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Abstract: In order to improve the shortcomings of the traditional constant section and gradual
section space elevator system, combined with the advantages of constant section and gradual section
space elevator system, a model of segmented space elevator system is designed. This model has
the characteristics of easier construction, more practical functions, and easier maintenance. The
cyclic iterative method is proposed to calculate the stress distribution of the space elevator system.
The maximum stress variation and system scale variation of segmented space elevator system with
different segment numbers is analyzed and compared with the system scale of constant section and
gradual section space elevator system. The results show that the segmented space elevator model
can significantly reduce the peak stress of the space elevator system under the condition of limited
increase in the system scale, and the peak stress is 56% lower than that of the constant section space
elevator model. Considering the number of segments, peak stress, and system scale, the calculation
results show that the optimal number of segments is 5 or 6.

Keywords: space elevator; segmented; optimization

1. Introduction

As a potential new space transportation system for transporting the payload to outer
space, the main structure of the space elevator system mainly consists of four parts: ground
anchor point, rope, climber, and zenith anchor. The whole system relies on the centrifugal
force generated by the rotation of the earth to keep the system stable and transport the
payload through the climber.

The concept originated from the invention of Tsiolkovsky, and it was cemented in
engineering terms by Pearson [1]. It was not possible to obtain the desired strength of
the tether material until the discovery of carbon nanotubes [2]. At the end of the 20th
century, NASA established a research group led by Dr. Edward and demonstrated the
feasibility of the space elevator system [3]. In order to fully understand the potential
commercial application of space elevator, the International Space Elevator Association
(ISEC) introduced the concept of Galaxy port [4]. Through the life cycle assessment of the
space elevator, Harris found that the design of the space elevator is an environmentally
and economically sustainable choice for rail transportation [5]. Shi studied the dynamics of
a partial space elevator system with multiple climbers and applied the optimal control to
develop optimal operation modes to suppress the libration of the partial space elevator [6].
Developments in engineering technology and changes in the space environment have
diversified the current applications for the space tether [7]. New applications for the space
tether include the Tethered Space Robot, Tethered Space Net, and Tethered Spacecraft
Formation, such as the solar wind on an electric sail (E-sail) [8], deployment dynamics
and debris capture of tethered space net [9], and tethered spacecraft formation [10]. Okino
proposed a new type of counterweight space elevator system [11]. The system is similar to
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the ground elevator and consists of two cables: one guide cable bears the tension imposed
on the structure, that is, the rope of the conventional space elevator, and the other moving
cable connects the two gondolas to move up and down, respectively. The performance of
the counterweight space elevator is analyzed by numerical calculation.

Pearson established the continuous static model of rope element based on differential
equation, and first deduced the gradual function model of rope cross-sectional area [1].
However, the elasticity of the rope was not considered, so Aravind and Cohen established
the system static equilibrium equation considering the rope elasticity on the basis of Pearson,
deduced the cross-sectional area gradient function model of the equatorial space elevator
elastic rope, and made relevant research on the system parameter of the gradient section
space elevator system, which laid a foundation for the subsequent research on the dynamics
of the space elevator system [12,13].

The rigid rod tether model has fewer degrees of freedom and simple analysis. Wang
studied the stability characteristics of the space elevator system near the equilibrium point
based on the small angle hypothesis through the rigid rod tether model [14]. The chain
rod model discretizes the continuous rope into a system composed of finite rigid rods or
elastic rods [15]. Woo used the chain rod model to study the stress of some space elevator
systems, and explored the influence of climbers on the vibration law of some space elevator
systems [16]. The lumped mass tether model discretizes the rope model into a series of
mass points connected by spring dampers, simulates the axial stiffness of the rope through
the elasticity of the spring, and reflects the flexibility of the rope with the rotation angle
of the adjacent spring. Based on the lumped mass tether model, Williams studied the
vibration influence of the climber on the space elevator system, proposed the relevant
control strategy, and carried out the modal analysis of the system [17]. Wang carried out
dynamic modeling of deployment latitude based on “chain-bar” tether model and lumped
mass tether model, respectively, and studied the deployable latitude range of non-equatorial
space elevator system [18]. The dynamics of the climbing rope system can be described
by the Euler–Lagrange method, and the high-frequency tether can be used to capture the
position of the flexible rope system [19]. Hu et al. studied the vibration problem of super
flexible damping space structure, considered the coupling between structural vibration,
attitude dynamics and track dynamics, and studied the vibration characteristics and wave
propagation characteristics of space flexible damping plates with four special springs [20].
Yoon et al. established a proportional experimental model considering the initial tension of
tether in 2020, studied the band gap characteristics of metamaterials through experiments,
and measured the deformation shape of metamaterials in the band gap [21]. Luo analyzed
the dynamics of the space elevator system based on the absolute node coordinate formula
(ANCF), and found that this method can achieve the same calculation accuracy with fewer
elements and has a faster convergence speed [22].

The traditional space elevator system model is divided into uniform cross-sectional
area space elevator system and gradual cross-sectional area space elevator system. The
uniform cross-sectional area space elevator model is the simplest with constant cross-
sectional area of the rope, but the maximum stress of the rope reaches about 63 GPa when
the load capacity is zero, far exceeding the strength limit of existing materials. In order to
reduce the strength requirements of the space elevator rope, the gradual cross-sectional
area space elevator model was built with the same stress everywhere. Thus, the change of
the rope cross-sectional area is a complex exponential function, which leads to the difficulty
of actual production and construction.

Since existing space elevator models are not in conformity with the practical engi-
neering, in this paper, a new space elevator with segmented rope model is built. A cyclic
iterative method is proposed to calculate the stress distribution of the segment space eleva-
tor system. The segment point and the cross-sectional area of the segmented space elevator
model are optimized, and the scale of the segmented space elevator model is analyzed.

The advantages such as the low peak stress and connecting platform provide a new
possibility for the actual construction of space elevator system.
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2. Model of Segmented Space Elevator System

Through relevant demonstration, the material most likely to meet the strength re-
quirements of the space elevator system is carbon nanotubes with high strength and low
density [23]. Carbon nanotubes are the most likely material to be used in construction,
although they cannot meet the actual demand of large quantities due to current production
constraints. However, regardless of the shortage, carbon nanotube material is used in the
paper because its performances are the best.

The design idea of the segmented space elevator system model is to subdivide the
rope into several segments along the length direction, and each segment is connected by
connecting platform. The specific schematic diagram is shown in Figure 1.

GEO platform zenith anchorConnecting platform

Segment of rope

GEOanchor point

Figure 1. Schematic diagram of segmented space elevator system model.

As shown in Figure 2, each segment of rope can be composed of several equal cross-
section tethers in different numbers and connected by a connecting platform. The advantage
of this design is that when producing tethers, the types of tethers required can be reduced.
By adjusting the number of tethers, the bearing cross-sectional area of each segment can be
simply controlled. Moreover, when the segment needs to be repaired or replaced, some
tethers can be repaired instead of the whole section, which increases the maintainability of
the space elevator system.

Figure 2. Detailed structure of segmented space elevator system model.

The connecting platform can not only be used as a connector to connect each rope
segment. According to the Figure 3 of [11], the connecting platform set at a specific
position can also have specific functions, such as launching satellites, installation position
of oscillation suppression system, etc.
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Figure 3. Specific position function of segmented space elevator system model.

The design of the segmented space elevator system allows the space elevator system
to be built in stages rather than forming at one time. As shown in Figure 4, the first step
is to build the GEO platform, and then build each section step by step. The built sections
and platforms can be put into use in turn. This design reduces the difficulty of building the
space elevator system.

Segment of rope

Connecting 

platform

GEO platform

zenith anchor

GEO

anchor point

Figure 4. Build stage of segmented space elevator system model.

These advantages make the segmented space elevator system model have more appli-
cation prospect.

3. Stress of Segmented Space Elevator System

Material is the biggest problem that restricts the practical application of the space
elevator system. The main problem is that the existing engineering materials cannot meet
the requirements of the design stress of the space elevator system. Therefore, the system
max stress should be reduced as much as possible during the design of the space elevator
system. Calculating the stress distribution of the space elevator system is the first step.

When only considering the influence of the earth, the force analysis of the rope
micro-segment shows that the rope micro-segment is affected by three forces: universal
gravitation, centrifugal force generated with the rotation of the earth, and internal tension
of the rope, which is shown in Figure 5.
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Figure 5. Force analysis of the rope micro-segment.

Where O is the center of the Earth, X is the direction of the space elevator system, r
is the position of the micro-segment, A(r) and A(r + dr) are the cross-section area of the
beginning and the end of the micro-segment, dr is the length of the micro-segment, Fg and
Fc are the universal gravitation and the centrifugal force, and can be represented as:

Fc = mω2r = A(r)ρdrω2r, (1)

Fg =
µm
r2 =

µA(r)ρdr
r2 , (2)

where µ is the gravitational constant of the Earth, ρ is the density of the rope, and ω is the
angular velocity of the Earth.

From the equilibrium conditions, the equilibrium equation can be obtained:

dT = Tu − Td =
µA(r)ρdr

r2 − A(r)ρdrω2r. (3)

Simplified (3) can obtain:

dT
dr

= A(r)ρ(
µ

r2 − ω2r), (4)

and the rope stress at any section can be obtained by integration:

σ(r) = µρ(−1
r
− r2

2R3
g
), (5)

where σ is the stress of the rope r from the center of the Earth, Rg is the radius of the earth’s
synchronous orbit, Re is the radius of the Earth’s equator.

If the stress at the ground anchor is 0, that is, when σ(Re) is 0, the stress at any section
of the whole space elevator system in self-equilibrium state can be written:

σ(r) = µρ(
1

Re
− 1

r
+

R2
e − r2

2R3
g

). (6)

Due to the limited rope length of the space elevator system, a zenith anchor should be
installed in a certain position to replace the rope tension caused by ropes higher than the
zenith anchor position. If the zenith anchor position is set as Lc, the replacement force Fc to
be applied at Lc is shown as:

Fc = µρAc(
1

Re
− 1

Lc
+

R2
e − L2

c

2R3
g

), (7)

where Ac is the cross-section area of the position Lc.
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Then, the zenith anchor mass mc can be calculated:

mc = Fc/(µ(
Lc

R3
g
− 1

L2
c
)). (8)

In the traditional stress calculation formula, the influence of rope strain on rope length
change in the space elevator system is not considered, but the rope elongation in the long
rope system has an obvious cumulative effect, that is, the elongation of each rope element
will accumulate to the top. The resulting extension distance of the zenith anchor will reach
a considerable degree (by calculating the extension distance of the zenith anchor, it can
reach 1 × 106 m order of magnitude). Ignoring the strain effect will lead to the deviation of
stress calculation. Therefore, the traditional calculation formula of the rope stress needs to
be modified.

For each rope element, the resultant force is:

dF = µρAi(
1
r2 − r

R3
g
)dr, (9)

where Ai is the cross-sectional area of the i-th segment.
For each point on the rope of position r, the magnitude of the force F(r) is the sum of

the force from this point to the zenith anchor position, which is shown as:

F(r) =
∫ Lc

r
dF + µmc(

Lc

R3
g
− 1

L2
c
). (10)

After substituting (9) into (10), the same result as the traditional stress calculation
formula can be obtained. However, due to the elongation of the rope, the rope element
of position r will be stretched to position u(r), and the zenith anchor position Lc will be
moved to u(Lc). Equation (10) will be changed to:

Fd(r) =
∫ u(Lc)

u(r)
dFed + µmc(

u(Lc)

R3
g

− 1
u(Lc)2 ), (11)

where Fed is the force on the rope element of position r after deformation, which is shown as:

dFed = µρAd(r)(
1
r2 − r

R3
g
)dr, (12)

where Ad(r) is the cross-sectional area after deformation and can be represented as:

Ad(r) =
Ai

1 + ε(r)
, (13)

where ε(r) is the rope strain of position r after deformation, which can be obtained from:

ε(r) =
Fd(r)

EAd(r)
, (14)

where E is the Young’s modulus of the rope.
After obtaining the force at each point on the rope, the rope’s displacement field can

be obtained by integrating:

u(r) =
∫ r

Re
(1 + ε(r))dr. (15)

In combination with (11)–(15), the modified stress of the space elevator system can
be calculated.
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Since the modified stress of the space elevator system is given by the boundary value
equation of differential equation, it needs to be calculated by numerical method. The
calculation steps are shown below:

1. Define the calculation point to calculate the zenith anchor mass of the space elevator
system and get the basic position of each point r0, set the initial displacement field u0.

2. Get the current node coordinates r and calculate the inertial force Fc(r) and gravita-
tional force Fg(r) of each point according to the known displacement field.

3. Calculate the force of each calculation point F(r) by integrating.
4. Calculate the cross-sectional area of the rope Ad(r) after deformation at each calcula-

tion point.
5. Calculate the stress σ(r) and strain ε(r) at the calculation point.
6. Calculate the displacement field unext by integrating the strain.
7. Judge whether the calculated difference between the two adjacent displacement fields

u0 and unext is less than the given error. When the difference does not satisfy the error,
iterate unext to u0 and go to step 2, or the calculation ends.

The corresponding calculation block diagram, Figure 6.

Start Rope structure

Nodal mass

Nodal force

Solved position

Nodal position

Is close to the last 

result?

Yes

Output result End

No

Figure 6. Numerical method for theoretical stress calculation of space elevator system.

4. Optimization of Space Elevator Segments

Compared with the traditional space elevator system model, the segmented space
elevator system involves more system parameters such as the number of rope segments,
the position of the connecting platform, and the mass of the connecting platform. These
parameters not only affect the overall scale of the system, but also greatly affect the overall
stress level and carrying capacity of the system. When the number of segments is small,
the model is close to the rope model of the equal section space elevator system, and the
peak stress of the rope is larger. When the number of segments is large, the stress strength
requirement of the rope can be reduced, but the additional connecting platform will also
increase the mass of the whole system and reduce the bearing capacity of the system.
Therefore, it is necessary to optimize the location and number of segments, so as to increase
the bearing capacity of the system as much as possible under the condition of low stress
intensity.

Firstly, a small example of the space elevator system with uniform cross-sectional
area rope (UAR) and segmented cross-sectional area rope (SAR) was used to illustrate the
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characteristics of the stress distribution of the space elevator system. The parameters of
each system are shown in Table 1.

Table 1. Parameters of space elevator systems.

Rope Type Cross-Sectional
Area of Segment 1

Cross-Sectional
Area of Segment 2 Segment Point

UAR 0.01 m2

SAR 1 0.01 m2 0.012 m2 2.43 × 104 km
SAR 2 0.01 m2 0.012 m2 2.78 × 104 km
SAR 3 0.01 m2 0.014 m2 2.43 × 104 km

By adjusting the mass of the zenith anchor, the stress on the ground point is unified.
The stress distribution diagram of each space elevator system is obtained, which is shown
in Figure 7.

  100   200   300   400   500   600
X-coordinate (100km)

10

20

30

40

50

60

70

St
re

ss
 (G

Pa
)

Line_UAR
Line_SAR_1
Line_SAR_2
Line_SAR_3

Figure 7. Typical stress distribution diagram of space elevator system with uniform cross-sectional
area rope (UAR) and segmented cross-sectional area rope (SAR).

It can be seen from the figure that since the force before and after the segment point
is continuous, but the cross-sectional area of the rope has changed, the segmented space
elevator system has a local extreme value of stress at the section position. If the stress
value after the segment point needs to be reduced, the cross-sectional area of subsequent
segments needs to be increased.

From Line SAR 1 and Line SAR 2 of Figure 7, changing the segmented position of the
space elevator rope will affect the position and value of the stress, reaching the extreme
stress. In order to study the influence of segment points on stress distribution, the distance
between the equatorial radius and the radius of geosynchronous orbit is divided into
several grid points, as shown in Figure 8.
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Figure 8. Design grid between the equatorial radius and the radius of geosynchronous orbit.

If the position of the equatorial radius of the earth is recorded as 0 and the position of
the geosynchronous orbit radius is recorded as 1, then a decimal npi between 0 and 1 can
be used to represent the position of each segment point. In order to control the calculation
amount of the location of the segmentation point, the design grid point of the segmentation
point can be set in advance. Set 0 to 1 as several design grid points according to a certain
law, and then calculate the segment position as the corresponding decimal point, and map
it to the closest design grid point. If the location of the segment point is set in advance,
the segment point can be directly mapped to the design grid point as a fixed parameter to
calculate the stress of the corresponding space elevator system model. It should be noted
that if multiple segment points are mapped to the same design grid point, they need to
be mapped to different design grid points nearby, otherwise the number of segments will
be reduced.

From Line SAR 1 and Line SAR 3 of Figure 7, increasing the cross-sectional area will
affect the value of stress reduction at the segment point, thus affecting the stress extreme
value of the next segment. Recursive Formula (16) is used to determine the cross-sectional
area of each segment:

Ai+1 = (nai + 1)Ai, (16)

where Ai+1 is the cross-section area of the next segment and nai is the increase ratio of the
i-st cross-sectional area. In this paper, nai is between 0 and 3.

It can be seen from Figure 7 that the extreme stress of the first segment is determined
by the tension of the anchor point and the position of the first segment. When the extreme
value of the subsequent segment is less than the extreme value of the first segment, the
overall stress of the system can be minimized. However, the stress reduction of subsequent
segments will increase the cross-sectional area of the rope, thus increasing the scale of the
system. Therefore, when the extreme value of the subsequent segment is equal to the first
segment, the overall stress level and the scale of the system can be minimized.

When the number of segments, the physical constant of the tether, the total height of
the space elevator, and the mass of the zenith anchor are determined, the stress distribution
can be calculated:

σ(r) = Fs(npi, nai), (17)

where Fs(npi, nai) is the numerical method in the section before to calculate the stress
distribution of the space elevator system.

The stress extreme value of each segment σi can be extracted from (17). By calculating
the standard deviation of the segment extreme value, the deviation degree of all segment
extreme values can be measured. When the standard deviation reaches the minimum, the
system parameters npi and nai reach the optimal value.

This optimization problem can be summarized as:

min SD(σi(xj), j = 1, 2, · · · , 2 × nsg,

s.t.

{
0 < xj < 1, j = 1, 2, · · · , nsg,

0 < xj < 3, j = nsg, nsg + 1, · · · , 2 × nsg,

(18)

where nsg is the segment number of the system, xj(j = 1, 2, · · · , nsg) are the segment points
npi mapped to the design grid, xj(j = nsg, nsg + 1, · · · , 2 × nsg) are the increase ratio nai of
the i-st cross-sectional area, SD(σi) is the standard deviation of the stress peak value of each
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segment, and σi(xi) is the stress peak value of each segment calculated by the numerical
method in the section above.

Since each segment has a stress peak, when the stress peak of each segment is the
closest, the optimal state of stress distribution under this condition is reached.

This optimization function is not a continuous function, so it can not be differentiated,
and the calculation cost is high, so the conventional optimization method cannot be used.
The complex method is one of the reliable algorithms widely used in mechanical optimiza-
tion design [24]. It does not need derivative or one-dimensional search, and has no special
requirements for functional properties. The program structure is simple and the amount of
calculation is small. It has the advantages of low requirement on initial point, quick finding
of optimal solution, and reliable algorithm. Thus, it is suitable for segments’ optimization
calculation of segmented space elevator system.

Since the position of the first segment point can determine the maximum stress of the
whole space elevator system, this paper takes the position of the first segment point and
the cross-sectional area of the rope of each segment except the first segment as variables,
and takes the minimum ultimate stress of the rope of the global space elevator system as
the objective to conduct optimization calculation.

5. Results
5.1. Stress of the Segmented Space Elevator System

In order to verify the correctness of iterative stress calculation, a space elevator model
with gradual cross-sectional area rope (GAR) is built with finite element method in the
ANSYS software. It has 1400 beam elements and 1401 nodes, as shown in Table 2, and the
total height is 6 × 104 km. The Young’s modulus of the tether is 1000 GPa and the density
is 1300 kg m−3 [18].

Table 2. System parameters.

Re (m) Rg (m) µ (N m2 kg−1) L (m) E (Pa) ρ (kg m−3)

6.37 × 106 4.22 × 107 3.99 × 1014 6 × 107 1000 × 109 1300

For the spatial parameters of the gradual sectional space elevator system, the setting
stress is 50 GPa, the initial cross-section is 0.01 m2, and changes by the law [13] in (19):

A(s) = AmeF(s),

F(s) =
R2

e
h̄Rg(1 + ε0)

(
3
2
−

Rg

Re + s(1 + ε0)
− [Re + s(1 + ε0)]

2

2R2
g

)
,

(19)

where s is the distance from the calculated point to the ground, Am is the maximum cross-
sectional area of the tether, ε0 is the strain of the tether, and h̄ is the characteristic height
of tether:

h̄ =
σ0

ρg0
, (20)

where σ0 is the setting stress of the tether, ρ is the density, and g0 is the gravitational
acceleration at the radius of the earth.

To verify the validity and precision of the methods proposed in this section, the anchor
point is set on the equator. The calculation and theory stress distribution is shown in
Figure 9.
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Figure 9. Stress distribution diagram of gradual section space elevator system by different methods.

The position coordinates of nodes cannot be automatically updated iteratively in
ANSYS software, there is a great error between the calculation results of a single iteration
and the theoretical stress. With the increase of iteration times, the final stress is close to the
theoretical value, and the error is controlled within 10%.

With the same system parameters in Table 2, the stress distribution of a 4 segments
space elevator is calculated. The mass of zenith anchor mc is 4.2 × 109 kg and the design
bearing capacity is 1 × 109 N. The cross-sectional area and the position of segments are
shown in Tables 3 and 4.

Table 3. Cross-sectional area of the segmented space elevator system.

Segments Segment 1 Segment 2 Segment 3 Segment 4

Cross-sectional area 0.010 m2 0.025 m2 0.030 m2 0.037 m2

Table 4. Section points of the segmented space elevator system.

Segment Points Segment Point 1 Segment Point 2 Segment Point 3

Segment point position 9.5 × 103 km 16.4 × 103 km 20.7 × 103 km

The calculated stress distribution is shown in Figure 10.
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Figure 10. Stress distribution diagram of segment section space elevator system.

It can be seen from the figure that the stress of each segment is similar to that of a
section of the constant cross-sectional space elevator model, rising evenly and reaching
the peak at the highest part of the segment. When the stress rises to the section node, the
stress will drop because the rope tension at both ends of the section node is the same, but
the bearing cross-sectional area is different. At the same time, it can be seen that the strain
accumulation effect of the rope has a greater impact on the rope section with lower position.

5.2. Optimization of Space Elevator Segments

Under the conditions that the initial cross-sectional area of the rope is 0.01 m2, the total
height of the space elevator is 6 × 104 km, the mass of the connecting platform is 5 × 104 kg,
and the design bearing capacity is 1 × 109 N. The results of optimization calculation are
shown in Tables 5–7.

Table 5. Optimization results of rope section points of segmented space elevator system.

Number of
Segments

Segment
Point 1

Segment
Point 2

Segment
Point 3

Segment
Point 4

Segment
Point 5

Segment
Point 6

Segment
Point 7

2 1.12 × 104 km
3 1.02 × 104 km 2.07 × 104 km
4 9.48 × 103 km 1.64 × 104 km 2.07 × 104 km
5 8.63 × 103 km 1.28 × 104 km 1.64 × 104 km 2.07 × 104 km
6 7.98 × 103 km 1.07 × 104 km 1.28 × 104 km 1.64 × 104 km 2.07 × 104 km
7 7.19 × 103 km 8.88 × 103 km 1.07 × 104 km 1.28 × 104 km 1.64 × 104 km 2.07 × 104 km
8 7.16 × 103 km 8.34 × 103 km 8.88 × 103 km 1.07 × 104 km 1.28 × 104 km 1.64 × 104 km 2.07 × 104 km
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Table 6. Optimization results of sectional cross-sectional area of segmented space elevator system.

Number of
Segments

Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 Segment 6 Segment 7 Segment 8

1 0.010 m2

2 0.010 m2 0.025 m2

3 0.010 m2 0.025 m2 0.030 m2

4 0.010 m2 0.025 m2 0.030 m2 0.037 m2

5 0.010 m2 0.025 m2 0.034 m2 0.042 m2 0.055 m2

6 0.010 m2 0.025 m2 0.035 m2 0.051 m2 0.065 m2 0.091 m2

7 0.010 m2 0.025 m2 0.044 m2 0.068 m2 0.106 m2 0.154 m2 0.246 m2

8 0.010 m2 0.020 m2 0.041 m2 0.078 m2 0.148 m2 0.321 m2 0.557 m2 0.726 m2

Table 7. Optimization results of maximum stress value of segmented space elevator system.

Number of segments 1 2 3 4 5 6 7 8

Maximum stress 63 GPa 46.92 GPa 40.25 GPa 38.11 GPa 32.73 GPa 27.69 GPa 23.04 GPa 19.79 GPa

The stress distribution of the space elevator system with segments from 2 to 6 is shown
in Figure 11.

X-coordinate (100km)

Figure 11. Stress distribution diagram of segmented space elevator system with 2 to 6 segments.

The results of analysis and optimization showed that the peak stress inside the rope
decreased significantly with the increase of the number of segments. It can be seen that the
segmented rope can effectively reduce the peak stress inside the rope and greatly reduce
the strength requirements of the system on the rope material. However, the increase in
the number of segments will lead to a significant increase in the cross-sectional area of
segments near geosynchronous orbit. This is because the stress reduction of each section
needs to increase the cross-sectional area of the previous section in proportion. If there are
too many sections, the product effect will be very significant, which will greatly increase
the mass of the space elevator system.
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5.3. System Scale of Segmented Space Elevator System

Given the unique system parameters of the segmented space elevator system, parame-
ters such as the number of segments, location of segments, and connecting platform have a
great influence on the overall scale of the system. As the most basic system parameter of the
segmented rope, the increase of the number of segments can effectively reduce the overall
stress level of the system, but also greatly increase the mass of the connecting platform,
affecting the scale of the rope. Thus, it is very important to choose the appropriate number
of segments.

The calculation conditions are as follows: the initial cross-sectional area of the seg-
mented space elevator rope is 0.01 m2, the total height of the space elevator is 60,000 km, the
mass of the connecting platform is 50,000 km, and the design bearing capacity is 10 × 108 N.
The mass curve of the calculated segmented space elevator system with the number of
segments from 2 to 8 is shown in Figure 12.

Figure 12. Maximum stress and mass curve of segmented space elevator system with 2 to 8 segments.

It can be seen from the figure that with the increase of the number of sections, the
mass of each part of the system and the whole gradually increases. However, neither the
total rope mass nor the zenith anchor mass increases linearly with the number of segments.
When the number of segments reaches 6, the scale mass of the segmented space elevator
system will approximately double with each additional segment, and the decrease of peak
stress is much less than the increase of total mass. Therefore, under the conditions set in
this case, it is best to use the 6-section space elevator rope configuration.

The total length of the space elevator rope is also an important factor affecting the
scale of the space elevator system. When the total length of the space elevator rope changes
within 48,000 km to 100,000 km, the relationship between the mass of each part of the space
elevator system and the rope is obtained as shown in Figures 13–15.
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X-coordinate

Figure 13. Rope mass and rope length curve of three space elevator systems.

X-coordinate

Figure 14. Zenith anchor mass and rope length curve of three space elevator systems.
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X-coordinate

Figure 15. Total mass and rope length curve of three space elevator systems.

Due to the application of segmented rope, the mass of SAR space elevator system
will be greater than the other two space elevator models under the same cross-section of
ground anchor point. When the total length of the space elevator system is small, the mass
of the zenith anchor of the SAR space elevator system and the GAR space elevator system
is higher. However, with the increase of the total length of the space elevator system, the
zenith anchor mass of the three space elevator systems will gradually decline, and the gap
will gradually decrease. Since the rope mass of SAR space elevator system is larger than
that of the other two models, the total scale of SAR space elevator system will be larger
than that of GAR space elevator system and UAR space elevator system.

However, according to the characteristics of each space elevator system, although the
system scale of the segmented space elevator system is larger than that of the UAR space
elevator system and the GAR space elevator system, it has the characteristics of low rope
stress peak, easy construction, and maintenance, and has a good application value.

6. Discussion
6.1. Calculation Errors in Iterative Methods

In the calculation of GAR space elevator system model, since the number of beam
elements is limited, it is impossible to accurately compound the gradient section area
change function. The force of each element is applied to the element nodes, resulting in the
actual force of each element being slightly larger than the integration result. Therefore, the
result of iterative calculation is larger than the theoretical value.

Using more finite element beam elements can make the cross section closer to the
theoretical variation function of the cross-sectional area of the GAR space elevator system.
At the same time, using higher-order beam element can make the force of the element closer
to the reality. These methods can make the numerical results more accurate. However,
compared with the results of non-iterative calculation, the accuracy of iterative calculation
has been improved a lot.

For the UAR space elevator system model, the tension at the ground point cannot be
0, which is the critical state of the stability of the space elevator system. When the tension
of the ground anchor point is negative, the structure of the space elevator will fail because
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the rope can only bear the tension but not the pressure. In the calculation of this paper,
the tension at the ground anchor is set to 0 in order to put the stress of various methods
at the same starting point and make the results comparable. In fact, the tensile force of
the ground anchor end will be evenly added to the whole tether. By adjusting the mass of
the zenith anchor, the stress distribution of the whole space elevator system can be shifted
upward or downward, so as to align the stress of the ground anchor points.

6.2. Optimization of Space Elevator Segments

The stress of the tether outside the geosynchronous orbit is in a downward state under
the condition of equal section, which does not affect the peak value of the rope stress of the
overall space elevator system. Therefore, it is not segmented outside the geosynchronous
orbit in this paper. However, if there are functional requirements of the space elevator
system, it is also feasible to carry out segment design outside the geosynchronous orbit and
such segments can easily not increase the peak stress of the system.

For the optimization calculation, without setting the segment position first, the opti-
mization result is not unique. Therefore, in the actual optimization design, the approximate
section position can be set through the functional requirements and other conditions. How-
ever, when the positions of all segment points are determined, the cross-sectional area
of each segment has a definite solution under the optimal conditions. Therefore, when
designing the segmented space elevator system, we can first determine the position of each
segment point and calculate the cross-sectional area of each segment. Then, the number
and position of segment points are readjusted through the increase of the cross-sectional
area of each segment.

The maximum increase rate of sectional rope area is set as 120% in this paper. This
parameter can be set according to the actual situation. However, if the increase rate is high,
the overall mass scale will increase fast.

7. Conclusions

Combining with the design advantages of traditional space elevator model, in this
paper, a new type of segmented space elevator model is designed. For the segmented space
elevator system, the numerical calculation method of stress distribution is given, and its
correctness is verified. Based on the numerical calculation of the stress of the space elevator
system, the optimization method of the segment point and the cross-sectional area of each
segment is given. Compared with the traditional space elevator model, the scale of the
segmented space elevator system is analyzed.

The main conclusions are as follows:

• In this paper, a model of segmented space elevator system model is established. This
model has the characteristics of easier construction, more practical functions and
easier maintenance.

• The segmented space elevator model can significantly reduce the peak stress of the
space elevator system under the condition of limited increase in the system scale, and
the peak stress is 56% lower than that of the constant section space elevator model.

• Considering the number of segments, peak stress, and system scale, the calculation
results show that the optimal number of segments is 5 or 6.

Segmented space elevator system has the advantages of easy construction, easy main-
tenance, and wide application. The characteristics of its low stress peak provide a new
possibility for the actual construction of the space elevator system.
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