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Abstract: This paper presents a new air traffic complexity metric based on linear dynamical systems,
of which the goal is to quantify the intrinsic complexity of a set of aircraft trajectories. Previous
works have demonstrated that the structure and organization of air traffic are essential factors in
the perception of the complexity of an air traffic situation. Usually, they were not able to explicitly
address trajectory pattern organization. The new metric, by identifying the organization properties
of trajectories in a traffic pattern, captures some of the key factors involved in ATC complexity. The
key idea of this work is to find a linear dynamical system which fits a vector field as closely as
possible to the observations given by the aircraft positions and speeds. This approach produces
an aggregate complexity metric that enables one to identify high (low) complexity regions of the
airspace and compare their relative complexity. The metric is very appropriate to compare different
traffic situations for any scale (sector or country) by associating a complexity index to each trajectory
sample in the airspace. For instance, to compute the complexity for a sector, one must just sum-up the
complexity for trajectory samples intersecting such a sector. This computation can also be extended
in the time dimension in order to estimate the average complexity in a given airspace for a period
of time.

Keywords: complexity; dynamical system; air traffic disorder

1. Introduction

Regarding air traffic management research, there have been three main objectives of
interest: reduce air flight delay, solve air traffic conflicts efficiently and mitigate air space
congestion. This work proposes a method to assess the latter.

The operational capacity of a control sector is measured by the maximum number of
flights that may cross the sector in a given period. This measurement does not consider
the direction of the traffic, treating geometrically structured and disordered traffic in the
same way. Thus, in certain situations, a controller may continue to accept traffic even
if operational capacity has been reached (structured traffic situation). In other cases, a
controller may need to refuse airplanes even though the operational capacity has not
been reached (disordered traffic situation). Thus, modeling airspace congestion using the
number of airplanes per unit of time is insufficient to reflect the levels of difficulty involved
in a traffic situation.

Air traffic control organizes air flows to ensure flight safety and increase the route
network’s capacity. In 2019, before COVID-19, about 8500 flights were registered every day
over France, which is a crossroad for the whole European airspace. This traffic generates a
huge amount of control workload, and the airspace is then divided into elementary sectors
which air navigation controllers manage. For several years, a constant increase in air traffic
has induced more and more congestion in the control sectors. Two strategies can then be
applied to reduce such congestion. The first one consists of adapting the demand to the
existing capacity (slot-route allocation, collaborative decision-making, etc.). The second
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one adapts the capacity to the demand (modification of the air network, new design of the
sectorization, new airports, etc.). For the two preceding approaches, the capacity of a sector
is measured by the number of aircraft flying across the sector during a given period of time.

This study aims to synthesize a traffic complexity indicator to better quantify the
congestion in the air sector, which will be more relevant than a simple number of aircraft
independent of the traffic configuration. More precisely, our objective is to build a metric
of the intrinsic complexity of the traffic distribution in the airspace, which relates to
controller workload. Such metrics must capture the level of disorder (or organization) of
any traffic distribution. Usually, metrics are focused on the speed vector distribution, and
the associated disorder metric captures only some features of the traffic complexity. The
real objective of our work is to build a metric that measures the disorder or organization of
trajectories in 4D space (3D for space and 1D for time).

Such complexity metrics are relevant for many applications in the air traffic man-
agement area. For instance, when a sectorization is designed [1], the sectors have to be
balanced from the congestion point of view; nowadays, only the number of aircraft is used
to reach this objective. Another example where a congestion metric is needed is the traffic
assignment [2,3] for which an optimal time of departure and a route are searched for each
aircraft in order to reduce the congestion in the airspace. The complexity metric may also
be used to design new air networks, for dynamic sectoring concepts, defining future ATM
concepts (Free Flight), etc. Complexity metrics enable one to qualify and quantify the
performance of the air traffic service providers and enable a more objective consultation
between airlines and providers.

The work presented in this paper is based on a dynamical systems modeling of air
traffic. A dynamical system describes the evolution of a given state vector. If such a vector
is given by the position of aircraft ~X = [x, y, z]T , a dynamical system associates a speed
vector ~̇X =

[
vx, vy, vz

]T to each point in the airspace. The key idea is to find a dynamical
system that models the observed aircraft trajectories. A trajectory disorder metric can be
computed based on this dynamical system modeling. The metric is targeted to measure the
intrinsic traffic complexity related to a set of 4D trajectories related to the control workload.
Such a control workload encompasses other factors (airspace structure, etc.) that are not
considered in the metric computation.

In the first section, this paper will summarize the previous related works. The second
section will present a linear dynamical system modeling for which the complexity metric
can be represented into a complex coordinate system. It is very easy to identify any speed
vector organization pattern in this system. The third section illustrates the computation of
such a metric in several traffic situations.

2. Previous Related Works

The airspace complexity is related to the traffic structure and the airspace geometry.
Different efforts are underway to measure the whole complexity of the airspace.

Wyndemere Inc. [4] proposed a measure of the perceived complexity of an air traffic
situation. This measure is related to the controller’s cognitive workload with or with-
out knowing the aircraft’s intents. The metric is human-oriented and is therefore very
subjective.

Laudeman et al. from NASA [5] have developed a metric called “Dynamic Density”,
which is more quantitative than the previous ones and is based on the flow characteristics
of the airspace. The “Dynamic Density” is a weighted sum of the traffic density (number
of aircraft), the number of heading changes (>15 degrees), the number of speed changes
(>0.02 Mach), the number of altitude changes (>750 ft), the number of aircraft with 3D
Euclidean distance between 0–25 nautical miles and the number of conflicts predicted in
25–40 nautical miles. The parameters of the sums have been adjusted by showing different
traffic situations to several controllers. B. Sridhar from NASA [6] has developed a model
to predict the evolution of such a metric in the near future. Efforts to define “Dynamic
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Density” have identified the importance of many potential complexity factors, including
structural considerations.

Airspace complexity depends on both structural and flow characteristics of the
airspace [6]. The structural characteristics are fixed for a sector and depend on the spatial
and physical attributes of the sector, such as terrain, number of airways, airway crossings
and navigation aids. The flow characteristics vary as a function of time and depend on
the number of aircraft, the mix of aircraft, weather, the separation between aircraft, etc. A
combination of these structural and flow parameters influences the controller workload.

The traffic itself is not enough to describe the complexity associated with an airspace.
A few previous studies have attempted to include structural consideration in complex-
ity metrics but have done so only to a restricted degree. For example, the Wyndemere
Corporation proposed a metric that included a term based on the relationship between
aircraft headings and dominant geometric axis in a sector [4]. The importance of including
structural consideration has been explicitly identified in recent work at Eurocontrol. In
a study to identify complexity factors using judgment analysis, “Airspace Design” was
identified as the second most crucial factor behind traffic volume [7]. The impact of the
structure on the controller workload can be found in the paper [8,9]. These papers demon-
strate how the impact of the traffic structure (airways, sectors, etc.) is related to the control
workload through several traffic factors dependent on the instantaneous distribution of
traffic (clustering, number of aircraft, distance between aircraft, relative speed between
aircraft, etc.).

The previous models do not take into account the intrinsic traffic disorder, which is
related to the complexity. The first efforts related to disorder can be found in [10]. This paper
introduces metrics based on geometrical properties that measure a traffic pattern’s disorder.
Those metrics can extract features on the traffic complexity such as proximity (measures
the level of aggregation of aircraft in the airspace), convergence (for close aircraft, this
metric measures how strongly aircraft are closer to each other) and sensitivity (this metric
measures how the relative distance between aircraft is sensible to the control maneuver). G.
Aigoin has extended and refined the geometrical class by using a cluster-based analysis [11].
Two aircraft are said to be in the same cluster if the product of their relative speed and
their proximity (a function of the inverse of the relative distance) is above a threshold. For
each cluster, a metric of relative dependence between the aircraft is computed, and the
whole complexity of the cluster is then given by a weighted sum of the matrix norm. Those
norms give an aggregated measure of the level of proximity of aircraft in clusters and the
associated convergence. From the cluster matrix, it is also possible to compute the difficulty
of a cluster (it measures how hard it is to solve a cluster). Multiple clusters can exist within
a sector, and their interactions must also be considered. A measure of this interaction has
been proposed by G. Aigoin [11]. This technique allows multiple complexity metrics to be
developed, such as average complexity, maximum and minimum cluster complexities and
complexity speeds.

Another approach based on fractal dimension has been proposed by S. Mondoloni and
D. Liang in [12]. Fractal dimension is a metric comparing traffic configurations resulting
from various operational concepts. It separates, in particular, the complexity due to
sectorization from the complexity due to traffic flow features. The dimension of geometrical
figures is well known: a line is of dimension 1, a rectangle of dimension 2, etc. The
application of this concept to the air route analysis consists in computing the fractal
dimension of the geometrical figure composed of existing air routes. Fractal dimension
provides information on the number of degrees of freedom used in the airspace: a higher
fractal dimension indicates more degrees of freedom. Therefore, the fractal dimension
measures the geometrical complexity of a traffic pattern.

Some new geometrical metrics have been developed in [13], which are able to capture
the level of disorder or the level of organization for some traffic patterns. For instance, in
an artificial roundabout moving, the speed vectors are very different even if the global
moving is fully organized without any changes in the relative distance between aircraft.
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The covariance and the Koenig metrics have been developed to capture those features. The
first one is able to identify the disorder or organization of translation movements. The
second one identifies organized curl moving.

In [10], another approach based on the nonlinear dynamical system modeling of the air
traffic uses the topological entropy as a measure of the disorder of the traffic pattern. This
approach represents the traffic’s structure more faithfully, but requires a lot of computation
for establishing the metric. First, the non-linear dynamical system is adjusted to the
observations in order to build the associated vector field. Then, Lyapunov exponents
are computed in order to characterize the overall properties of the vector field. When an
exponent has a high value, it demonstrates a high sensitivity to initial conditions, meaning
the situation is difficult to predict. In this case, the traffic situation presents a high level of
disorder. Unfortunately, this metric is not able to take uncertainties into account, which is
the case when one wants to predict congestion in the near future.

We propose in this paper an approximation of such a metric based on the linear dynam-
ical system, which measures the local disorder of a set of trajectories in the neighborhood
of a given aircraft at a given time. This approximation is much faster to compute and can
take into account uncertainties of the future position of aircraft, which is not possible with
the nonlinear dynamical system framework described in [10].

3. Metric Description (Linear Dynamical System Modeling)

The investigated indicator will be linked to the air traffic modeling by a linear dynam-
ical system, yielding an intrinsic measure of complexity of the geometry of the traffic. This
enables one to identify different structures of organization of the aircraft speed vectors such
as translation, curve organizations, divergence, convergence, or a mix of them.

3.1. Model

The key idea of this metric is to model the set of aircraft trajectories by a linear
dynamical system. A dynamical system models a vector field by a set of differential
equations, which describes and controls the evolution of a given state vector and is defined
by the following equation:

~̇X = A · ~X + ~B (1)

~X is the state vector of the system:

~X =

[
x
y

]
(2)

In this equation, we only consider the observations’ x and y components, as air traffic
controllers see two dimension speed vectors on their screens. Moreover, the metric will be
computed for each flight level in a given airspace. Equation (1) associates a speed vector ~̇X
with each point in the state space ~X. This synthesis is a particular vector field. The average
behavior of this vector field is given by the vector ~B and the linear mapping between the
speed vector ~̇X and the position vector ~X is given by matrix A. Therefore, the coefficients
of matrix A and vector ~B determine the mode of evolution of the system in relation to its
dynamics.

More precisely, the eigenvalues of this matrix will determine the behavior of the
system and will be used to obtain the complexity metric. The properties and relevance of
these eigenvalues will be explained in Section 3.3.

First, we focus on defining and modeling the linear dynamical system that will allow
us to obtain matrix A. Our problem therefore consists of determining the dynamical model
that is closest to the observations: Those observation are extracted from the radar trackers
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(positions and speeds of aircraft at a given time). We then consider that for each aircraft,
we have set position ~Xi and speed measures ~Vi at some consecutive time stamps i:

~Xi =

[
xi
yi

]

~Vi =

[
vxi

vyi

]
An example of such observations is given on Figure 1, for which the aircraft observa-

tions are represented by the blue arrows.

Figure 1. Radar captures associated with three aircraft. In this example only one time sample
is considered.

We thus wish to find the vector field described by a linear equation
(
~̇X = A · ~X + ~B

)
that is best fitted to our observations. To illustrate this aspect, we construct a grid over the
airspace (see Figure 2) on which we carry out a regression of a vector field that minimizes
the error between the model and the observations. In order to use matrix forms, we rewrite
Equation (1) as V = C · X, introducing the following matrices:

X =

 x1 x2 x3 · · · xn
y1 y2 y3 · · · yn
1 1 1 · · · 1

 (3)

V =

[
vx1 vx2 vx3 · · · vxn

vy1 vy2 vy3 · · · vyn

]
(4)

C =

[
a11 a12 b1

︸ ︷︷ ︸
A

a21 a22 ︸︷︷︸
~B

b2

]
(5)

where X ∈ R3×n, V ∈ R2×n, C ∈ R2×3, A ∈ R2×2,~B ∈ R2×1 and n represents the number
of observations at a given instant (number of aircraft present in a sector at a given instant).
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Figure 2. Vector field produced by the linear dynamic system.

3.2. Regression

The dynamical system has to be adjusted with the minimum error based on the aircraft
observations (positions and speed vectors). This fitting has been performed with a Least
Mean Square minimization (LMS) method [14]. For each considered aircraft i, it is supposed
that position ~Xi = [xi, yi]

T and speed vector ~Vi =
[
vxi , vyi

]T are given. We then construct
an error criterion E, between the dynamical system model and the observation, based
on a norm (Euclidean, in our case), which should be minimized in relation to matrix A
and vector ~B, and therefore in relation to matrix C, which represents the parameters of
the model:

E =

√√√√i=n

∑
i=0

∥∥∥~Vi −
(

A·~Xi + ~B
)∥∥∥2

=

√√√√i=n

∑
i=0

∥∥∥~Vi −
(

C·~Xi

)∥∥∥2
(6)

In a matrix form:
E = ‖V− C·X‖

E minimization is the same as E2 minimization: E2 = ‖V− C·X‖2.
The derivative of such expression with respect to C is given by:

∇CE2 = −2 · (V− C·X) · XT

E is the minimum when: ∇CE = 0⇒ C·X·XT = V·XT then:

Copt = V·XT ·(X·XT)−1

On the right side, we recognize the pseudo-inverse of matrix XT :

X+ = XT ·(X·XT)−1

In some situations, X ·XT is not invertible, and the computation of the Copt is not
possible by using such an equation. In this case, the classical Singular Value Decomposition
(SVD) trick is applied:

XT ·(X·XT)−1 = LT ·S−1 ·R

where S is a diagonal matrix containing the singular values (only the significant singular
values are inverted in this formula in order to control the conditioning of the algorithm).

⇒ Copt = V·LT ·S−1 ·R
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Based on C, the matrix A is extracted for which an eigenvalue decomposition is computed:

A = U·D·UT

The diagonal matrix D contains the eigenvalues. When such eigenvalues have positive
real parts, the system is in expansion mode, and when they are negative, the system is in
contraction mode.

In addition, the vector ~B represents the global tendency of the vector field.

3.3. Properties of Eigenvalues

The eigenvalues of matrix A describe and summarize the evolution of the system.
These eigenvalues are complex numbers. Their real parts are related to the convergence
or the divergence property of the system in the direction of the eigenvector. When such
eigenvalues have positive real parts, the system is in expansion mode (produces divergence),
and when they are negative, the system is in contraction mode (produces convergence).
The absolute value of these real parts is proportional to the level of contraction or expansion
of the system: the larger those real parts are in absolute value, the faster the evolution.
Furthermore, the imaginary part of the eigenvalues is related to the level of rotation
tendency of the system: the tendency of the system to organize itself following a global
rotation movement associated with each of the eigen axes. Depending on those eigenvalues,
a dynamical system can evolve in contraction, expansion, rotation, or a combination of
those three modes.

We will refer to a fully organized traffic pattern when the relative distances between
aircraft do not change with time. For such a situation, the traffic is very predictable and
very comfortable to address by a controller: the trajectories do not present any difficulties.
These patterns are translation, rotation, or both.

Then, the evolution properties of the system related to the position of the eigenvalues
can be summarized in the complex coordinate system (see Figure 3). In this coordinate
system, it is then possible to identify the locus of the eigenvalues of matrix A associated
with organized traffic situations: the vertical strip around the imaginary axis. Therefore,
organized situations are located around the imaginary axis: when the relative distances
between aircraft change slowly with time (this means that the relative speeds between
aircraft are close to zero and the traffic has no interaction).

𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦

𝑅𝑒𝑎𝑙
convergence

ro
ta

tio
n

ro
ta

tio
n

divergence

Organized Traffic

Figure 3. Impact of the eigenvalues of matrix A on the dynamics of the system.

As an example (see Figure 4), the eigenvalues of matrix A have been calculated for
a situation with three aircraft located on a circumference, for which only the orientation
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of the speed vectors is modified in order to create four traffic situations (pure translation,
convergence, divergence and pure rotation). As we can see in Figure 4, the pure translation
and pure rotation are the two organized traffic situations, as they have eigenvalues in the
central band of the complex plane.

Translation Convergence Divergence Rotation

𝐗𝟏 𝐕𝟏

𝐗𝟐 𝐕𝟐

𝐗𝟑 𝐕𝟑

y

𝑥

120°

𝐝

𝐗𝟏 𝐕𝟏

𝐗𝟐

𝐕𝟐

𝐗𝟑

𝐕𝟑

y

𝑥

𝐗𝟏𝐕𝟏

𝐗𝟐

𝐕𝟐

𝐗𝟑

𝐕𝟑

y

𝑥 𝐗𝟏
𝐕𝟏

𝐗𝟑
𝐕𝟑

y

𝑥

𝐗𝟐
𝐕𝟐

Position of the eigenvalues of matrix A in the complex plane
𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦

𝑅𝑒𝑎𝑙

𝜆1,2

𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦

𝑅𝑒𝑎𝑙

𝜆1,2

𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦

𝑅𝑒𝑎𝑙

𝜆1,2

𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦

𝑅𝑒𝑎𝑙

𝜆1

𝜆2

Figure 4. Eigenvalues loci for 4 traffic situations.

In the first case, the eigenvalues~λ are null because the aircraft are flying in parallel,
representing a translation: the distances between aircraft remain unchanged with time.
In the second case, the eigenvalues are real negative; the system evolves in a contraction
mode, and the four aircraft are converging: the norms of the relative distances between
the aircraft diminish with time. The third situation represents an expansion evolution
for which the eigenvalues are real positive, and the aircraft are diverging: the relative
distances increase with time. In the two previous situations, the distance between aircraft
changes with time, not being organized traffic patterns. The last situation is associated
with full imaginary eigenvalues for which the aircraft stay at the same distance from each
other in a curl moving. The computation of matrices A, vectors ~B and~λ is given for these
previous examples:

Translation Convergence Divergence Rotation

A =

[
0 0
0 0

]
A = υ

d ·
[
−1 0
0 −1

]
A = υ

d ·
[

1 0
0 1

]
A = υ

d ·
[

0 1
−1 0

]
~B =

[
υ
0

]
~B =

[
0
0

]
~B =

[
0
0

]
~B =

[
0
0

]
~λ = υ

d ·
[

0
0

]
~λ = υ

d ·
[
−1
−1

]
~λ = υ

d ·
[

+1
+1

]
~λ = υ

d ·
[

+j
−j

] (7)

Looking at Figure 4, the small squares are the initial positions of aircraft at a given
time (this represents the observation given by radar, for instance, with the associated speed
vector). As can be observed, the aircraft are initially located on a circumference with a
diameter of 2·d. The positions of aircraft two and three are symmetric to the x-axis. All the
speed norms are the same and have been fixed at υ. The vector field associated with each
one of these four situations is shown in Figure 5.
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(a) Translation. (b) Convergence.

(c) Divergence. (d) Rotation.

Figure 5. Vector field computed for the 4 toy examples. The red arrows represent the vector field of
the associated linear dynamical system model.

3.4. Extension with Uncertainties

If we want to predict complexity in a given airspace, one must be able to take into
account future aircraft position uncertainties that are crossing such airspace. Those uncer-
tainties are linked to the wind and temperature encountered by the aircraft along its route.
Thus, future positions of aircraft will be represented by a segment along its trajectory arc
length in the future. Therefore, as we should account for these uncertainties, it has been
considered that at every sample time of the analysis, each aircraft that is within the current
modeled airspace area can be ahead or behind its actual position. Then, a time shift is
applied to each aircraft (i.e., the reference one and the neighbors) to account for ten forward
and ten backward positions. Each shift is equal to twelve seconds, so the most forward and
backward positions are separated by two minutes with respect to the reference position.

In order to simplify the following figures, we will consider only two shifts in each
direction (five positions in total per aircraft) instead of ten only for the visualization of the
uncertainties problem in this current section. In Figure 6, the three aircraft from Figure 1 are
expanded with their corresponding forward and backward positions, applying a time-shift.
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Figure 6. Uncertainties associated with three aircraft.

Figure 7 shows the vector field produced by the linear dynamical system correspond-
ing to the above situation.

Figure 7. Vector field of the uncertainties extension.

Figure 8 compares the vector field of the situation with and without the uncertain-
ties extension.

(a) Real traffic situation (b) Extension with uncertainties

Figure 8. Traffic configuration with and without uncertainties.
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This extension will make matrix X larger, as from here on, n would be equal to
5 · number o f aircra f t.

3.5. Metric Computation

The problem will be analyzed within a certain airspace region (e.g., France FIR), thus
only the aircraft that are within its boundary are analyzed. By assessing this problem in
discrete-time along one aircraft trajectory and considering an area of influence surrounding
this aircraft to account for other aircraft, this metric represents the local disorder that is
present in the vicinity of an aircraft along its trajectory at each time.

Having obtained matrix A and its eigenvalues, the metric is built by summing the
negative real part of such eigenvalues λ hereinafter.

Therefore, the procedure that we apply consists of solving the LMS method while
following an aircraft along all the position observations of its trajectory. This aircraft will
be referred to as the reference aircraft. As for the aircraft that are flying in its vicinity, they
will be referred to as the neighbor aircraft. Every aircraft within the searching area of the
reference aircraft at each time will be considered as a neighbor aircraft, and therefore, its
observations will be used in the LMS computation (at each time, the neighbor aircraft may
be different). This searching area is defined as a box window (24.8 × 24.8 nm) centered at
each reference aircraft position. This dimension is based on the longitudinal separation
minima applicable to en-route aircraft multiplied by a scalar factor.

The uncertainty extension will be applied to both the reference and neighbor aircraft.
Thus, matrix A is computed using the observations of the reference and neighbor aircraft
and their uncertainties as well, at each time. Figure 9 shows the geometry of the problem
that is solved for a reference aircraft at a given time.

reference

neighbour

neighbour

Figure 9. Example of local trajectory interaction at a given time.

3.6. Neighborhood Definition

In order to reflect the operational features, the metric has been extended to the third di-
mension by using a three-dimensional state space. From the operational point of view, what
is relevant for air traffic controllers is the horizontal speed of the aircraft and their climb-
ing/descending rate. Thus, the model has been extended in this direction by considering
only some aircraft in the neighborhood of a given aircraft.

When the reference aircraft is climbing or descending, all the other aircraft in the
neighborhood will be considered as neighbors. For a cruising reference aircraft, one must
apply filtering to account for aircraft that are flying in the same flight level; however, an
extension of this filter was necessary to account for the aircraft that were changing their



Aerospace 2022, 9, 230 12 of 17

altitude and then were likely to interact with other aircraft, as they would be flying at
the same altitude at some point of the analysis period. The criteria applied to both the
reference and neighbor aircraft to filter the possible aircraft affecting the local disorder can
be observed in Figure 10.

(a) Climbing Cruise (b) Descending Cruise (c) Cruise Climbing

(d) Cruise Descending (e) Climbing (f) Descending

Figure 10. Aircraft altitude evolution that has an interaction with a certain FL.

When the neighbor aircraft altitude (after applying the searching area principle) is close
to the reference aircraft altitude, that neighbor aircraft is considered as an actual neighbor
aircraft. In the RVSM (Reduced Vertical Separation Minima) airspace, the en-route aircraft
vertical separation is 1000 ft between FL290 and FL410. The filter is set to look for neighbor
aircraft within a vertical separation, with respect to the reference aircraft altitude, equal
to 3000 ft. Therefore, aircraft flying within 30 flight levels above and below the reference
aircraft will be considered for the metric. The filter allows the following situations for both
the reference and neighbor aircraft: (a) aircraft is climbing to the reference aircraft altitude,
(b) aircraft is descending to reference aircraft altitude, (c) aircraft is about to climb from
reference aircraft altitude, (d) aircraft is about to descend from reference aircraft altitude,
(e) aircraft is climbing and will fly from a lower to a higher altitude than reference aircraft
altitude, ( f ) aircraft is at reference aircraft altitude and (g) aircraft is descending and will
fly from a higher to a lower altitude than the reference aircraft altitude.

When two cruising aircraft are flying at different altitudes (see the example given in
Figure 11), such aircraft will never be considered as neighbors because they will always
stay separated thanks to the vertical separation.

Figure 11. Lack of interdependency between two consecutive flight level trajectories.

After filtering the neighboring aircraft associated with a reference aircraft (at a given
time t), the LMS computation is applied in order to identify the A matrix. The metric is
then computed based on the eigenvalues of such an A matrix and assigned to the reference
aircraft at time t. This computation is performed for each trajectory sample along the route.

Having this complexity metric computed along the trajectory, it is possible to establish
a color map that exhibits the aircraft involved in congested areas.

4. Results
4.1. Toy Examples

Different traffic samples have been created in order to compare the complexity metric
previously described. For the following toy examples, no uncertainties are considered
and every aircraft is flying at the same flight level. Six traffic situations will be classed
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according to an increasing level of difficulty (increasing order of complexity) as a function
of predictability and interdependency between trajectories. The full trajectories of aircraft
are shown in the following figures, where a green circle symbolizes their initial positions.
Figure 12 shows a parallel flow of aircraft. It represents an easy situation, where aircraft
relative distances stay the same. This situation has no complexity (null A matrix; see
Equation (7)).

Figure 12. Parallel flow.

Figure 13a shows a full symmetric convergence of eight aircraft flying at the same
speed. It represents an average situation with high sensitivity and conflicts with no
interaction between solutions. In order to build an aggregated metric along the time
dimension, we compute for each time sample the associated eigenvalues of the A matrix,
for which the real parts are summed up in order to produce a scalar value (Figure 13b). It
must be noticed that the metric begins to be negative, demonstrating that the situation is
globally converging. Suppose we continue evaluating that situation over time. After the
crossing of the aircraft, the metric becomes positive, and the situation is globally diverging.

(a) Eight aircraft converging at the same point. (b) Evolution of the real part of A matrix eigenvalues.

Figure 13. Scalar metric function of time for eight aircraft converging at the same point. As it is
shown, there is a discontinuity when aircraft cross each other but if we consider more aircraft in
the crossing, the curve will be scaled accordingly (more aircraft will induce larger negative and
positive values).

Figure 14a shows a fuzzy convergence of aircraft in the same area. Aircraft do not
necessarily have the same speed.
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(a) Random aircraft converging in the same area. (b) Scalar metric for random aircraft converging in the same area.

Figure 14. Complexity evolution with time associated to the fuzzy convergence situation.

In this case, the metric first identifies a soft converging pattern. Then, it reaches a min-
imum in the central area of convergence (matching the maximum convergence tendency)
and begins to be positive, meaning that the aircraft are diverging at that moment (see
Figure 14b) and then reaches its maximum (matching the maximum divergence tendency).

We then consider two flow crossing situations. The first situation has a crossing angle
of 30 degrees (see Figure 15), and the second one has a crossing angle of 90 degrees (see
Figure 16). The right side of both figures represents the evolution of the complexity metric
with time. As expected, the metric stat is to be negative as the aircraft start first to converge
and become positive (divergence) after the crossing point. The shapes of the curve are the
same. Only the magnitude is higher with the 90 deg situation, which is expected, as the
relative speed between aircraft is higher in this situation.

Figure 15. S-N and E-W flows, crossing at 30°. Traffic situation on the left and complexity function of
time on the right.
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Figure 16. S-N and E-W flows, crossing at 90°. Traffic situation on the left and complexity function of
time on the right.

It is worth mentioning that in these two cases, each aircraft possesses a different speed.
The eigenvalues are always real: the no-curl tendency is perceived, as the set of aircraft are
flying only along two different trajectory directions.

4.2. Real Airspace

This complexity metric has been computed on traffic simulated with real flight plans of
aircraft crossing the French airspace (as a matter of fact, using real traffic data, such as radar
tracking records, is meaningless because such traffic has been managed by the controller and
complexity has been removed). Based on such flight plans, an arithmetic simulator based
on the BADA database has been used in order to create 8000 four-dimensional trajectories
in the French airspace. The trajectory has then been sampled every 20 s, representing two
million 4D points for the whole day. The metric has been computed for each trajectory and
for each time step in a 4D cube (three spatial dimensions and one time dimension) and
projected on a two-dimensional coordinate system to have a complexity map, as shown
in Figure 17. On this figure, the metric has been normalized between 0 (blue color) and
100% (maximum with red color). As expected, the highest complexity is located near the
big crossings. One must remember that the map represents the accumulated complexity
in altitude and time. A 2D point at (x,y) on the map represents all 4D points at those 2D
coordinates (x,y).

Figure 17. Traffic complexity of a traffic sample over French airspace. For each 4D point (x,y,z,t)
of each trajectory, the complexity metric is computed and represented with a color map on a two
dimension map (x,y).
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The metric has been implemented in Java. Thanks to some algorithmic improvements,
the computation time needed to compute the metric for the whole day of traffic (two million
points) is less than ten milliseconds on a core i7 Laptop computer.

5. Conclusions

This paper has introduced an efficient traffic complexity metric that can identify the
level of disorder of a given traffic situation. A Linear Dynamical System model is first
regressed based on a least mean square approach, which is based on a set of trajectory
samples. An SVD trick has been used in order to avoid conditioning issues in the LMS
process. Then, the eigenvalues of the associated A matrix of the linear dynamical system
are extracted to quantify the disorder of the traffic situation (sum of the negative real parts).
When such a metric has to be computed for a predicted traffic situation, one must be able to
take into account uncertainties. This uncertainty has been taken into account by considering
aircraft as segments in the time dimension in order to produce a robust metric. This metric
has been successfully tested on several artificial traffic situations and on a full day of traffic
over the French airspace. Based on the high performance for computing this metric (for a
large number of trajectories), the next step consists of using this metric in an optimization
algorithm to minimize congestion in a given airspace, which is one of the objectives of the
START SESAR project.
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The following abbreviations are used in this manuscript:

ATC Air Traffic Control
ATM Air Traffic Management
BADA Base of Aircraft DAta
COVID-19 COrona VIrus Disease-2019
FIR Flight Information Region
LMS Least Mean Square
NASA National Aeronautics and Space Administration
NM Nautical Mile
RVSM Reduced Vertical Separation Minima
SESAR Single European Sky’s ATM Research
START Stable and resilienT ATM by integrAting Robust airline operations into the neTwork
SVD Singular Value Decomposition
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