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ABSTRACT 
 
The rate of discovery of new antibiotic is slower than the emergence of antibiotic-resistant strains in 
the environment. This global problem is more acute in developing countries. Therefore, it is 
necessary to develop some alternative approaches to combat infections caused by pathogenic 
microorganisms and resistant strains. Natural antimicrobial peptides (NAMPs) are potent 
antimicrobial peptides that are isolated from different sources like plants, animals, humans, 
bacteria, and fungi. These antimicrobial peptides may have a ribosomal or non-ribosomal origin. 
Natural antimicrobial peptides have diverse functions in agriculture, pharmaceutical and food 
industries. NAMPs have been used as food preservatives against food-borne pathogens thereby 
increasing the shelf-life of food items. NAMPs are useful in the treatment of wounds, ulcers, skin 
and soft tissue infections caused by microorganisms. Different types of NAMPs are universal in 
nature and show broad-spectrum antimicrobial activities. NAMPs exhibit great potency against 
multidrug-resistant bacteria like methicillin-resistant Staphylococcus aureus (MRSA). They have 
unique characteristics of targeting multiple pathogenic strains and prevent the emergence of natural 
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resistance. In this review article, we systematically discussed different types of natural antimicrobial 
peptides, their classification, expression, diversity and source. We also explored their mode of 
action, genetic regulation and application as an alternative therapeutic agent. 
 

 
Keywords: Natural Antimicrobial Peptides (NAMPs); animal peptides; plants peptide; lantibiotics; 

alternative therapeutics. 
 

1. INTRODUCTION 
 
Natural antimicrobial peptides (NAMPs) are 
promising antimicrobial peptides due to natural 
origin that creates less selection pressure on the 
microbes and prevent the emergence of resistant 
strains compared to chemically synthesized 
antimicrobials. NAMPs are family of small 
polypeptides that are produced by a 
microorganism and show broad-spectrum anti-
bacterial, anti- fungi, anti-viral and anti-parasitic 
activity and termed as next-generation antibiotics 
[1]. Due to their broad-spectrum therapeutic 
effects, low toxicity and the low rates of 
mutations in pathogenic bacteria [1]. There are 
several natural antimicrobial agents isolated from 
soil, plants, animals, and microbes such as 
Bacteriocins, Lantibiotics, Nisin, and Natamycin. 
Bacteriocins are antimicrobial substances 
produced by lactic acid bacteria (LAB) including 
organic acids, hydrogen peroxide, diacetyl, and 
inhibitory enzymes. Bacteriocins are 
proteinaceous compounds that kill closely related 
bacteria with a bactericidal mode of action. Nisin 
is the first antimicrobial agent that was 
discovered before penicillin and has been 
popularly used as a safe replacement for 
chemical reagents in food preservation for over 
50 years [2]. Lantibiotics are one of the most 
promising candidates for future antibiotics. Till 
now, more than 200 Lantibiotics have been 
isolated, identified, and characterized. However, 
only Nisin got the FDA approval for using as an 
antimicrobial agent until now [2]. One possible 
reason is that any antimicrobial agent has to 
pass through the stringent toxicity testing before 
approval by the authorities. It is to be noted that 
all the antimicrobial agents isolated from 
microbes are from culturable bacterial strains. As 
we know, Only less than 1% of the bacterial 
population is culturable in the laboratory 
conditions and more than 99% of the bacterial 
strains remain in viable but not culturable 
(VBNC) state in the environmental samples [3]. 
These strains cannot be cultured in the 
laboratory by routine culture methods and have 
been ignored by the scientist [4]. Therefore, we 
need to develop some advanced methods to 
isolate natural antimicrobial agents (NAMs) from 

environmental samples. Advancement of 
genomics has open new ways to isolate NAMs 
from the VBNC population of bacteria too. One 
possible method is to use functional 
metagenomics to identify natural antimicrobials 
from the environmental samples because it does 
not require the purification of culture. In 
functional genomics, we directly isolate the DNA 
from the environmental samples, make libraries 
of the DNA fragments and do functional assay in 
a heterologous host. This allows the identification 
of NAMs from the culturable and non-culturable 
bacterial population. The purpose of this review 
article is to recapitulate the recent developments 
in the field of natural antimicrobial peptides 
research, concisely, the types of NAMPs, their 
classification, mode of action, genetic regulation, 
potential applications, and future perspectives. 
 

1.1 Historical Outlook of NAMPS 
 
Alexander Fleming in the late 1920s identified 
lysozyme and considered it as the first 
antimicrobial peptide [5], the exact mode of 
action of lysozyme was not known until 1958 
when Salton discovered that lysozyme degrades 
the bacterial cell wall [6]. Antimicrobial peptides 
were first noted in prokaryotic cells. The NAMPs 
were Isolated from Bacillus brevis and named as 
gramicidin, which showed in vitro and in vivo 
activity against many Gram-positive bacteria [7]. 
Later, it was declared  that Gramicidin is 
beneficial against infected wounds of guinea-pig 
and used as a therapeutic agent [8]. In 1941, 
antimicrobial peptide Tyrocidine was reported 
with activity against both Gram-positive and 
Gram-negative bacteria [9]. In 1942, the 
antimicrobial peptide-like substance was isolated 
from the endosperm of wheat (Triticum aestivum) 
which exhibits antimicrobial activity against 
various phytopathogens such as Pseudomonas 
solanacearum, Xanthomonas compestris [10]. 
Later on, it was named as purothionin [11,12]. In 
1956, antimicrobial peptide defensin was isolated 
from the leukocyte of rabbit [12]. The 
antimicrobial peptides lactoferrin was isolated 
from milk[13,14]. In 1987, antimicrobial agent 
magainins were isolated from the African clawed 
frog Xenopus laevis. In 1990, the first anionic 
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antimicrobial peptide was isolated from Xenopus 
laevis [15]. Prokaryotic peptides such as 
Hiolbiotics, lantibiotic, and microcin were found to 
be NAMPs [16]. 
 
1.2 Bacterial NAMPS 
 
Several Gram-positive and Gram-negative 
bacteria produce and secrete cationic or neutral 
antimicrobial peptides. The bacterial NAMPs are 
also termed as peptide bacteriocins (Table 1) 
[17]. Bacteriocins are lethal to bacteria other than 
the producing strain and are classified largely 
based on the differences in their molecular 
weight. Mode of action of antimicrobial peptides 
of bacterial origin is by permeabilization of the 
target cell membranes [18,19]. Some peptide 
bacteriocins have specific mechanisms that 
inhibit bacterial metabolic functions. For 
example, peptide microcin C7 inhibits protein 
synthesis and peptide mersacidin inhibits 
peptidoglycan biosynthesis. Lantibiotic is an 
important natural antimicrobial peptide which has 
antimicrobial activity against Gram-positive 
pathogens including many antibiotic-resistant 
bacteria. Lantibiotics are recognized by the 
presence of lanthionine or methyl-lanthionine 
amino acid formed with the help of intramolecular 
cross-linking of cysteine thiols to dehydrated 
serine and threonine residues [20]. They can be 
used as food preservatives, additives, probiotics, 
and preventive medicine. Lantibiotics are made 
up of lanthionine-containing antibiotics and they 
are incorporated on the ribosome as a pre-
peptide which undergoes substantial post-
translational modification to form a biologically 
active peptide. Lantibiotics are synthesized by 
most Gram-positive bacteria and few Gram-
negative bacteria [21]. They reveal antimicrobial 
activity against Gram-positive bacteria by the 
formation of spore in the cell membrane [22]. 
Nisin is the first most promising lantibiotic which 
was discovered in 1920 and used as a food 
preservative in food industries [23]. The peptide 
Nisin is produced by Lactococcus lactis. 
Natamycin is isolated from Streptomyces 
natalensis and used as a food preservative 
against the food spoiling microorganism, 
especially yeast or molds. It has been observed 
that natamycin has little or no activity against 
many pathogenic bacteria. Due to its antifungal 
nature, it has been used in various products like 
dairy, meats and other animal food items. 
Reuterin is isolated from Lactobacillus reuteri 
and has antimicrobial properties. It is water-
soluble non-proteinaceous and effective against 
Gram-negative and Gram-positive bacteria, 

filamentous (molds), and nonfilamentous (yeasts) 
fungi [24]. Reuterin show bacteriostatic activity 
particularly against Listeria monocytogenes and 
many pathogenic bacteria. 
 
1.3 Plant NAMPS 
 
Plants secrete antimicrobial peptide as a part of 
their defense mechanisms against pathogens. 
They primarily target pathogenic fungi however, 
antibacterial and insecticidal activities are also 
reported [36]. Fungicidal mechanisms of most of 
these peptides remain to be explored [37]. Plant 
producing antimicrobial peptides are defensins, 
thionins, lipid transfer proteins, hevein-like 
peptides. Plant defensins are small, highly 
stable, cysteine-rich peptides with antifungal 
properties [38]. They are progressive against 
Fusarium spp., Saccharomyces cerevisiae, and 
C. albicans [39]. Eugenol is a naturally occurring 
phenolic molecules found in some plants such as 
cloves. It is extracted from clove buds for use of 
dental and oral hygiene. It is also used as local 
anesthesia and the formation of dental materials 
in clinical dentistry and is very effective against 
Salmonella, Shigella, Clostridium botulinum, 
Listeria monocytogenes and E. coli [40]. Thionins 
are one of the major groups of plant NAMPs. α-
purothionin is the first thionin which is isolated 
from wheat endosperm. Expressions of thionins 
in plant tissues could be initiated by exposure to 
different pathogens [41]. Hevein-like peptides are 
first synthesized from Hevea brasiliensis. Due to 
their high glycine content and conservative lectin 
domains, they have high bonding ability to the 
chitin layer of the chitin-containing fungi, 
therefore inhibiting their growth [42]. 
 

1.4 Animal NAMPS 
 
Animal antimicrobial peptides obtained from 
mammals, amphibians, and fish, etc. 
Antimicrobial peptides, the mucosal epithelial 
cells and paneth cells both are produced from 
mammals. Mammalian leukocytes are a rich 
source of antimicrobial peptides that protect 
against bacterial infections. These antimicrobial 
peptides are cationic in nature [43]. Protamine 
and Pleurocidin are two major types of animal 
antimicrobial peptides isolated from fish which 
have activity against L. monocytogenes and 
other food-spoilage microorganisms. 
Lactoperoxidase is a group of natural enzymes, 
generally dispersed in nature and form in many 
animals and plants, ductal epithelial cells of 
mammary gland secreted human 
Lactoperoxidase (LP). Lactoperoxidase enzyme  
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Table 1. Different types of natural bacterial peptides and their potential applications 
 

Bacterial peptide Strain Therapeutic targets Potentials application References 
Nisin L. lactis, Streptococcus 

uberis 
Gram-positive bacteria Effective against staphylococcal (including MRSA) 

and enterococcal infections. Medicinal use in 
bacterial mastitis. Oral hygiene, deodorants. 

[25,26,27,28] 

Mersacidin Bacillus sp. MRSA VRE, C. difficile Effective against staphylococcal (including MRSA) 
and enterococcal infections. Treatment of CDAD 
(Clostridium difficile associated diarrhoea) 

[29,30,31] 

Lacticin 3147 L. lactis Gram-positive bacteria Effective against bacterial mastitis. staphylococcal 
and enterococcal infections including VRE, Acne. 

[32,33,28] 

Actagardine Actinoplanes sp. MRSA, VRE, C. difficile Effective against staphylococcal (including 
MRSA)and enterococcal infections. Treatment of 
CDAC (Clostridium difficile associated diarrhoea) 

[30] 

Gallidermine Staphylococus sp. Propionibacteria Skin disorders including acne, eczema, folliculitis  
and impetigo 

[34] 

Epidermine Staphylococcus sp. Stapylococci Skin disorders including acne, eczema, folliculitis  
and impetigo 

[34] 

Duramycin Streptomyces cinnamoneus Gram-negative and Gram-
positive bacteria 

Treatment of cystic fibrosis, ocular diseases and 
disorders 

[35] 
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is very effective against Salmonellae, Shigella, 
Pseudomonas and coliforms. [44]. Avidin is a 
positively charged glycoprotein that is present in 
eggs. Egg also contains biotin. Avidin can 
effectively inhibit the growth of E. coli, Klebsiella 
pneumoniae, Serratia marcescens, and P. 
aeruginosa. [45]. Protamine is a natural food 
preservative. It is cationic antimicrobial peptide 
obtained from fish. Protamine shows high 
stability under heat and it is used for food 
application as a preservative in food packaging. 
Protamine does not influence the sensorial 
characteristics (texture, smell, or taste) of the 
food item to which it is added [46]. Protamine is 
effective against Gram-positive and Gram-
negative bacteria effective against yeast and 
molds [47]. 
 
2. CLASSIFICATION AND DIVERSITY OF 

NATURAL ANTIMICROBIAL PEPTIDES 
 
Natural antimicrobial peptides are classified on 
the basis of structures, origins, and mode of 
action: 
 

2.1 Classification on the Basis of 
Structure 

 
NAMPs are commonly classified based on their 
secondary structure i.e. α-helical, β-sheet, or 
peptides with random-coil structure [48,49,50]. 
Most NAMPs belong to the α-helical and β-sheet. 
α-helical peptides are typically unstructured in 
solvent, and becomes amphipathic helical shape 
when it comes in contact with a biological 
membrane [51,50]. The two most studied 
peptides in this group are (i) LL-37 [50,52] which 
is produced as an inactive precursor (hCAP18; 
human cathelicidin) in neutrophils and epithelial 
cells [53] (ii) human lactoferricin which is derived 
by proteolytic division of the antimicrobial and 
immunomodulatory iron-binding glycoprotein 
lactoferrin present in milk and exocrine 
secretions [54,55]. β-sheet peptides are 
maintained by disulfide bonds [56,57] and are 
assembled to make an amphipathic molecule 
[51]. The β-sheet peptides are more common in 
aqueous solution due to rigid structure [51]. The 
best-studied β-sheet peptides are the defensins 
that are produced as inactive precursors in 
neutrophils, macrophages, and epithelial cells 
[53,50]. Most NAMPs have a common structure 
where domains of hydrophobic and cationic 
amino acids are spatially arranged into an 
amphipathic design which facilitates their 
interaction with bacterial membranes [58- 60]. 
Defensin family peptides range from almost 20-

30 amino acids in length and are described by 
six cysteine residues and intramolecular disulfide 
bond formation and these peptides can yield to 
an amphipathic α-helical structure in hydrophobic 
conditions. [61- 63]. Some natural antimicrobial 
peptides related to the third class of random-coil 
peptides which lack secondary structure and 
often contain a high content of arginine, proline, 
tryptophan, and/or histidine residues [48,49]. 
Other NAMPs, many of the extended peptides 
fold into amphipathic structures after contact with 
a membrane [49]. The most effective peptides in 
this group is indolicidin which is derived from 
bovine leukocytes [56]. 

 
2.2 Classification on the Basis of Origin 
 
Natural antimicrobial peptides are classified on 
the basis of origin from different sources. 
Defensin is a very useful molecule which is 
derived from keratinocyte cells and play an 
important role in the innate immune system in 
skin and liver. They have cationic sequences, 
rich in cysteines [64]. Studies show that these 
molecules interact with the microorganism 
through electrostatic interactions with the lipid 
membrane of the host, generating pores and 
promoting the death of the microbe by osmotic 
imbalance [65]. Human beta-defensin type 2 
(hBD-2) is used as a pro-inflammatory molecule 
in psoriasis and acne lesion stimulated by the 
existence of P. acne bacteria [66]. The 
bactenecins (Bac5 and 7) were firstly known as 
mammalian cathelicidin which were synthesized 
from bovine neutrophils and rabbit CAP18 from 
granulocytes. In cattles, buffalo, horse, chicken, 
and fish the multiple cathelicidins are found [67]. 
Cathelicidins are also secreted from epithelial 
cells such as keratinocytes, mast cells, 
neutrophils [68]. The membrane of the P. acnes 
and cathelicidin interact and it is being inserted in 
the lipid bi-layer promoting the formation of 
pores-channel that allow the entry and exit of 
cellular material, resulting in the death of the 
pathogen [69,70]. Lactoferrin (LF) is an iron-
binding glycoprotein that is part of the innate 
defense system. The nature of Lactoferrin has 
antibacterial, antiparasitic, anti-cancer and anti-
allergic properties [71]. The LF and Fe3+ ion 
connected to each other and interact with the 
bacterial membrane directly, and it show 
antibacterial activity [72,73,74]. The hLF1-11 
peptide plays antimicrobial activity against Gram-
positive and Gram-negative bacteria and also 
fungi. The synthetic peptide is also effective 
against methicillin-resistant Staphylococcus 
aureus (MRSA) and multidrug-resistant 
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Acinetobacter baumannii strains [75-77]. hLF1-
11 is an antimicrobial peptide derived from the N 
terminus of human lactoferrin. hLF1-11 is used 
as antibiotic for a synergistic effect and it is 
effective against fluconazole resistant candida 
albicans. Pre-incubation of fluconazole-resistant 
C. albicans with hLF1-11 naturally increase the 
candidacidal effect of fluconazole [78]. Thionins 
are one of the major groups of plant NAMPs. 
Thionins expression in plant tissues can be 
induced by various pathogens [41]. The anti-
infective mechanism is determined by the 
interaction between thionins hydrophobic 
residues and the positively charged membranes 
of pathogens. The proposed mechanism is 
associated with the lysis of cell membranes. 
Another proposed antimicrobial activity is 
disrupting the calcium influx during the cellular 
activity which changes the membrane polarity 
[79]. Berocall-Lobo et al. (2009) showed that 
wheat thionin, antibacterial activity against 
Leishmania donovani was highest among plant 
NAMPs. They collapsed calcium channels and 
pH gradients across the parasite plasma 
membrane together with a rapid depletion of 
intracellular ATP without affecting mitochondrial 
potential. Hence, the lethal effect of thionins was 
mostly associated with permeabilization of the 
plasma membrane leading to immediate death of 
the parasite. Thionins are mainly found in seeds 
and work as defense molecule against animals. It 
is highly toxic to plant pathogens. Thionins 
isolated from barley (Hordeum vulgare) involved 
in the defense against microbial infections [80]. 
Some thionins have shown cytotoxic activity  and 
can be used in the development of new drugs 
against cancer [81]. Thionins is also present in 
cereals and Pyrularia pubera which have four 
disulfide bonds. The structure of thionins is 
defined by the G (gamma) fold to be expressed 
by two antiparallel α-helices that form a stem and 
antiparallel ß-sheets that form an arm [82]. 
 

3. MODE OF ACTION AND THEIR 
FUNCTION  

 
Natural antimicrobial peptides are found in nature 
on the basis of mode of action and their function. 
The bacterial antimicrobial peptide-like 
lantibiotics, nisin, lacticin 481, nukacin ISK-1, 
mersacidin, lacticin 3147, haloduracin and LAB 
(Lactic acid bacteria) bacteriocins kill the target 
cells by making pores in the membrane and 
inhibition of cell wall synthesis [83]. Pore 
formation causes exposure of low molecular 
weight compounds (e.g. ions K+, H+, phosphate) 
leading to the degeneracy of the proton motive 

force (transmembrane electric potential and the 
pH gradient) that is toxic to the cells. Bacteriocin 
use the cell wall precursor molecules lipid II as 
the anchor molecules on the target cell [84]. It is 
believed that most bacteriocins bind specific 
receptors on the sensitive cells. Nisin binds lipid 
II by the lantibiotic ring structure in the N-
Terminal part of the peptides. The first lantibiotics 
were Nisin and epidermin that shown to use lipid 
II as a docking molecule [85]. Nisin binds lipid II 
through the lantibiotic ring structures in the N-
terminal part of the peptide, leading to the 
formation of lethal pores that contain both nisin 
and lipid II [86]. Nisin inhibits target cells by 
blocking cell wall formation through the 
biosynthesis of peptidoglycan layer [87]. A 
number of different Lantibiotics with N-terminal 
ring structures similar to nisin kill target cells by 
lipid II-mediated pore formation [88]. Viscotoxins 
belong to plant thionins. it is toxic in nature and 
isolated from both leaves and stems of the 
European mistletoe (Viscum album). Viscotoxins 
induced the presence of deficiency on the 
surface of membranes that lead to the 
destabilization and disruption of the membrane 
bilayer [89]. Animals producing natural 
antimicrobial peptide chitosan are obtained from 
partial deacetylation of chitin. It is a natural 
polycationic linear polysaccharide largely found 
in shells of marine crustaceans [90]. It possess 
antitumor, antifungal, antimicrobial and 
antioxidant activities [91]. Chitosan is dominant-
against Gram-negative bacteria like Bacteroides 
fragilis, cholera, Shigella dysenteriae, E. coli, and 
Vibrio. Mammalian antimicrobial peptide cecropin 
P1 in transgenic tobacco led to accelerate the 
resistance to phytopathogenic bacteria 
Pseudomonas syringae pv. tabaci, 
Pseudomonas marginata, and Erwinia 
carotovora [92]. 
 

4. GENETIC REGULATION AND 
EXPRESSION OF NAMPs 

 
NAMPs fall into two categories based on their 
expression: that is non-ribosomally synthesized 
peptides and ribosomally synthesized (natural) 
peptides. Whereas the first group is mostly 
produced by bacteria, the other is produced by 
all organisms including bacteria [93]. NAMPs are 
classified into two groups based on the 
electrostatic charge. First group have positively 
charged peptides in large group peptide and 
second groups consist of non-cationic peptides 
and its further divided into many subgroups such 
as aromatic peptide, anionic peptide and 
peptides [94]. Non-cationic peptides in 
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comparison with the first group are uncommon. 
Mostly the term antimicrobial peptide only refers 
to cationic AMPs. Cathelicidin expression occurs 
at both the transcriptional and post-translational 
level from the transcripts of human cathelicidin 
precursor protein (hCAP18), encoded by the 
gene CAMP, it is induced by 1,25-hydroxyvitamin 
D3 via the vitamin D responsive element (VDRE) 
and triggered independently of pro-inflammatory 
molecules in keratinocytes in vitro [95,96]. In 
mice, the cathelicidin gene for mCRAMP (Cnlp) 
derived from phagocytes is regulated by hypoxia-
inducible factor 1α (HIF-1α) [97,98]. The 
cathelicidin domain acts as both an antimicrobial 
peptide as well as an inhibitor of protease activity 
[99]. The full-length precursor hCAP18, 
processed cathelicidin peptides show potent 
broad-spectrum antimicrobial activity against 
pathogens. The peptide cleaved from hCAP18 
was presumed to be the mature form and termed 
FALL-39 designated as the AMP containing 39 
amino acids isolated from bone marrow [100]. 
AMPs perform role in innate immunity via direct 
inhibitors of microbial activity through the 
governance of immune cell function and 
recruitment and by general mechanism proposed 
for their mode of action against pathogens. The 
cationic NAMP is mostly attracted to the negative 
charge of the membrane on both Gram-positive 
and Gram-negative bacteria. The peptides 
harmonize with the bacterial membrane and 
inserted into the lipid bilayer resulting in the 
formation of pore or disrupting membrane [101]. 
This laeds to destabilization of the bacterial 
membrane and bacterial lysis. The AMP 
preferentially targets dividing or nondividing 
bacteria, especially at the site of cell division 
[102]. As regulators of immune function, 
cathelicidins have been shown in the 
composition of numerous cellular responses. The 
ability of dendritic cells to undergo phagocytosis 
was significantly enhanced in the presence of LL-
37 through changes in the expression of 
phagocytic receptors [103]. LL-37, are found at 
different concentrations in different cells and 
tissue types and body fluids. LL-37 was first 
described in leukocytes and testis. The time-
dependent LL-37 gene expression in maturing 
neutrophils has gained special interest recently 
[104,105]. LL-37, as well as its proprotein, were 
also found bound to plasma lipoproteins [106- 
108]. Human beta-defensin-2 increases the level 
of LL-37 expression in colon and breast epithelial 
cells [109]. Defensins belong to distinct family of 
AMP and expressed in mammals, including 
epithelial cells of the skin, gastrointestinal, 
reproductive, and respiratory systems 

[110,111,112]. The Mature defensins are cationic 
and has positive charge ranging from +1 to +11. 
The small cationic peptide length is between 28-
44 amino acid and contain 6 to 8 cysteine 
residues which help in the formation of 
intramolecular disulfide bridges. The molecular 
structure and configuration of these disulfide 
bridges are the base for the break up these 
NAMPs into specific subfamilies corresponding 
to α, β. In humans, α-Defensins made by three 
disulfide bridges between cysteine residues 1- 6, 
2- 4, 3- 5. The α and β-defensins are derived 
from gene products believed that evolved from 
an ancestral β-defensin gene [113]. α-defensins 
suppose to communicate with the antimicrobial 
host defense within the urogenital tracts, 
gastrointestinal and circulating immune cells. 
Human neutrophils encode genes corresponding 
to the four α-defensins termed as human 
neutrophil peptides 1- 4 (HNP-1 through 4) 
[114,115]. The binary function is cover by α-
Defensins and the members of the cathelicidin 
family, as both are modulator of microbial 
pathogenesis via their innate AMP activity and 
host immune function. For example, the HNPs 
were found to upregulate the levels of both tumor 
necrosis factor-alpha (TNF-α) and interleukin-8 
(IL-8) in human monocytes after exposure to 
Staphylococcus aureus while reducing the 
expression of cell-surface adhesion molecules in 
human umbilical endothelial cells activated by 
TNF-α [116]. 
 

5. APPLICATION AND FUTURE 
PERSPECTIVES OF NAMPs 

 
Natural antimicrobial peptides can be used as 
food preservatives, additives, probiotics, and 
prophylactics. Lantibiotics have a vast array of 
applications in the food industries, medicine, and 
health care. Nisin which has been used 
commercially is the only natural antimicrobial 
agent that is approved by the FDA. It has been 
used as a safe food preservative in processed 
dairy products, canned fruits, and vegetables 
[117]. Nisin show antimicrobial properties against 
food spoiling bacteria like Listeria 
monocytogenes [118]. It used in veterinary 
medicine and the treatment of bovine mastitis 
[119]. Nisin is effective against clinically relevant 
human pathogens like Helicobacter pylori. 
Actagardine and mersacidin appear to have 
notable activity against methicillin resistant, 
Staphylococcus aureus infection, oral decay and 
acne [120]. Both Gallidermin and Epidermin are 
used in the treatment of human diseases like 
acne, eczema, folliculitis, and impetigo and also 
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used for personal care products. Cinnamycin is 
used in inflammation, viral infections and for 
blood pressure regulation [121]. Pep5 and 
Epidermin prohibit the attachment of coagulase-
negative Staphylococci specifically S. 
epidermidis to silicon catheters [122]. Mutacin 
1140 can prevent dental cavities. Duramycin and 
Ancovenin both are used for the treatment of 
inflammation and blood pressure regulation. 
Natural antimicrobial peptides from animals and 
plant origin are used as alternative to chemical 
preservatives because of the safety, no toxic 
effects, and elongation of shelf life of food 
products [123]. Bacteriophages are also used as 
a preservative for food items. Lactobacillus 
reuteri is a water-soluble, non-proteinaceous in 
nature. It is effective against many 
microorganism like Gram-negative, Gram-
positive bacteria, filamentous (mold), and non-
filamentous (yeast) fungi [124]. NAMPs have 
diverse applications and can be used as 
therapeutic agents against bacterial, fungal, and 
viral infections. NAMPs are effective against 
some antibiotic-resistant bacteria like methicillin-
resistant S. aureus, Vancomycin-resistant 
enterococcus (VRE). Some NAMPs are also 
used in agricultural like b-purothionin, cecropin B, 
and phor21 which show antifungal activity. Alfalfa 
antifungal peptide isolated from seeds of 
Medicago sativa, and it show activity against the 
unstable fungal pathogen of potato, V. dahlia. 
Rice plants expressed the cecropin A gene of 
Hyalophora cecropia which provide resistance to 
Magnaporthe grisea, a specific agent of rice blast 
disease. It will be crucial for the development of 
NAMPs for practical use in medicine as a 
therapeutic agent. Natural antimicrobial peptides 
play an important role in humans, animal 
diseases, agriculture and the environment. The 
preservation of the chicken and meat is done by 
Defensin. Various bacteriocins are known to 
target pathogens, including Clostridium difficile 
and emerging antibiotic-resistant bacteria such 
as methicillin resistance Staphylococcus aureus 
(MRSA), vancomycin resistance enterococcus 
VRE and entero-hemorrhagic E. coli [125-127]. 
Recently, researchers have shown that 
bacteriocin based therapeutic approaches might 
be a part of the treatments against pathogens. 
For example, bacteriocin therapy used in distal 
colon models and demonstrated that the narrow-
spectrum bacteriocin (sactibiotic) thuricin CD 
specifically eliminates C. difficile without 
disrupting the beneficial microbial community 
[128]. Use of bacteriocin might prove good to 
present treatment for C. difficile associated 
intestinal diseases using a broad spectrum of 

antibiotics [129]. Lantibiotics (such as nisin, 
mersacidin and lacticin 3147) can eradicate 
infections caused by Strep. pneumonia and 
MRSA in mice [130,131] as well as having 
preventive effects against tooth diseases in dogs 
[132] and bovine mastitis in dairy cows [133]. 
Bacteriocin (microcin J25) isolated from gram-
negative bacteria have been shown to drastically 
reduce Salmonella infection in a mouse model 
[134]. Nisin was one of the first NAMPs which 
show great potency in animal infection model. 
Nisin can be eliminated from the blood very 
rapidly like penicillin [135]. Lysostaphin is a 
(bacteriocin) produced by S. simulans [136], the 
group of antimicrobial proteins that enzymatically 
degrade bacterial cell wall [137]. Nisin is also 
used in canned food products to protect spoilage 
from thermophilic microorganisms like 
Clostridium spp., Clostridium 
thermosacchrolyticum, and Geobacillus 
stearothermophilus produce thermophilic spores 
[138]. Nisin protect thermophilic spore-forming 
microorganisms, which are responsible for the 
food-spoilage and used in canned peas, carrots, 
potatoes, baby corn etc. [139,140,141]. It inhibits 
the growth of Lactobacillus and Leuconostoc 
which results in the spoilage of beer and wine 
[142]. Nisin is used as an additive in the 
fermenters in brewing industries. It also 
enhances the shelf-life of beer [138]. Pediocin 
PA-1 is natural antimicrobial peptide which is 
used as a food preservative in the food industry. 
Some countries are using Pediocin PA-1 as a 
food preservative to stop the growth of L. 
monocytogenes, which causes spoilage of meat 
[143]. Enterocin CCM4231 is used for the 
preservation of Soya milk [143]. Bovine and 
activated lactoferrin (ALF) present in milk has the 
characteristic iron binding ability, US-FDA 
approved the lactoferrin as a safe preservative 
for meat and beef products. Lactoferricin, 
kappacin and k-casecidin show antibacterial 
activity and also useful as food preservatives 
[144]. Natural antimicrobial peptides are Beta-
purothionin, cecropin B, and phor21 used in the 
agriculture for exhibited antifungal activity in vitro. 
Their expression under an endogenous promoter 
with moderate-level activity and extracellular 
secretion indicated that in plants, only beta- 
purothionin exhibits high antibacterial and 
antifungal activity [145]. SB-37 and Shiva-1 are 
38-amino acid peptides similar to Cecropin B 
which is a natural lytic peptide of Hyalophora 
cecropia. Shiva-1 is very effective against 
virulent strain of Pseudomonas solanacearum 
compared to control plants [146]. Researchers 
have shown a genetic modification of potato by 
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AMP-encoding genes. Alfalfa antifungal peptide 
(alfAFP) isolated from seeds of Medicago sativa, 
displays strong activity against the harmful fungal 
pathogen of potato, V. dahliae [147]. MsrA3, an 
N-terminally modified analog of temporin A, 
expressed in potato led to the resistance against 
two prevalent potato diseases, late blight and 
pink rot that is caused by Phytophthora infestans 
and Phytophthora erythroseptica respectively. 
The activity of bacterial phytopathogen E. 
carotovora was also inhibited by MsrA3 [148]. 
MSI-99 in tomato led to the prevention of 
bacterial speck disease caused by 
Pseudomonas syringae p [149]. Alternaria solani  
early blight in potatoes; it is also a highly serious 
fungal disease of tomato as it results in crop loss 
and reduction of fruit quality. Tomato lines which 
had been transformed by the introduction of a 
gene from Mirabilis jalapa, encoding Mj-AMP1, 
showed enhanced resistance to early blight 
disease [150]. Rice is a major staple crop and 
serves as a model cereal crop plant for scientific 
studies [151]. Rice plants expressing the 
cecropin A gene of Hyalophora cecropia showed 
enhanced resistance to Magnaporthe grisea, the 
causal agent of rice blast disease.  ER-CecA was 
suggested as a potent candidate for protection of 
rice plants against the rice blast fungus M. grisea 
[152]. Devastating rice disease is bacterial leaf 
blight caused by Xanthomonas oryzae pv. 
Oryzae. Transgenic expression of cecropin B, 
isolated from Bombyx mori, confined lesion 
development in the infected leaflets [153]. Attacin 
E is an AMP that originated from Hyalophora 
cecropia. Expression of attacin E in transgenic 
royal gala apple resulted in significant resistance 
to Erwinia amylovora, the bacterial agent that 
causes fire blight disease [154]. Magainin-type 
genes in transgenic grapevine led to strong 
resistance to Agrobacterium vitis, the bacterial 
agent of crown gall disease, and mild resistance 
against Uncinula necator, the fungal agent of 
powdery mildew [155]. 
 

6. CONCLUSION 
 
Natural antimicrobial peptides have broad-
spectrum activities against different kinds of 
pathogens like fungi, viruses, protozoans, Gram-
positive and Gram-negative bacteria as well as 
resistant bacteria. In (2016) wan et al. reported 
that green tea plant extracted antimicrobial 
peptides show antimicrobial activity against 
microorganisms like yeast, mold, bacteria[156]. 
Most of them have the ability to grow in stress 
conditions like low oxygen and low moisture 
[157]. Chemical-based preservatives are 

Benzoate, propionate, nitrate, nitrite, and sulfites 
stop the growth of microbes. Freezing, chilling, 
reduction of water-activity, acidification, nutrient 
restriction, fermentation are physical methods of 
food preservation [158]. Natural antimicrobial 
peptides are an alternative option to reduce the 
chemical burden of synthetic preservatives. 
NAMPs can be used as natural food 
preservatives which are less complex, less toxic, 
eco-friendly, and broad-spectrum. In this review 
article, we have discussed almost all the different 
types of NAMPs produced by different sources 
like plant peptides, animal peptides, fungal 
peptides, and bacterial peptides. These types of 
NAMPs are very useful for human welfare, 
agricultural, environment, clinical, medical 
microbiology, and could be used as a natural 
preservative in the food industries. Diverse 
natural and synthetic peptides with antimicrobial 
properties have great possibilities for the 
development of innovative approaches in 
medical and agricultural biotechnology. They 
present novel alternatives or substitutes for 
antibiotics in the treatment or control of microbial 
infections in humans, animals, and plants and 
could be used as natural food preservatives. 
However, more in-depth research is needed to 
explore unknown natural antimicrobial agents 
through advanced genomics and metagenomics 
approaches for better understanding and 
applications of these NAMPs for the betterment 
of humans, plants, and animals health. 
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