
F115W 26.48 JWST NIRCam
F125W 26.16 HST WFC3 (IR)
F140W 25.77 HST WFC3 (IR)
F150W 28.35 JWST NIRCam
F160W 29.02 HST WFC3 (IR)
F200W 28.79 JWST NIRCam
F277W 28.62 JWST NIRCam
F356W 28.62 JWST NIRCam
F410M 28.23 JWST NIRCam
F444W 28.65 JWST NIRCam
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