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Abstract 
 

The article proves the insolvability of the 4-th Hilbert Problem for hyperbolic geometries. It has been 
hypothesized that this fundamental mathematical result (the insolvability of the 4-th Hilbert Problem) 
holds for other types of non-Euclidean geometry (geometry of Riemann (elliptic geometry), non-
Archimedean geometry, and Minkowski geometry). The ancient Golden Section, described in Euclid’s 
Elements (Proposition II.11) and the following from it Mathematics of Harmony, as a new direction in 
geometry, are the main mathematical apparatus for this fundamental result. By the way, this solution is 
reminiscent of the insolvability of the 10-th Hilbert Problem for Diophantine equations in integers. This 
outstanding mathematical result was obtained by the talented Russian mathematician Yuri Matiyasevich 
in 1970, by using Fibonacci numbers, introduced in 1202 by the famous Italian mathematician Leonardo 
from Pisa (by the nickname Fibonacci), and the new theorems in Fibonacci numbers theory, proved by 
the outstanding Russian mathematician Nikolay Vorobyev and described by him in the third edition of his 
book “Fibonacci numbers”. 
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1 Introduction: Hilbert's 
 
David Hilbert is a German mathematician, who made a significant contribution to the development of many 
areas of mathematics. In 1900, from 6 to 12 August 1900, the II International Congress of Mathematicians 
was held in Paris. At this Congress, Hilbert pr
proposed his famous twenty-three problems of mathematics. 
 
Currently, the 11 problems among the 23 problems have been solved. The 6 problems have been partially 
solved. For the two problems, mathemat
too vaguely to judge whether they are solved or not (for more details see [1
  

2 The 4-th Hilbert Problem 
 
In the list of the 23 Hilbert Problems, the 4
which the lines are geodesic."  
 
The 4-th problem consists in studying geometries, “near” in a certain sense to Euclidean geometry. Hilbert 
explains the meaning of the 4-th Problem as follows:
 
“A more general question, arising in this case, is the following: is it possible from other fruitful points of 
view to construct geometries that with the same right could be considered closest to ordinary Euclidean 
geometry ...” 
 
Under those nearest to Euclidean geometry, Hilbert i
geometry), geometry of Riemann 
Minkowski.  
 

3 The Fifth Postulate of Lobachevsky
 
This postulate sounds as follows: 
 

“If a straight line and a point
this point; they do not intersect each to other”
 

Fig. 1. Illustration of the fifth postulate of Lobachevsky
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1 Introduction: Hilbert's Problems  

David Hilbert is a German mathematician, who made a significant contribution to the development of many 
areas of mathematics. In 1900, from 6 to 12 August 1900, the II International Congress of Mathematicians 
was held in Paris. At this Congress, Hilbert presented his report "Mathematical Problems", in which he 

three problems of mathematics.  

Currently, the 11 problems among the 23 problems have been solved. The 6 problems have been partially 
solved. For the two problems, mathematicians have no consensus, the 4-th and 23 problems are formulated 
too vaguely to judge whether they are solved or not (for more details see [1-4]). 

oblem  

In the list of the 23 Hilbert Problems, the 4-th Problem is formulated as follows:  "Enumerate the metrics, in 

th problem consists in studying geometries, “near” in a certain sense to Euclidean geometry. Hilbert 
th Problem as follows: 

arising in this case, is the following: is it possible from other fruitful points of 
view to construct geometries that with the same right could be considered closest to ordinary Euclidean 

Under those nearest to Euclidean geometry, Hilbert indicated geometry of Lobachevsky 
 (elliptic geometry), non-Archimedean geometry, and 

of Lobachevsky 

“If a straight line and a point lie on a plane, then at least two straight lines can be drawn through 
this point; they do not intersect each to other” 

 
 

Illustration of the fifth postulate of Lobachevsky 
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hilbert problem; hilbert; hamel; buseman; pogorelov; 
hyperbolic fibonacci and lucas functions;  completed solution 

11B39 Fibonacci and Lucas numbers, polynomials and 
generalizations, 03D20 Recursive functions and relations, sub-

David Hilbert is a German mathematician, who made a significant contribution to the development of many 
areas of mathematics. In 1900, from 6 to 12 August 1900, the II International Congress of Mathematicians 

esented his report "Mathematical Problems", in which he 

Currently, the 11 problems among the 23 problems have been solved. The 6 problems have been partially 
th and 23 problems are formulated 

Enumerate the metrics, in 

th problem consists in studying geometries, “near” in a certain sense to Euclidean geometry. Hilbert 

arising in this case, is the following: is it possible from other fruitful points of 
view to construct geometries that with the same right could be considered closest to ordinary Euclidean 

Lobachevsky (hyperbolic 
, and geometry of 

lie on a plane, then at least two straight lines can be drawn through 
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Thus, the Lobachevsky hyperbolic geometry admits that on the same plane there can be several straight lines 
at once that do not intersect each other. But in the Euclidean geometry, through a point that does not belong 
to this straight line, we can draw one and only one straight line; these stright lines  do not intersect .    
   
On February 11, 1826 at the Kazan University the session of the Physics and Mathematics Section was hold. 
On this session Lobachevsky made a speech on the discovery of new geometry. During 1829-30 he 
published the five articles with the title “On the Principles of Geometry” in the journal “Kazan Bulletin” (the 
Imperial Kazan University) (see http://www.raruss.ru/russian-thought/597-lobachevsky.html). 
 
The work "On the Principles of Geometry" was, at Lobachevsky’s request, presented in 1832 by the Council 
of Kazan University to the Academy of Sciences. The Academy's conference had decided to give 
Lobachevsky's work to academician M.V. Ostrogradsky, the acknowledged leader of the Russian Empire 
mathematicians. In his review M.V. Ostrogradsky wrote the following: 
 

“The author apparently set himself the goal of writing in such a way that he could not be 
understood. He achieved this goal. Everything that I understood in Lobachevsky's geometry is 
lower than mediocre. Lobachevsky’s work does not deserve the attention of the Academy. 
(See: http://dfgm.math.msu.su/files/encyclopedia/Lobachevski220.pdf ) 

 
Among other colleagues, almost no one to support Lobachevsky's geometry; moreover, misunderstanding 
and ignorant ridicule grew. Trying to find understanding abroad, in 1837 Lobachevsky published his article 
"Imaginary Geometry" in the German journal “Krell”. 
 
Lobachevsky’s geometry was widely recognized and widely adopted only 12 years after his death, when it 
became clear that a scientific theory, built on the basis of a certain axiom system, is considered only then full 
completed, when its system of axioms satisfies to three conditions: independence, consistency and 
completeness. Lobachevsky's geometry did satisfy to these three properties. 
 
It is important to note that the Hungarian mathematician Janos Bolyai also came to similar conclusions about 
hyperbolic geometry, and the famous German mathematician Karl Friedrich Gauss (1777–1855) came to 
such conclusions even earlier. Gauss generally refrained from publishing on this topic, and Bolyai’s works 
didn’t attract attention, and he soon abandoned this topic. 
 
As a result, Nikolay Lobachevsky remained as the unique most consistent propagandist of new geometry. 
 

4 Particular Solutions to the 4-th Hilbert Problem 
 
The dissertation of German mathematician Georg Hamel [5], defended in 1901 under Hilbert’s supervision, 
was the first contribution to the solution of the 4-th Hilbert Problem. 
 
As the American geometer Herbert Busemann (1905 –1994) indicated in the article [6], “Hamel’s work, of 
course, did not exhaust everything that can be said about Fourth Hilbert Problem, other approaches to 
which were repeatedly proposed later”.      
         
Let’s dwell in more detail on the important contribution to the solution of this problem, made by the 
outstanding Soviet mathematician A.V. Pogorelov [7]. The summary to Pogorelov’s book [7] states the 
following:  
 

"The book contains a solution to the well-known Hilbert’s problem on the definition of all, up to 
isomorphism, realizations of the systems of axioms of classical geometries (Euclidean, Lobachevsky, 
elliptic), if we omit the congruence axioms, containing the concept of angle, and we supplement of   
these systems with the axiom of “triangle inequality”: the length of any side of the triangle always 
does not exceed the sum of the lengths of its two other sides". 



 
 
 

Stakhov and Aranson; JAMCS, 31(1): 1-21, 2019; Article no.JAMCS.47241 
 
 
 

4 
 
 

A detailed analysis of all modern works, devoted to the 4-th Hilbert Problem, is given in Aranson’s article 
“Again on the 4th Hilbert Problem” [8]. In this article, Aranson gives the detailed analysis of the solution of 
the 4-th Hilbert Problem, made by Alexey Pogorelov.   
         
In Aranson’s opinion, if Pogorelov replaces the axioms of congruence of angles by the axiom of “triangle 
inequality”, then for every of the next geometries: Euclidean geometry (Euclid), hyperbolic geometry 
(Lobachevsky), elliptic geometry (Riemann), when we realize these geometries, the axiom of the congruence 
of angles becomes the theorem of the congruence of angles. Otherwise, Pogorelov’s system of axioms cannot 
satisfy to three conditions: independence, consistency and completeness. Therefore, after the actual proof of 
this newly emerged theorem on the congruence of angles, when we realize Pogorelov's axioms, all previous 
systems of axioms for Euclidean, Lobachevsky and Riemann geometries are automatically restored.  
       
In Aranson’s opinion, this is Pogorelov’s contribution to the 4-th Hilbert Problem, and, therefore, what all he 
did, is the particular, but not the complete solution to the 4-th Hilbert Problem. 
 

5. Authors’ Particular Solution to the 4-th Hilbert Problem, Based on the 
Hyperbolic Fibonacci  -Functions  

 
Definitions and sourses. A new stage in the solution of the 4-th Hilbert Problem begins with Alexey 
Stakhov’s book “The Mathematics of Harmony. From Euclid to Contemporary Mathematics and 
Computer Science” (World Scientific, 2009) [9] and with the original books of the Argentinean 
mathematician Vera de Spinadel [10], of the French engineer and inventor Midhat Gazale [11], of the 
American mathematician Jay Kappraff [12], of the American philosopher Scott Olsen [13], of the Armenian 
philosopher Hrant Arakelian [14] and finally with the book of The Prince of Wales with Tony Juniper and 
Ian Skelly “Harmony. A New Way of Looking at Our World” [15].  
 

The purpose of this section is the particular solution to the 4-th Hilbert Problem, which consists in 
constructing an infinite set of new geometries, “near” to Lobachevsky’s geometry, but with other metric 
properties. The mathematical basis for such solution is the creation by the authors of the general algorithm: 
the authors used for this purpose Stakhov’s book “The Mathematics of Harmony. From Euclid to 
Contemporary Mathematics and Computer Science” [9]. The Mathematics of Harmony and the 4-th Hilbert 
Problem is the way to the Harmonic Hyperbolic and Spherical Words of Nature [16,17].  The «Golden» 
Non-Euclidean Geometry [16,17], the so-called "metallic" proportions by Vera Spinadel [10], Stakhov and 

Rozin’s symmetrical hyperbolic functions [19] and Stakhov’s hyperbolic Fibonacci  -functions  [19] were 
used by the authors in the study of the 4-th Hilbert Problem.  
 

The “metallic” proportions [10], indicated by the symbol  , are given by the Spinadel’s formula  

2

4 2





 [10]. For all values of ),(  , the function  >0. For   ,0  for 

0   =1, for     .  For 1  , the formula 
2

4 2



  is reduced to the 

classical golden proportion 
2

51
  , that is, the Spinadel’s metallic proportion   is a generalization of 

the formula for  the golden proportion 
2

51
 . 

 

The hyperbolic Fibonacci -sine  and  -cosine [19] have the following forms, respectively:   
 

24
)(











xx

xsF =
24

2


sh )]ln([ x ,  

24
)(










xx

xcF =
24

2


сh[ )]ln( x . 
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For the case  =1, the hyperbolic Fibonacci  -sine and  -cosine are reduced to the symmetrical 
hyperbolic Fibonacci sine sF(x) and cosine cF(x) [18], respectively.    
 
Lobachevsky metric and Lobachevsky classical metric. Denote by  
 

П+: {  vu ,0 } the half-plane on the plane П:{  vu , }.  

 
We equip the half-plane П+ with the metric, which, by following to the terminology [19], is called the 

Lobachevsky metric.  This metric has the form        22222 sh dvuduRds  , where  ds is the length 

element. The coefficient 0R  is called the radius of curvature of this metric, and the Gaussian curvature 

of this metric is K 
2

1

R
 < 0 .  

 
The concepts of Gaussian curvature and radius of curvature of a metric [20].  Classical  Lobachevsky’s 
metric is given on all the plane  

П':{  ',' vu } and has the form   
2

'ds (du')2 + ch2 







'

1
u

R (dv’)2, where R >0 is 

the radius of curvature of the classical Lobachevsky metric [20], [21] . There is shown in [21], that for the 
given radius R=1 the classical Lobachevsky metric is isometric to the Lobachevsky metric (the concept of 
isometry will be given below). In addition, according to the formulas, indicated below, it is easy to show that 

Gaussian curvature for the classical Lobachevsky metric with 'R =R  is also equal to K 
2

1

R
 < 0 .       

 
Isometric displaying and isometry [22]. Let f be a displaying from the metric space A to the metric space 

'A ,  that is,  f (А) 'A  . If the displaying of f preserves the distance between the points, that is, from the 

conditions {x,y}А and {x'=f (x), y’=f(y)} 'A  it  follows  ),( yx = ' ))('),('( yfyxfx  , then  

the displaying  f : A 'A  is called isometric.   
  

The isometric displaying  f : A 'A  is called isometry of the metric space A to the metric space 'A ,  and 

the spaces А and 'A  are isometric. The isometric spaces А and 'A  are called homeomorphic, if the 

displaying  f : A 'A   is a one-to-one and mutually  continuous displaying. 
 
Isometric surfaces [23]. Isometric surfaces in Euclidean or Riemannian spaces are such surfaces, between 
which there is the isometry with respect to internal metrics, induced on them by the metric of the ambient 
space. 
 
When we compare on the isometry (preservation of lengths) of two internal metrics on surfaces, the 
following property is important (Gaussian theorem) [24]: 
 
“For the displayings that preserve length (isometry), the Gaussian curvature at the corresponding points is 

the same, that is, 
'K K  

     
There is explained in [24] that if the displaying is isometric (preserves the lengths of the curves), then it is 
also conformal (preserves angles) and equiareal (preserves areas). Conversely: if the displaying is conformal 
and equiareal, then it is isometric. 
 
But then it follows from the Gauss theorem that the displaying at the corresponding points their Gaussian 
curvatures K и К' are inconsistent (K  K'), then this  displaying are nonisometric (don’t preserves the 
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lengths).  Therefore, when K K', by virtue of the Gauss theorem and the above remark about isometry [23], 
we get that if the displaying is nonisometric (does not save length), then, a priori, only the following 
situations are possible: 
 

1) either the displaying is nonconformal (does not preserve angles) and nonequiareal (does not preserve 
areas); 

2) either the displaying is nonconformal (does not preserve angles), but is equiareal (save areas); 
3) either the displaying is conformal (preserve angles), is nonequiareal (does not preserve areas). 

 
The first quadratic form. Let us give the necessary known facts of differential geometry of surfaces. Let 
the surface М 2  be given in parametric form: 
 

М 2:   x = x (u, v), y = y (u, v), z = z (u, v), 
 
where (u, v) belong to any area D of surface parameters. 
 
The first quadratic form (that is, the differential of arc length) in this case looks as follows: 
 

222 )(2)()( dvGFdudvduEds  ,  

 
where  
 

E = E(u, v) > 0, F = F(u, v), G = G(u, v) > 0, EG – F2 > 0. 
 
Let the surfaces of М2 : {x=x(u,v), y=y(u,v), z=z(u,v)} and  
 
М' 2: {x' (u,v), y'=y' (u,v), z'=z' (u,v)}  are given in one and the same area  
 

П: {  vu ,0 } for the parameters u, v (possibly after changing the parameters). 

 
The table below presents the necessary and sufficient condition on the metric of a general form, induced 

from space, when the indicated metric properties under a one-to-one displaying 
2 '2:f M M  of the 

surface 
2M on the surface М' 2 remain unchanged. 

 
Table of the comparison of metric properties [24] 

 
Displayings Necessary and sufficient conditions imposed on the metric form 
Preserving lengths (isometric) E = E', F= F', G = G' 
Preserving angles (conformal) E= λ0E', F = λ0F', G= λ0G', λ0  > 0 
Preserving  areas  (equiarial) E G  – (F)2 = E'G'  – (F' )2 

 
In the given Table E, F, G   and E', F', G' are coefficients of the metric forms,  
 
corresponding to the points M (x, y, z)  М2   and  M'  (x', y', z' )  М ' 2  . These metric forms have the 
following forms: 
 

222 )(2)()( dvGFdudvduEds  , where E = E(u, v) > 0, F = F(u, v), G = G(u, v) > 0, 

 
EG – F2 > 0, 
 
(ds' )2 =E' (du )2+2F' dudv+G' (dv)2, where E'=E' (u, v) > 0,F' = F' (u, v),  
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G' = G' (u, v) > 0, 
 
 E' G' – F' 2  > 0.   

 
The construction of new metrics, "near" to the Lobachevsky metric, having other metric properties. 
As the basic metric, we will consider the Lobachevsky metric: 
 

(ds )2 = ( du )2 +sh2 (u) ( dv )2, 
 

given in the half-plane П


:{  vu ,0 }. The coefficients of the basic Lobachevsky 

metric have the following form: Е=1, F=0, G= sh2 (u) >0. This metric has the radius of curvature R=1 and, 

therefore, the Gaussian curvature  K 2
1

R
  .1   

 
In this situation, the Lobachevsky basic metric is realised on the pseudo sphere  
 

М 2: 1222  YXZ  in the three-dimensional Minkowski space (X, Y, Z), endowed with Minkowski 

metric        
2 2 2 2

dl dZ dX dY   for parameterization    

 
X = sh(u) cos(v), Y = sh(u) sin(v),  Z = ch(u). 

 
As metrics, which will be compared with the basic Lobachevsky metric, in order to study the discrepancy of 
metric properties with the basic Lobachevsky metric, we will consider the types of metrics, set for any values 

of the coefficients { 1,0   } and at the values of the parameters (u,v), on the half-plane П:{

 vu ,0 }, as the basic Lobachevsky metric. We will name them as comparative 

metrics.  A view of these comparative metrics will be indicated below. More complex types of comparative 
metrics are given in authors’ monograph [14].    
 
Further, besides the first approach of comparing the main Lobachevsky metric (ds )2 = ( du )2 +sh2 (u) ( dv )2  
with comparative metrics in terms of ordinary hyperbolic functions - hyperbolic sine sh or hyperbolic cosine 
сh, depending on the parameter u of the coefficient  ,  the second approach is also used.  
       

This second approach is based on the use of hyperbolic Fibonacci   functions, namely the hyperbolic 

Fibonacci  sine sF  or hyperbolic Fibonacci  cosine cF , dependent on the parameter u and the 

coefficient  (see [21]). 
 
The connection between the hyperbolic functions in the first approach and the second approach is carried out 

by replacing the coefficient   by the coefficient   according to the formula 2 sh( ) arsh(

2


)  ln( ) , where the function  

2

4 2



  in [10]  is named “metallic proportion”.   

For the cases 4,3,2,1 , the following special terms to the values of the function   : golden, silver, 

bronze, and copper proportions  are assigned  in [10]. 
 
In order to be able to talk about the "proximity" of these comparative metrics to the main metric of 

Lobachevsky (ds )2 = (du)2 +sh2(u) (dv)2, pre-entered, two functions  = ),(  = )(  from the above 

factors  , },{   of the kind   12   0 ,  = 01)]([ln2  . When replacing 
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ln( ) , we get )( =  (  ln( ) )= 1)]([ln2  .  The above functions  and   are named 

the “distance” of the comparative metrics from the main Lobachevsky metric, respectively, in the first and 
second approaches.   
 

When  1  (the first approach) and, accordingly, when 2 sh( )1(  =  2.3504 (the second 

approach ) we get  =0,  =0 (coincidence of the comparative metrics with the Lobachevsky metric).  

When 1 , 3504.2  we get  >0,  >0 (non-coincidence of the comparative metrics with 

Lobachevsky metric). 
 

6 Particular Solution of the 4-th Hilbert Problem for Hyperbolic 
Geometries 

 
Theorem 1.   Among the infinite set    of the hyperbolic metrics of negative Gaussian curvatures there is 

an infinite subset 0  of the comparative metrics with the same negative Gaussian curvature K= 1 , and the 

different negative Gaussian curvatures K 1 ,  which are arbitrarily near to the Lobachevsky Gaussian 

curvature metric K= 1 . There is a single general algorithm of the detection of the comparative metric 
properties, based on the Taylor power series decomposition; this algorithm are   satisfying to the following 
conditions: 
 
1) when comparing any comparative metric with the Lobachevsky metric, nonisometry, non-conformity and 
nonequivariality take place; 
2) when comparing two pairs of comparative metrics with each other, nonisometry, nonconformity and 
nonequivariality take place. 
 

The first type of comparison of metrics with {u>0, ),( v }.                       

     
The basic Lobachevsky metric has the form: (ds )2 = ( du )2+sh2 (u) ( dv )2 and its Gaussian curvature is equal 

K 1 ). The comparative metric of the first type has the form: 
2)'(ds = 22 )(du  sh

2
( )u (

2)dv ,{

1,0   } and its Gaussian curvature is equal 1' K ; in this case: 1'  KK . 

  

Representation of comparisons of the metrics of the first type in terms of hyperbolic Fibonacci  -
functions. Let’s assume that we have: 
 

 ln(  ) 2  sh )( ,{ 1,0   }  { 3504.2,0   }. Then, we get the metric  

(ds )2 = ( du )2 +sh2 (u) ( dv )2  with the Gaussian curvature K 1 ;  and let’s consider the next example of 
the metric  
 

2)'(ds =ln2 (  ) 2)(du sh2[u ln(  )] (
2)dv =ln2 (  ) 2)(du

4

4 2
)(2 usF  (

2)dv  

 

with the Gaussian curvature 1' K , that is, 1'  KK . 
 

The second type of comparison of the metrics with {u>0, ),( v }.                                                  
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The basic Lobachevsky metric has the form: ( ds )2 = ( du )2 +sh2 (u) ( dv )2  and its the Gaussian creature is 

equal: K 1 . The comparative metric of the second type has the following form: 
2)'(ds = 2)(du

2

1



sh
2

( )u (
2)dv , { 1,0   } and its  Gaussian curvature is equal: 0' 2  K ); here we have: 

KK ' .  
 

Representation of the second type of comparison of metrics in terms of hyperbolic Fibonacci  -
functions. Let’s assume the following: 
 

  ln(  ) 2  sh )( ,{ 1,0   } { 3504.2,0   }. Then, for this case we get 

the metric: ( ds )2 = ( du )2 +sh2 (u) ( dv )2  with the Gaussian curvature K 1 . By using the hyperbolic 

Fibonacci  -functions, we can represent the example of the second type of  the comparative metric as 
follows: 
 

2)'(ds = 2)(du
)(ln

1
2


sh

2
[u ln(  )] (

2)dv = 2)(du
)(ln

4
22

2








)(2 usF  (

2)dv . 

The Gaussian curvature has the form: 0)(ln' 2  K  and consequently KK ' .  

 
The basic Lobachevsly metric   has the form:  (ds )2 = ( du )2  +sh2 (u) ( dv ) and the geodesic curvature 

1K . Then, for the condition 
0

 =e , were e 2.71828,  we get: )(' 0К = 1K .  For this case we 

have:   )
1

(0
e

e  2.3504.   

 
The question of constructing other geometries with negative Gaussian curvatures, nearest to the 
Lobachevsky geometry, but having different metric properties in comparison with it (nonisometric, 
nonconformal, noninequal), is fundamental. Such geometries, nearest to Lobachevsky's geometry, are also 
the nearest geometries (in Hilbert sense) and to Euclidean geometry.   
 

The Gaussian curvature of comparative metrics of the first kind. Let the comparative metric of the first 
kind be given:  
 

2)'(ds = 22 )(du  sh
2

( )u (
2)dv , where { 1,0   , u>0,  v }.  

 

The coefficients of this metric are as follows:  
 

Е'=
2 >0,  F'=0, G'=sh2( u) >0. 

 

The Gaussian curvature for this case is equal:  .01' K  But then the radius of curvature R’  of the first 

comparative metric 
2)'(ds = 22 )(du sh

2
( )u (

2)dv  is equal R’= .1
'

1


 K
  

 

The first comparative metric is realized for parameterization:       
 

X’ =  sh( u)cos(v), Y’ = sh( u)sin(v’),  Z’ =ch( u)   
 
on the pseudo-sphere M’ 2 : Z’2 – X’2- Y’2 = 1, Z’  1 in three-dimensional Minkowski space (X, Y, Z), 

endowed with the Minkowski metric        2222
dYdXdZdl  . 
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On the pseudo-sphere  M ‘ 2 : Z’2 – X’2- Y’2 = 1  , Z’  1  with the above parameterization of the 
comparative metric we get the relation: 
 

       ]'''[
222

dYdXdZ 2)'(ds = 22 )(du  sh
2

( )u (
2)dv  . 

     

Thus, with 12   0 , the comparative metric of the first type   

 
2)'(ds = 22 )(du  sh

2
( )u (

2)dv , { 1,0   ,u>0,  v } 

 

has the same geodesic curvature 1' K , as the geodesic curvature 1K  of the basic Lobachevsky 
metric (ds )2 = (du )2 +sh2 (u)( dv )2. The carrier of these two metrics turned out to be the same pseudo-
sphere: Z2 – X2- Y2 = 1, Z  1  
               
Gaussian curvature of comparative metrics of the second kind. Let the comparative metric of the second 

type be given: 
2)'(ds = 2)(du

2

1


sh

2
( )u (

2)dv ,  where  { 1,0   ,u>0,  v }. 

The coefficients of this metric are the following:   Е'=1>0,  F'=0, G'=
2

1


sh2( u) >0. 

  

The Gaussian curvature for this case is equal: К’= .02   It follows from here that the radius of 

curvature R' of the second  comparative metric of the second type is equal:  R'= 0
11

'

1
2


 K

 2'R =
2

1


>0. 

 

Because { 1,0   }, then from the equalities К'=
2 ,  R'=



1
,

2'R =
2

1


we get the following 

reletions: 0> К' 1 , 0< R' 1 , 0<
2'R 1 . 

 

The second  comparative metric is realized under parameterization  
    

X’ =  


1
sh( u)cos(v), Y’ =



1
 sh( u)sin(v’),  Z’ =



1
ch( u) 

 

on the pseudo-sphere M' 2 : Z’2 - X’2- Y’2 =
2

1


1 , Z’   



1
1   in the  three-dimensional Minkowski 

space (X, Y, Z), endowed with the Minkowski metric         2222
dYdXdZdl  . 

    

On the pseudo-sphere M ' 2 : Z’2 - X’2- Y’2 = 
2

1


  , Z’ 



1
  with the above parameterization of the 

comparative metric, we obtain the relationship: 
 

       ]'''[
222

dYdXdZ 2)'(ds = 2)(du
2

1


sh

2
( )u (

2)dv . 
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Thus, for 12   0 , the comparative metric of the second type has the following form: 2)(du

2

1


sh

2
( )u (

2)dv { 1,0   , u>0,  v } and has another geodesic curvature К'=

2 ,  than the   geodesic curvature 1K  of the basic Lobachevsky metric  (ds )2 = (du )2 +sh2 (u) ( dv 
)2.  Two different pseudo-spheres:  Z2 - X2- Y2 = 1, Z  1 (for the basic Lobachevsky metric) and Z’2 - X’2- 

Y’2 = 
2

1


, 'Z

2

1


 (for the comparative metric of the second type) proved to be the carrier of these two 

metrics. 
 

Comparison of metric properties for the metrics of the first type with  {u>0, ),( v }.  Let us 

show that with 12    >0, { 1,0   }  the basic Lobachevsky metric (ds )2 = ( du )2 +sh2 (u) ( 

dv )2  and   the comparative metric of the first type  
2)'(ds = 22 )(du  sh

2
( )u (

2)dv   have opposite 

metric properties. 
    

Nonisometry with  12    >0, { 1,0   } for the metric of the first type.  According to the 

metric table, in order that the displaying f : М 2   М' 2  would be isometric (preserved lengths), it is 
necessary and sufficient that the coefficients of metric forms coincide for  parameterization of one and the 
same area of the plane of the parameters of these surfaces [23].  In our situation when comparing the metric 

forms (ds)2=(du)2+sh2(u)(dv)2 (the Lobachevsky metric) and  
2)'(ds = 22 )([ du sh

2
( )u (

2)dv ] (the 

comparative metric) at the parameterization of the surfaces  М 2 and М' 2  in one and the same area {

 vu ,0 } of the plane of parameters, the following equalities  E =E', F=F', G=G' were 

performed. Here the coefficients of the metric forms have the following forms:  Е=1, F=0, G=sh2(u)>0 and 

Е'=
2 , F'=0, G'=sh2( u) >0 with additional requirements { 1,0   }.   

   
According to the table of comparison of the metric properties [24], here and in the future, in order to 
establish isometry, conformity  and equiarity, we can directly use the comparison of the coefficients of the 
corresponding metrics on surfaces. Let us apply a general algorithm, consisting in the use of expansion in 
absolutely convergent Taylor series.  
      
Non-isometry. Suppose there is isometry.  Then we get the equalities:  
 

E = E'  1=
2 , 0=0, G = G'   sh2 (u) =sh2( u) .  But for this case we get the equalities: E=E'  1=

2  a= 1  what contradicts to the condition 0 ,{ 1,0   }. Therefore, in this situation, we 

get the inequality: E  E', that is, it is nonisometry. 
 

We also show that under the condition { 1,0   , u>0} we get also that G=sh2(u)  G'=sh2( u). 

Let’s suppose the contrary, that is, that the following equality exists: sh2 (u)=sh2(  u), where {

1,0   , u>0}. Then, we get: sh2(u)-sh2( u)=0. Let’s decompose the function 1P = sh2 (u)-sh2(

u) in a Taylor series on the variable u with the center of decomposition 00 u . Then, we get:  

 

1P = (1-
2 )

2u +( ...)1(
315

1
)1(

45

2
)1(

3

1 886644  uuu  =0. 
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Because { 1,0   , u>0} and  1P =0,  then we can divide this series by 
22)1( u . Then after all 

the cuts we get: 
 

2P =  
 22

1

)1( ua

P
 ...)1(

315

1
)1(

45

2
)1(

3

1 664244222  uuu  =0                                                               

       

All members of this series are positive and, moreover, 2P >1, what is contrary to 2P =0. But then under the 

conditions { 1,0   , u>0} we have nonisometry (not save lengths) between the basic Lobachevsky 

metric (ds )2 = (du )2+sh2 (u) (dv )2 and the comparative metric of the first type  (ds')2 = 
2 ( du )2 +sh2 ( u) 

( dv ). 
 

Nonconformity with 12    >0, { 1,0   } for the metric of the first type.  The conformal 

displaying preserves the angles between curves at its intersection points (preservation of angles). Let’s show 

that in the case of { 1,0   } for the case 1  >0 there  is nonconformity.   Suppose the 

contrary, that is, that there is a conformal displaying f: М 2   М' 2 Then, under the above conditions {

,0 1 },{u>0} there must be such a function  

 
λ0 = λ0  (u,v) > 0,  so that  E= λ0E', F = λ0F', G= λ0G'.   

 

Because  Е=1, F=0, G= sh2 (u) >0  and  Е'=
2 , F'=0, G'=sh2( u) >0 , that from the conditions E= λ0E', 

F = λ0F', G= λ0G'  we get the following equalities: 
 

 1= λ0
2 ,  sh2 (u)= λ0 sh2( u)  λ0= 2

1


, sh2 (u)= 

2

1


sh2( u)  

 2  sh2 (u)= sh2( u) 1P =
2 sh2 (u)- sh2( u) =0.    

 

Let’s decompose the function 1P = 
2 sh2 (u) - sh2( u) in the Taylor series on the variable u with the 

center of the decomposition 00 u . Then, we get:  

 

1P = ...)(
14175

2
)(

315

1
)(

45

2
)(

3

1 10102882662442  uuuu  =0 

  

Because { 1,0   , u>0}, then  (
42   )

4u = 0)1( 422  u . Then, the function 2P

442 )(

3

u 
 1P  is decomposed into the Taylor series as follows:  2P =

...)1(
4725

2
)1(

105

1
)1(

15

2
1 664244222  uuua  =0. 

 

Because each member of this series is positive and, moreover, 2P >1, then we get a contradiction in the 

form: 0 = 2P >1 what is impossible. Thus, nonconformity with 0  for the condition { 1,0   } has 

been proved.   
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Aquirealirty  for 1   >0, { 1,0   } for the metrics of the first type. Aquireal  displaying 

preserves the area of geometric figures.   Let’s show that in the case of { 1,0   } for 12    

there is equiarity of metrics. Suppose the contrary, that is, that there is an aquireal  displaying  f : М 2   М' 

2  . Then under the above conditions { ,0 1 },{u>0} the following equality will be performed:   E 

G –(F)2 = E'G' – (F' )2 . The coefficients of the basic Lobachevsky metric  (ds )2 = ( du )2 +sh2 (u) ( dv )2   
have the following  form:  
 

Е=1, F=0, G= sh2 (u) >0 , but the coefficients of the comparative metric (ds')2 = 
2 (du )2 +sh2 ( u) ( dv 

)2  have the form:   Е'=
2  >0, F'=0, G'=sh2( u) >0.  

 

Therefore, for this situation, the equality EG  – (F)2 = E'G'  – (F' )2 has the form:  sh2 (u) -
2 sh2( u)=0 . 

Let’s decompose the function 1P = sh2(u)-
2 sh2( u) into Taylor series on the variable  u with the center 

of decomposition 00 u . Then we get:  

 

1P =(1- )4 2u + ...)1(
315

1
)1(

45

2
)1(

3

1 8106846  uuu  =0. 

 

Because { 1,0   , u>0}, then  (
41  )

2u  0 . Then the function 2P  =
24 )1(

1

u 1P  is 

decomposed into Taylor series as follows: 
 

2P =1+ ...)
1

1
(

315

1
)1(

45

2
)

1

1
(

3

1 6

2

8642
242

2

42










uuu









=0. 

 

However, because every member of this series  is  positive and, moreover, 2P >1, then we get the following  

contradiction: 0 = 2P >1, what is impossible. Thus, the nonequiarity with 0  for the condition {

1,0   } has been proved. 

  

So, when { 1,0   }, {  vu ,0 } for the case 012   , for the 

comparison of the basic Lobachevsky metric (ds )2 =( du )2 +sh2 (u) ( dv )2  to the metric (ds')2=
2 (du)2+sh2(

 u)(dv)2 , there is nonisometry (the lengths are not preserved), there is nonconformity (the angles are not 
preserved) and there is nonequiarity (the areas are not preserved).  
 
The peculiarity of this result consists in the fact that in this case the Gaussian curvatures of the basic 

Lobachevsky metric (ds )2 = (du )2 +sh2 (u)( dv )2  and the comparative metrics of the type (ds')2=
2

(du)2+sh2( u)( dv )2 for the conditions { 1,0   },  {  vu ,0 }, are equal, that 

is, K= .1' K    
 
Comparison of metric properties for metrics of the second type with  
 

{u>0, ),( v }.                                 
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Let’s show that with 12    >0, { 1,0   } the basic Lobachevsky metric  (ds
2

 )=( du )2 +sh2 

(u) ( dv )2  and the  comparative metric 
2)'(ds = 2)(du

2

1


 sh

2
( )u (

2)dv  have opposite metric 

properties 
 

Nonisometry at 12    >0, { 1,0   } for the metrics of the second type. 

  
According to the metric table, in order the displaying  f : М 2   М' 2  was isometric,  it is necessary and 
sufficient, so that the coefficients of the metric forms coincide, when the parameterization in the same area 
of the plane of parameters of these surfaces was realized [24]. In our situation when comparing metrics   (ds 

)2 = ( du )2 +sh2 (u) ( dv )2  (the basic Lobachevsky metric) and   
2)'(ds = 2)(du

2

1


 sh

2
( )u (

2)dv  

(the comparative metric)  at parameterization of the surfaces  М 2  and  М' 2  in one and the same area {

 vu ,0 } of parameters plane; this means that the following equalities are performed:  E = E', 

F= F', G = G'.   Here the coefficients of metric forms are the following: 
 

Е=1, F=0, G= sh2 (u) >0 и  Е'=1, F'=0, G'=
2

1


sh2( u) >0 

 

with additional requirements { 1,0   }.  Note that in this situation, the Gaussian curvature of the 

basic Lobachevsky metric is equal to ,1K  but the comparative metric is equal to К'=
2 <0. Because 

{ 1,0   }, then 'KK  . Recall the Gaussian theorem [23] (a necessary condition for the 

constancy of the Gaussian curvature):  
 

“If isometry with the displaying (the lengths are preserved), then the Gaussian curvature at the 
corresponding points is the same”. 

  

However, these conditions are necessary, but not sufficient, that is, if the Gaussian curvature at the 
corresponding points is the same, then the displayings, a priori, can be nonisometric. Namely, for the metrics 

of the first type, when { 1,0   }, the Gaussian curvatures were the same ( )1'  KK ), but 

there was nonisometry (not preserve the lengths) and, moreover, there was also nonconformal (not preserve 
the the angles) and aquireal (not preserve the areas).  If at the corresponding points the Gaussian curvatures 

do not coincide, then there is certainly nonisometry, because, for example, in this case ,1K  К'=
2 ,

'KK  , where { }1,0   . Therefore, in this situation, from the Gaussian theorem on isometry for 

the conditions Е=1, F=0, G= sh2 (u) >0 и  Е'=1, F'=0, G'=
2

1


sh2( u) we get, that because Е= Е'=1, F= 

F'=0, but we have nonisometry, then there follows the following result:  G= sh2 (u)   G'=
2

1


sh2( u).   

 

Nonconformity with 12    >0, { 1,0   } for the metrics of the second type.   Suppose 

the contrary, that is, there is the conformal displaying  f : М 2   М' 2 . Then under the above conditions {

,0 1 ,  vu ,0 }, when we compare the basic Lobachevsky metric (ds )2 = ( du )2 
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+sh2 (u) ( dv )2  with any fixed comparative metric 
2)'(ds = 2)(du

2

1


 sh

2
( )u (

2)dv  there must be a 

such function  λ0 = λ0  (u,v) > 0,  so that   E= λ0E', F = λ0F', G= λ0G'.     

Because   Е=1, F=0, G= sh2 (u) >0 and  Е'=1, F'=0, G'=
2

1


sh2( u) >0 , then, from the conditions   E= λ0 

E', F = λ0 F', G= λ0 G'  we get the following equalities: 

1= λ0 ,  sh2 (u)= λ0 2

1


 sh2( u)   sh2 (u)

2

1


  sh2( u) =0 2 sh2 (u)-sh2( u)=0.   

 

Next, apply the same algorithm for the Taylor expansion of the function 1P = 
2 sh2 (u)- sh2( u) and 

divide this series by the first coefficient; then, for this case we get that this series is greater than zero, but on 
the other hand, this series is zero what is impossible. Therefore, in this situation there is also nonconformity. 
 

Nonaquirealirty   with 12    >0, { 1,0   } for the metrics of the second type.  The 

aquireal displaying preserves the areas of the corresponding geometric figures. Suppose the contrary, that is, 

that there is an aquireal displaying  f : М 2   М' . Then, under the above conditions { ,0 ,1

 vu ,0 }, according to [23] (a table of comparison of metric properties), for aquirealirty  it is 

necessary and sufficient that when comparing the corresponding coefficients of metric forms satisfy to the 

equality: EG  – (F)2 = E'G'  – (F' )2.  In our situation { ,0 1 ,  vu ,0 } by assuming 

aquirealirty between the basic Lobachevsky metric  (ds )2 = ( du )2 +sh2 (u) ( dv )2  and the  comparative 

metric  
2)'(ds = 2)(du

2

1


 sh

2
( )u (

2)dv  it is necessary and sufficient so that the following equality 

is performed: EG – (F)2 = E'G' – (F' )2. Here we have:   Е=1,  F=0, G= sh2 (u) >0 , Е'=1, F'=0,  G'=
2

1


sh2( u) >0. But then we get: 
 

E G  – (F)2 = E'G'  – (F' )2    sh2 (u)= 
2

1


sh2( u)   

2 sh2 (u)-  sh2( u)=0. 

 

This situation 
2 sh2(u) - sh2( u)=0  met, when proving nonconformity with   12    >0,  {

1,0   } for the metrics of the first type. It has been shown that this situation is impossible. 

Therefore, we obtain that there follows from comparisons of the metrics  
 

(ds )2 = ( du )2 +sh2 (u) ( dv ) and  
2)'(ds = 2)(du

2

1


 sh

2
( )u (

2)dv  

that the metrics are nonaquireal (the areas are not preserved) for the case {u>0, )},( v . Therefore, 

when comparing the second type of the comparative metrics to the basic Lobachevsky metrix, we get 
nonisometry, nonconformity and nonaquireality. 
 

The third type of metrics comparison for the case { u>0, ),( v } 

 
2

1)(ds = 22 )(du  sh
2

( )u (
2)dv (Gaussian curvature )11 K , 
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2
2 )(ds = 22 )(du sh2 ( u) ( dv )2 (Gaussian curvature 12 K ) 

 

for the conditions {
22   , 1,0   , 1,0   ,u>0,  ),( v }.   

Representation of the third type of metrics comparison in terms of hyperbolic   Fibonacci  -
functions. Let’s assume that  
 

 ln(  ) 2  sh )( ,  =ln(  ) 2  sh )(  for the conditions 
22   ,

1,0   , 1,0   ,u>0,  ),( v }    

{ln2 (  ) ln(  ), 3504.2,0   , 3504.2,0   , u>0,  ),( v }.  

  
Then, we get the two metrics, the first comparative metric 
 

 
2

1)(ds =ln2 (  ) 2)(du sh2[u ln(  )] (
2)dv =ln2 (  ) 2)(du

4

4 2
 )(2 usF  (

2)dv   

(Gaussian curvature 11 K ), and the second comparative metric 

 
2

2 )(ds =ln2 (  ) 2)(du sh2[u ln(  )] (
2)dv =ln2 (  ) 2)(du

4

4 2
)(2 usF  (

2)dv   

(Gaussian curvature 12 K ). 

 

The fours type of metrics comparison for the case { u>0, ),( v }           

                                        

  
2

1)(ds = 2)(du
2

1


sh

2
( )u (

2)dv  (Gaussian curvature 02
1  K )            

2
2 )(ds = 2)(du

2

1


sh

2
( )u (

2)dv  (Gaussian curvature 02
2  K )  

for the conditions  {
22   , 1,0   , 1,0   ,u>0,  ),( v }.   

 

Representation of the fourth kind of comparison of metrics in terms of hyperbolic Fibonacci  -
functions. Let’s assume that  
 

   ln(  ) 2  sh )( ,  =ln(  ) 2  sh )(  for the conditions {
22   ,

1,0   , 1,0   ,u>0,  ),( v }    

{ln2 (  ) ln(  ), 3504.2,0   , 3504.2,0   , u>0,  ),( v } 

 

Then, we get the two metrics, which are expressed through the Spinadel’s metallic proportions   and 

: 
 

 
2

1)(ds = 2)(du
)(ln

1
2


sh

2
[u ln(  )] (

2)dv = 2)(du
)(ln

4
22

2








)(2 usF  (

2)dv    

(Gaussian curvature 0)(ln2
1  K ), 
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and 
2

2 )(ds = 2)(du
)(ln

1
2


sh

2
[u ln(  )] (

2)dv = 2)(du
)(ln

4
22

2








)(2 usF  (

2)dv  

(Gaussian curvature 0)(ln2
2  K ), where 12 KK  . 

 
Both types of these comparisons for the comparative metrics themselves on the subject of nonisometry, 
nonconformity and nonaquireality are conducted in a similar way (with a slight modification) by using the 
general algorithm for decomposition into Taylor series. In these last two cases, the function, taken as the distance 

between the comparative metrics is 
22),(   .  

 
In terms of the Mathematics of Harmony [1] after the replacements  

 

 ln (  ),   ln (  ), the distance  between the comparative metrics looks like 

)(ln)(ln),( 22
  . For the case    we get:  

)(ln)(ln),( 22
   =0 .  

 

7 New Challenge for Theoretical Natural Sciences: Insolvability of the       
4-th Hilbert Problem  

 
Theorem 2 (Complete solution of the Fourth Hilbert Problem for hyperbolic geometries).  The Fourth 
Hilbert's Problem is insoluble for hyperbolic geometries. 
 
Proof:  
  
Note that taking into consideration the above arguments, the authors’ solution of the 4-th Hilbert Problem, 
which is described in [24], can be considered not only as variant of the particular solution of this problem 
(the first approach), but also as  the complete solution of the 4-th Hilbert Problem (the second approach), 
unlike of the particular solutions of Hamel, Pogorelov and others researchers. Namely, the authors of this 
article proved the existence of an infinite number of new hyperbolic geometries, arbitrarily near to 
Lobachevsky's geometry, but having other metric properties in comparison with Lobachevsky's geometry 
(nonisometry, nonconformity, nonaquireality ). The authors used one and the same general algorithm for 
comparison these metrics to find their metric properties. This algorithm allows the comparison of  the 
comparative metrics to the Lobachevsky metric and the comparative metrics among themselves; this 
algorithm is based on the decomposition of the remainders between metrics into absolutely convergent 
Taylor series. If such remainders after division on the first term have constant signs, then the corresponding 
metric properties do not match. If in such series, after division on the first term, we get alternating variables, 
then by using this general algorithm it is impossible to establish directly, whether the corresponding metric 
properties of the compared metrics are coincident or differ. To do this, we always need to search for specific 
ways and algorithms. 
 
But because the set of geometries, near to Lobachevsky’s geometry, is infinite, we certainly come to the 
conclusion, that for an infinite set of geometries, near to Lobachevsky’s geometry, it is impossible to find 
one and the same general algorithm, which makes possible for any metrics from this infinite set to define to 
have or don’t have other metric properties than the metric properties of Lobachevsky’s geometry or to draw 
a similar conclusion after comparison of the metrics to each other. This set of metrics can be used for 
comparison of the metric properties of both metrics with the same Gaussian curvature and metrics with 
different Gaussian curvatures. 
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In particular, this set contains all metrics with different Gaussian curvatures. When comparing any two such 

metrics of the form  
222 )(2)()( dvGFdudvduEds   (there are an infinite set of such metrics), if 

we apply a general algorithm for comparison of such metrics and we get the sign-alternating Taylor power 
series and therefore this general comparison method does not fit. 
 
On the other hand, when we compare such metrics, the Gauss theorem is partially (but incomplete) 
applicable: if two such metrics have different Gaussian curvatures, then there is nonisometry. But it does not 
at all follow from this that there is no possible conformity and aquireality. In order to establish the presence 
or absence of conformity and aquireality, it is necessary in this situation to search for a specific method 
every time. 
  
This, in any sense, is analogous to the fact that in a binary graph the set of all vertices is countable, and the 
set of all paths is countable (the power of the continuum).  
 
Such an approach is in some sense similar to the proof of the insolvability of the 10-th Hilbert Problem (is 
there a universal algorithm for solving arbitrary Diophantine equations), made by the Russian  
mathematician Yuri Matiyasevich in 1970 [25,26]. Recall that the basic idea of the proof of the insolvability 
of the 10-th Hilbert Problem consisted in the fact that since the set of all Diophantine equations is 
uncountable and then, according to the main Matiyasevich theorem, “the same general method (algorithm) 
is impossible, which allows for any Diophantine equations determining, whether they have a solution in 
integers or not. " 
 
Comparing the complete solution of the 4th problem of Hilbert, obtained in this article, with the solution of 
the 10-th Hilbert Problem, obtained by Yuri Matiyasevich in 1970, it is appropriate to draw attention to the 
following interesting fact. The ancient Golden Section, described in Euclid’s Elements (Proposition II.11) 
and the following from it Mathematics of Harmony [9], as a new direction in geometry, are the main 
mathematical apparatus for the completed solution of the 4-th Hilbert Problem. By the way, this solution is 
reminiscent of the insolvability of the 10-th Hilbert Problem for Diophantine equations in integers. This 
outstanding mathematical result was obtained by Yuri Matiyasevich in 1970, by using Fibonacci numbers, 
introduced in 1202 by the famous Italian mathematician Leonardo from Pisa (by the nickname Fibonacci), 
and the new theorems in Fibonacci numbers theory, proved by the outstanding Russian mathematician 
Nikolay Vorobyev and described by him in the third edition of his book “Fibonacci numbers” [27]. But, as 

we know, thet Fibonacci numbers 1,1,2,3,5,8,13,…, 1, ,...n nF F  are a discrete analog of the Golden 

Proportion, because the ratio of neighbouring Fibonacci numbers 
1

n

n

F

F 

 in the limit tends to the Golden 

Proportion, that is,  

 

1

1 5
lim

2
n

n
n

F

F



  

 
This famous formula was well known to Johannes Kepler and therefore in modern mathematical literature it 
is sometimes called the Kepler formula. 
 
But after all, the Fibonacci numbers and the Golden Proportion are the expression of the mathematical 
harmony of Nature, in particular, the widely known botanical phenomenon of phyllotaxis [28].  Although the 
botanical phenomenon of phyllotaxis has been known since immemorial times, the Fibonacci spirals, that 
occur on the surface of many botanical objects (pine cone, pineapple, cactus, sunflower head) still remain 
the “mystery” of this unique botanical phenomenon.   
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That is why, the authors recommend to the readers to pay attention to the article [29], in which the particular 
solution of the 4-th Hilbert Problem, based on the Mathematics of Harmony [9], was called the 
MILLENIUM  PROBLEM  in geometry.  
 
 
 
 

8 Conclusions 
 
The particular solution of the 4-th Hilbert Problem is obtained; it is based on the hyperbolic Fibonacci  -
functions. The originality of this solution consists in the following: 
1). This particular solution is based on the Lobachevsky metric, whose Gaussian curvature is equal to 

1K ; this Lobachevsky metric is isometric to the classical Lobachevsky metric with the Gaussian 

curvature 1K .      

2). Two types of infinite set of the comparative metrics, based on hyperbolic Fibonacci  -functions, are 
considered. These metrics can be arbitrarily near to the basic Lobachevsky metric and in the limit they 
coincide with the basic Lobachevsky metric.  
 

The first type of all these comparative metrics has Gaussian curvature 1K , the same with the basic 
Lobachevsky metric. However, all these comparative metrics with respect to the basic Lobachevsky metric 
are nonisometric (do not preserve lengths), nonconformal (do not preserve angles), nonaquireal (do not 
preserve areas). Moreover, these comparative metrics themselves are also nonisometric, nonconformal and 
nonaquireal. This particular solution is based on the Lobachevsky metric, whose Gaussian curvature is equal 

to 1K ; this Lobachevsky metric is isometric to the classical Lobachevsky metric with the Gaussian 

curvature 1K .      
      

Thus, the important conclusion of this study is proving the existence of an infinite set of new geometries, 
arbitrarily near to Lobachevsky's geometry and having the same with Lobachevsky's geometry negative 

Gaussian curvature K= .1   
   

The second type of all these comparative metrics has negative Gaussian curvatures 

)0)(ln)( 2  K , which differ from the Gaussian curvature 1K  of the basic Lobachevsky 

metric. In relation to the basic Lobachevsky metric, all these comparative metrics are nonisometric (do not 
preserve lengths), nonconformal (do not preserve angles), nonaquireal  (do not preserve areas). 
 

Moreover, these comparative metrics themselves are also nonisometric, nonconformal and nonaquireal. In 
process of study, the authors of this article found metrics that clarify the Gauss theorem about the intrinsic 
geometry of surfaces, that for displaying, that preserve length (isometry), the Gaussian curvature remains the 
same. 
 

It follows from the Gauss theorem that if two metrics, when compared, have different Gaussian curvatures, 
then, they are nonisometric. It follows from our study (for some particular situations) a revision of the Gauss 
theorem, that for any pairs of metrics, presented in the second type of specific metrics, not only between the 
comparative metrics and the basic Lobachevsky’s metric, but also between specific metrics there exist not 
only nonisometry (according to the corollary to the Gauss theorem), but also nonconformity and 
nonaquireality. 
 

Thus, it is proved the existence of an infinite number of new geometries (nonisometric, nonconformal, 
nonaquireal  each other) with different negative Gaussian curvature; these geometries are arbitrarily near to 
the Lobachevsky hyperbolic geometry, they have other negative Gaussian curvature and are in comparison 
to Lobchevsky geometry such properties as nonisometry, nonconformity and nonaquireality 
       

3) But the main result of this article is obtaining the complete solution of the 4-th Hilbert Problem for 
hyperbolic geometries; the essence of this result is the following: 
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The 4-th Hilbert Problem is insoluble for hyperbolic geometries. 
 

4) In the book “The «Golden» Non-Euclidean Geometry. Hilbert’s Fourth Problem, «Golden» Dynamical 
Systems, and the Fine-Structure Constant” [14] the authors investigated particular solutions to the 4-th 
Hilbert Problem not only for the case of Lobachevsky hyperbolic geometry, but also for the wider class of 
non-Euclidean geometries (geometry of Riemann (elliptic geometry), non-Archimedean geometry, and 
Minkowski geometry). Developing the approach, outlined in this article, in connection with the above classes 
of non-Euclidean geometry, the authors came to the hypothesis that the fundamental mathematical result, 
proved in this article (insolubility of the 4th Hilbert problem for hyperbolic geometries), possibly is valid for 
all types of non-Euclidean geometries what however, requires strict proof. 
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