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ABSTRACT 
 
Forecasting the stock market is one of the challenges facing investors and portfolio managers 
today. These challenges can be overcame by different techniques or analyses in the literature for 
investment decision-making like, open interest analysis and volatility index on short term basis. 
However, only a few researchers have employed Bayesian techniques in the forecasts. This study 
aimed at forecasting the stock prices of five leading banks and the banking sector index of Nigeria 
using Bayesian Vector Autoregression (BVAR). This research adopted Minnesota priors; Stochastic 
Search Variable Selection (SSVS) prior; Steady-state with Inverse Wishart prior; steady-state prior 
with diffuse priors; and Ordinary Least Squares (OLS) procedures. The data were divided into two 
sets: One set containing 400 datasets for training while the other containing 100 datasets was used 
for evaluation. Covariance matrices were obtained for these priors as well as the coefficients of the 
BVAR models. Forecasts for the five priors and their Standard Vector Autoregressions (SVAR) were 
obtained. The forecast performances for the priors and SVAR were examined using Root Means 
Square Error (RMSE). The result of RMSE for Minnesota, Minnesota (Normal Inverse Wishart), 
SSVS, Steady State, Diffuse priors, and OLS obtained were 0.35085, 7.663893, 6.095331, 
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0.4449004, 11.08892 and 6.174951 respectively. The results showed that the Minnesota prior to 
BVAR model outperformed the other priors and Ordinary Least Square method of SVAR in 
predicting stock prices.  
 

 

Keywords: Minnesota; stochastic search variable selection; steady state with inverse wishart; root 
mean square error. 

 

1. INTRODUCTION 
 

The stock market is a segment of the financial 
market where long-term funds packaged in the 
form of securities, such as shares, stocks bonds, 
debentures, loan stocks, and derivatives, are 
traded. Ezeoha, Ogamba, and Onyiuke, [1] and 
Ogunmuyiwa et al. [2] both agreed in their 
research that Nigeria's stock market spurs 
economic growth. The challenge of an investor is 
how to identify viable stocks and guide them 
towards making a profit as well as discovering a 
way to predict the stock market [3]. In that 
connection, stock price forecasting has always 
been a subject of interest particular interest         
to investors, speculators, economists, and 
governments. This paper employs Bayesian 
Vector Autoregression (BVAR) that are essential 
to capture prior distributions and also improve 
out-of-sample performances. In BVAR, models 
are treated as random variables and prior 
probability is assigned to those variables, unlike 
the standard VAR. Since VAR is flexible enough 
to allow many free parameters, and VAR 
coefficients are not constant, Time-Varying 
coef1ficient-VAR (TVC-VAR) models were 
introduced to allow for time variation in the   
model [4].  
 
The generality of the VAR model brings along a 
large number of parameters even for systems of 
moderate size (Joris de Wind (2015)). Over-
parametrization results in the problem of lack of 
precision and reliability of the forecast. The large 
number of parameters and limited temporal 
availability of macroeconomic datasets often lead 
to over-parameterization problems (Koop and 
Korobilis 2010) that can be mitigated by 
introducing prior information within a Bayesian 
approach. To solve the problem of over-
parameterization in VAR, Litterman (1986) 
proposed the concept of Bayesian VAR. The 
Bayesian VAR involves a combination of prior 
(information available to the researcher before 
seeing the data) and the likelihood (data 
information) to arrive at the posterior. Bayesian 
estimation provides a convenient framework for 
incorporating prior information with as much 
weight as the analyst feels it merits (Hamilton, 

1994). Bayesian inference treats VAR 
parameters as random variables and provides a 
framework for updating the distribution of those 
parameters (Silvia and Giovanni 2018).  
 
Silva and Giannone (2018) stated that when 
there is no pre-sample information, Bayesian 
VAR inference can be thought of as adopting 
'non-informative' (or 'diffuse' or 'flat') priors, which 
expresses complete ignorance about the model 
parameters, in the light of the sample evidence 
summarized by the likelihood function (i.e. the 
probability density function of the data as a 
function of the parameters). 
 
Koop (2013) observed that informative priors are 
used to impose additional structure on the model 
and shrink it towards proven benchmarks. The 
results are models with reduced parameter 
uncertainty and significantly enhanced out-of-
sample forecasting performance. 
 
The choice of these priors and their in 
formativeness [5] poses a challenge and remains 
the fulcrum of discussion and criticism. A 
Bayesian approach to VAR estimation was 
originally advocated by Litterman (1980) as a 
solution to the overfitting problem. They express 
the belief that an independent random-walk 
model for each variable in the system is a 
reasonable 'center' for the beliefs about their time 
series behavior. While not motivated by 
economic theory, they are computationally 
convenient priors, meant to capture commonly 
held beliefs about how economic time series 
behave. Minnesota priors can be cast in the form 
of a Normal Inverse-Wishart (NIW) prior, which is 
the conjugate prior for the likelihood of a VAR 
with normally distributed disturbances [6,7] 
provide a data-based, theoretically grounded 
approach to setting prior informativeness in          
the spirit of hierarchical modeling. They alleviate 
the subjectivity of setting hyperparameters and 
demonstrate remarkable performance in 
common analyses. The Bayesian VAR involves a 
combination of prior (information available to the 
researcher before seeing the data) and the 
likelihood (data information) to arrive at the 
posterior [6]. Frank Schorfheidea & Dongho 
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Song, [9] in their joint paper develops a vector 
autoregression (VAR) for time series which are 
observed at mixed frequencies – quarterly and 
monthly. The model is cast in state-space form 
and estimated with Bayesian methods under a 
Minnesota-style prior. In their paper evaluation of 
the marginal data density was demonstrated to 
implement a data-driven hyperparameter 
selection. Mauro Bernardi, Daniele Bianchib, and 
Nicolas Bianco [10] propose a novel variational 
Bayes approach to estimate high-dimensional 
Vector Autoregressive (VAR) models with 
hierarchical shrinkage priors. Sugita, K. (2022), 
adopts Bayesian VAR models with three different 
priors – independent Normal-Wishart prior, the 
Minnesota prior, and the stochastic search 
variable selection (SSVS). His results show that 
iterated forecasts tend to outperform direct 
forecasts, particularly with longer lag models and 
with longer forecast horizons. He believes that 
Implementing SSVS prior generally improves 
forecasting performance over unrestricted VAR 
model for either nonstationary or stationary data. 
Amidst the rise of Markov chain Monte Carlo 
(MCMC) methods, Bayesian statistical software 
has evolved rapidly. Established software 
provides flexible and extensible tools for 
Bayesian inference, which are available cross-
platform. BVAR is the first R package 
implementing these hierarchical Bayesian VAR 
models and provides a complete and easy-to-use 
toolkit for estimation and analysis (Nikolas and 
Lucas (2019)).  
 

2. METHODOLOGY 
 

2.1 Bayesian Inference 
 

For a given model: 
 

𝑦𝑡 = 𝐴1𝑦𝑡−1 + 𝐴2𝑦𝑡−2 + ⋯ + 𝐴𝑝𝑦𝑡−𝑝 +

𝜀𝑡  𝜀𝑡~𝐼𝐼𝐷 𝑁(0, Σ)                        (1) 

 
Where 𝜀𝑡  is an independent and identically 
distributed random variable for each t. The 
distribution from which is 𝜀𝑡  drawn determines 
the distribution of 𝑦𝑡, conditional on its past. The 
standard assumption in the macro-econometric 
literature is that errors are Gaussian. The 
Bayesian approach to VAR treats time series 
data 𝑦 =  {𝑦1,· · · , 𝑦𝑡}  as known stochastic data 
and A and Σ as unknown parameters. The 
inference about the unknown parameters A and 
Σ is made conditioned to the set of known data y 
as 𝑓 (𝑦|𝐴, 𝛴) . The previous information about 
𝐴 𝑎𝑛𝑑 𝛴  is known as prior of (𝐴, 𝛴), 𝜋(𝐴, 𝛴)  is 
defined in the form of the probability density 

function. By applying Baye's theorem to 
represent the posterior distribution of VAR(p), we 
 
have; 
 

𝑃(𝐴, 𝛴|𝑦) =
𝑃(𝐴,𝛴)𝑃(𝑦|𝐴, 𝛴)

𝑃(𝑦)
           (2) 

 
𝑃(𝐴, 𝛴|𝑦) ∝ 𝑃(𝐴, 𝛴)𝑃(𝑦|𝐴, 𝛴)                       (3) 

 
𝑃(𝐴, 𝛴|𝑦)  is the posterior distribution of 
(𝐴, 𝛴) 𝑔𝑖𝑣𝑒𝑛 𝑦. The posterior distribution of 
VAR(p) is the combination of prior distribution 
P(A, Σ) and the information given by the time 
series data through P(y|A, Σ). 𝑃(𝑦) is the sample 
density that is independent of A and Σ. It is the 
normalizing constant for a given sample y.  
 

P(y|A, Σ) ∝ P(A, Σ)P(y|A, Σ) = L(A, Σ|y)P(A, 
Σ)                                                               (4) 

 
Bayesian inference on the model in Eq. (1) 
amounts to updating prior beliefs about the VAR 
parameters, that are seen as stochastic 
variables, after having observed a sample. 
 
VAR model of equation 1 can be written as  
 

𝑌 = 𝛼𝑋 + 𝜖                                                  (5) 
 

where 𝑌 is a 𝑇 ×n matrix of regressands, 𝑋 is a 
𝑇 × k matrix of regressors, 𝜖  is a 𝑇 × n 

matrix of shocks and 𝛼  is a 𝑘 × 𝑛  matrix of 

regression parameters, with 𝑘 = 1 + 𝑝𝑛  is the 
number of regression parameters per VAR 
equation. 
 
If we consider the vectorised form of equation 
(1), 
 

𝑦 =  (𝐼 ⊗  𝑋)𝛼 +  𝑢       𝑢 ∽  𝑁 (0, 𝛴 ⊗ 𝐼)  (6) 
 

𝑝 (𝑌|𝐴, 𝛴) =
1

(2𝜋)
𝑇𝑚

2

 |𝛴|
𝑇

2 exp {
1

2
 𝑡𝑟[𝛴−1𝑆̂]} ×

exp {−
1

2
 (𝛼 − 𝛼̂)(Σ ⨂(𝑋′𝑋)−1)−1(𝛼 − 𝛼̂)}    (7) 

 
The posterior of 𝑦 will now depend on the prior of 

𝛼 𝑎𝑛𝑑 Σ. 
 

2.2 Prior Selection 
 

2.2.1 Non-informative prior 
 

In the absence of pre-sample information, 
Bayesian VAR inference can be thought of as 
adopting 'non-informative' (or 'diffuse' or 'flat') 
priors, that express complete ignorance about 
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the model parameters. Non-informative or flat 
priors are designed to extract the maximum 
amount of expected information from the data.                   
In this case, the prior distribution has                        
minimal influence on the posterior distribution, 
and the estimates are primarily driven by the 
likelihood function, which summarizes the 
sample evidence. When using non-informative 
priors, we assumed that α and Σ are 
independent. 
 

𝑝(𝛼, Σ) =  𝑝(𝛼). 𝑝(Σ)                                    (8) 
 

𝑝(𝛼) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                                    (9) 
 

𝑝(Σ) = |Σ|−(𝑛+1)                      (10) 
 

Using the condition (8), (9) and (10), we have: 
 

𝑝(𝐴, Σ|𝑦) ∝ |𝛴|−
(𝑇+𝑛+1)

2 exp {
1

2
 𝑡𝑟[𝛴−1𝑆̂]} ×

exp {−
1

2
 (𝛼 − 𝛼̂)(Σ ⨂(𝑋′𝑋)−1)−1(𝛼 − 𝛼̂)}  (11) 

 

Note that: 
 

𝑝(𝐴, Σ|𝑦) = 𝑝(𝛼|Σ, 𝑦). 𝑝(Σ|𝑦)                     (12) 
 

By ignoring the constant of the proportionality we 
have, 
 

𝜶|Σ, 𝑦 ∼ 𝑁(𝛼̂, Σ ⨂(𝑋′𝑋)−1)                      (13) 
 

Σ|𝑦 ∼ 𝐼𝒲((𝑦 − 𝐴̂𝑥)
′
(𝑦 − 𝐴̂𝑥), 𝑇 − 𝑘)        (14) 

 

2.2.2 Minnesota prior 
 

The Minnesota prior is based on the assumption 
that Σ is known, so in practice it should be pre-
estimated. The major idea behind the Minnesota 
prior is to shrink the model towards the random 
walk, with stronger shrinkage for coefficients on 
longer lags and across variables. The Minnesota 
prior is a shrinkage method that is used to set 
most or all the elements of 𝛼 towards zero. This 
is achieved by shrinking the diagonal elements of 
the coefficients of regression to 1 and others to 
zero. This will lead to each variable of the VAR 
model following a simple Random Walk with a 
drift. The prior for the variance-covariance matrix, 
Σ  is assumed to be fixed and diagonal. 
Specifically, Litterman suggested setting the prior 
standard deviations to:  
 

𝛼~𝑁(𝑎,̂ Σ̂), 
 

Σ̂ = {

𝜋1

𝑙𝜋3
 𝑓𝑜𝑟 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑖𝑡𝑠 𝑜𝑤𝑛 𝑙𝑎𝑔𝑠, 𝑙 = 1, 2, … , 𝑝

𝜋1𝜋2𝑠𝑗

𝑙𝜋3𝑠𝑟
 𝑓𝑜𝑟 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑖𝑡𝑠 𝑜𝑤𝑛 𝑙𝑎𝑔𝑠, 𝑙 = 1, 2, … , 𝑝

∞ 𝑓𝑜𝑟 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

  

(15) 

Where 𝜋1 is referred to as the ”overall tightness, 

𝜋2 the ”relative tightness of other variables” and 

𝜋3 the ”lag decay rate” and the variance of the 

prior is proportional to 
𝑠𝑟

𝑠𝑗
 which is a scale factor 

accounting for the different variances of the 
dependent and explanatory variable.  
 
The error covariance matrix 𝛴 =
 𝑑𝑖𝑎𝑔(𝑠1

2 , . . . , 𝑠𝑝
2 ). 

 
Estimating the BVAR model requires the 
predictor to determine the value of the above 
hyperparameters. Because the main purpose of 
the BVAR model is prediction, so, unlike other 
models, the value standard of hyperparameters 
is to obtain the optimal prediction effect, rather 
than relying on various model settings and tests. 
The determination of hyperparameters is a 
process similar to raster search, searching for 
the value that can obtain the best prediction 
effect within the range of hyperparameters. For 
this reason, the total sample T obtained is 
usually divided into two periods T and T − T0. The 
data of period T is used to estimate the BVAR 
model and forecast, and the data of T − T0 is 
used to calculate and compare the forecast error 
and determine the final hyperparameter value. 
 
2.2.3 Steady state VAR with variable 

selection prior 
 
A reduced-form VAR is written as:  
 

𝐵(𝐿)𝑦𝑡  =  𝑐𝑑𝑡  +  𝜀𝑡                                  (16) 
 
where 𝑦𝑡 is m × 1 vectors of time series with time 
t = 1, ..., T observations.  
 

B(L)  = Im– B1L– … – BpLp                      (17) 

 
with  
 

Lyt = yt–1,                                                 (18) 
 
εt are the errors distributed as N(0, Σ) with Σ 
being the m×m covariance matrix and dt is a q-
dimensional vector of exogenous deterministic 
variables such as constants, dummies or time 
trends. Suppose yt is stationary, that is the 
expected mean of 𝑦𝑡 exists and is stationary the 
unconditional mean or steady-state of the VAR 
process in Eq. (16) is defined as  
 

E(yt) = μt = B(L)–1cdt.                             (19) 
 
By setting 𝜃 = B(L)1 c, then 
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E(yt) = μt = θdt.                                       (20) 
 
The deviation from the mean parametrization can 
be represented by: 
 

B(L)(yt −  θdt) = εt                                   (21) 
 
Equation 21 above is called the steady-state 
representation of VAR with μt = θdt  being the 
long run mean. The prior belief about μt can be 
incorporated by specifying the prior of  
 

θ. yt = yt −  θdt                                         (22) 

is the mean-adjusted time series of 𝑦𝑡 . 
 
Therefore, (16) can be written in a normal form 
as 
 

yt = αX + εt                                              (23) 

 
(23) is an unrestricted steady state VAR since no 
restriction is incorporated in the 
(𝛼)𝑗=1

𝑚  elements of 𝛼 . Applying the Bayesian 

variable selection method proposed by Korobilis 

(2013) restricts some of the 𝛼𝑗 coefficients to be 

zero as follows: 
 

{
𝛼𝑗 = 0, 𝑖𝑓 𝛾𝑗 = 0

𝛼𝑗 ≠ 0 𝑖𝑓 𝛾𝑗 = 1
                      (24) 

 
where 𝛾𝑗  is an indicator variable and the j 

element of the vector {𝛾1 ⋯ 𝛾𝑛}′ . We can then 
define steady-state VAR with variable selection 
as: 
 

yt = θ̃X + εt                                               (25) 

 

2.2.4 Stochastics search variable selection 
prior 

 

The basic idea of SSVS is to assign commonly 
used prior variances to parameters, which should 
be included in a model, and prior variances close 
to zero to irrelevant parameters. By that, relevant 
parameters are estimated in the usual way and 
posterior draws of irrelevant variables are close 
to zero so that they have no significant effect on 
forecasts and impulse responses. This is 
achieved by adding a hierarchial prior to the 
model, where the relevance of a variable is 
assessed in each step of the sampling algorithm. 

The main innovations of the method were: (i) the 
introduction of a vector of binary parameters, 
denoted by 𝜸, which was used to indicate if a 
variable should be included or excluded from the 
model (active or inactive) and (ii) that each 
regression coefficient was not set exactly equal 
to zero when a covariate was assumed to be 
inactive, but it was a posteriori restricted to a 
small neighborhood around zero via very 
informative zero-centered priors. 
 

𝛼𝑗|𝛾𝑗  ∼  𝑁(𝛼, 𝐷)                                        (26) 

 
Where 𝛼  is the prior mean, 𝐷 =
 𝑑𝑖𝑎𝑔{𝛤1, … , 𝛤𝑛} 𝑎𝑛𝑑 𝛾 =  {𝛾1, . . . , 𝛾𝑛}  which takes 
the values of 0 and 1. 
 

𝛤 = {
𝛤0𝑗  𝛾 =  0

𝛤1𝑗  𝛾 =  1
  

 
Given the latent inclusion of 𝛾𝑗  using the 

hierarchical form: 
 

𝛼𝑗|𝛾𝑗  ∼  (1 − 𝛾𝑗)𝑁(𝑎, 𝛤0𝑗
2 )  +  𝛾𝑗𝑁(𝑎, 𝛤1𝑗

2 )  (27) 

 
𝑃(𝛾𝑗  =  1)  =  1 −  𝑃(𝛾𝑗  =  0)  =  𝑃1𝑗       (28) 

 

3. RESULTS AND DISCUSSION 
 

3.1 Bayesian Macroeconomics in R 
(BMR) 

 
Bayesian Macroeconometrics in R (‘BMR’) is a 
collection of R and C + + routines for estimating 
Bayesian Vector Autoregressive (BVAR) and 
Dynamic Stochastic General Equilibrium (DSGE) 
models in the R statistical environment.  
 

3.2 Data Collection 
 
The data used in this study is the daily stock 
price of five leading banks and the                   
banking sector index. These banks are GT Bank, 
Zenith Bank, UBA, First Bank, and Eco Bank. 
The data collected was from January             
2022 to December 2023. A total of 500 data 
points were splitted into two parts with 400 data 
for training and the remaining for evaluating the 
forecast performance. The data was stationary 
after the first difference as shown in Figs. 1 and 2 
below: 
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Fig. 1. Data Unstationary before differing 
 

 
 

Fig. 2. Data stationary after first 
 

3.3 Data Analysis 
 
The coefficients of the Bayesian vector 
autoregressions are computed using Minnesota, 

OLS_VAR, stochastic search variable selection, 
Minnesota prior with diffuse prior for variance 
and steady state with inverse Wishart as shown 
below: 
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Table 1. Coefficient of BVAR using OLS 
  

BSI GTB ZEN FBN UBA ECO 

BSI.01 -0.339 -0.018 -0.011 -0.003 -0.005 -0.003 
GTB.01 5.507 0.166 0.183 0.192 0.104 0.079 
ZEN.01 3.311 0.213 -0.002 -0.03 0.007 0.031 
FBN.01 0.599 0.098 0.048 0.198 0.092 0.106 
UBA.01 7.718 0.32 0.293 0.221 -0.067 0.144 
ECO.01 1.265 0.068 -0.093 0.049 -0.01 0.009 
BSI.02 -0.435 -0.003 -0.006 0.001 0.001 0.005 
GTB.02 1.253 -0.106 0.076 0.048 -0.023 0.058 
ZEN.02 2.668 0.041 0.057 0.025 -0.007 -0.055 
FBN.02 5.099 0.164 0.258 -0.09 0.03 0.056 
UBA.02 1.022 0.174 -0.319 -0.226 -0.091 -0.259 
ECO.02 1.248 0.019 -0.004 -0.08 -0.037 -0.136 
BSI.03 0.018 0 0.001 0.007 0.003 0.001 
GTB.03 0.396 -0.022 -0.014 0.147 0.034 0.038 
ZEN.03 -2.826 -0.142 -0.131 -0.166 -0.057 -0.062 
FBN.03 -4.334 -0.232 -0.033 -0.188 -0.07 -0.033 
UBA.03 1.451 0.456 0.238 -0.281 -0.094 -0.119 
ECO.03 -1.719 -0.011 0.008 0.065 0.023 -0.001 
BSI.04 -0.232 -0.001 -0.004 0 0 0.001 
GTB.04 0.776 -0.105 -0.053 -0.012 0.01 0.048 
ZEN.04 2.709 0.177 0.114 0.034 0.025 0.008 
FBN.04 0.827 0.094 0.025 -0.016 0.099 -0.016 
UBA.04 4.284 0.01 0.006 -0.246 -0.096 -0.068 
ECO.04 -0.564 -0.043 0.09 -0.041 -0.055 -0.15 
const 0.699 0.023 0.021 0.014 0.017 0.019 

 
Table 2. Coefficient of BVAR using Minnesota prior 

  
BSI GTB ZEN FBN UBA ECO 

BSI-lag1 -0.329 -0.018 -0.012 -0.003 -0.006 -0.004 
BSI-lag2 5.421 0.201 0.173 0.171 0.088 0.07 
BSI-lag3 3.218 0.188 0.024 -0.023 0.008 0.035 
BSI-lag4 0.561 0.077 0.037 0.232 0.073 0.103 
GTB-lag1 7.112 0.291 0.284 0.214 0.026 0.142 
GTB-lag2 1.314 0.062 -0.086 0.057 -0.008 0.044 
GTB-lag3 -0.401 -0.003 -0.006 0 0 0.004 
GTB-lag4 1.153 -0.081 0.067 0.028 -0.023 0.043 
ZEN-lag1 2.33 0.032 0.054 0.037 0.003 -0.043 
ZEN-lag2 4.489 0.16 0.227 -0.092 0.02 0.042 
ZEN-lag3 0.755 0.116 -0.244 -0.16 -0.052 -0.189 
ZEN-lag4 0.845 0.013 -0.007 -0.073 -0.028 -0.114 
FBN-lag1 0.011 0.001 0.001 0.005 0.002 0 
FBN-lag2 0.303 -0.003 -0.009 0.105 0.026 0.024 
FBN-lag3 -2.24 -0.112 -0.103 -0.126 -0.042 -0.041 
FBN-lag4 -3.191 -0.162 -0.014 -0.167 -0.055 -0.037 
UBA-lag1 0.145 0.228 0.144 -0.151 -0.048 -0.056 
UBA-lag2 -1.407 -0.003 0.015 0.051 0.021 0.005 
UBA-lag3 -0.174 0 -0.003 -0.001 0 0 
UBA-lag4 0.664 -0.063 -0.031 -0.016 0.005 0.033 
ECO-lag1 1.978 0.114 0.073 0.028 0.017 0.014 
ECO-lag2 0.475 0.055 0.014 -0.024 0.056 -0.023 
ECO-lag3 1.864 -0.015 -0.003 -0.101 -0.03 -0.021 
ECO-lag4 -0.473 -0.035 0.055  -0.031 -0.038 -0.102 
constant 0.817 0.019 0.025 0.014 0.016 0.016 
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Table 3. Coefficient of BVAR using SSVS 
  

BSI GTB ZEN FBN UBA ECO 

BSI.01 -0.002 -0.002 0 0 0 0 
GTB.01 0.76 0.003 0.001 0.083 0.002 0.001 
ZEN.01 1.156 0.068 -0.027 -0.003 -0.001 0.004 
FBN.01 -0.059 0.004 -0.001 0.183 0.049 0.089 
UBA.01 0.37 0.017 0.005 0.111 -0.151 0.034 
ECO.01 0.17 0.004 -0.047 0.02 -0.002 0.001 
BSI.02 -0.324 0 0 0 0 0 
GTB.02 0.08 -0.093 0.006 0.001 -0.037 0.004 
ZEN.02 0.875 -0.002 -0.002 0.003 -0.002 -0.004 
FBN.02 0.516 0.016 0.025 -0.121 -0.008 0 
UBA.02 5.091 0.187 -0.159 -0.026 -0.01 -0.021 
ECO.02 0.518 0.003 -0.005 -0.01 -0.002 -0.037 
BSI.03 -0.003 0 0 0.001 0 0 
GTB.03 -0.035 -0.003 -0.002 0.089 0.003 0 
ZEN.03 -0.043 -0.006 -0.003 -0.055 0.002 0 
FBN.03 -0.147 -0.013 0.109 -0.144 -0.003 0 
UBA.03 -0.132 0.054 0.022 -0.029 -0.006 -0.004 
ECO.03 -1.724 -0.001 0.006 0.011 0.004 -0.001 
BSI.04 -0.08 0 0 0 0 0 
GTB.04 0.194 -0.014 -0.004 -0.003 0.002 0.002 
ZEN.04 0.053 0.033 0 0 0 0 
FBN.04 -0.045 0.005 -0.002 -0.023 0.047 -0.01 
UBA.04 2.819 0.003 -0.004 -0.064 -0.002 0.001 
ECO.04 0.009 0 0.021 -0.001 -0.004 -0.045 
const 0.731 0.027 0.023 0.012 0.016 0.017 

 
Table 4. Coefficient of BVAR using Steady State Inverse Wishart 

  
BSI GTB ZEN FBN UBA ECO 

BSI.l1 -0.113 -0.003 -0.005 -0.032 0.001 -0.001 
GTB.l1 6.064 0.085 -0.012 0.156 0.006 -0.006 
ZEN.l1 1.494 -0.006 0.022 -0.808 0.002 0.005 
FBN.l1 1.367 0.146 0.315 0.394 0.005 0.03 
UBA.l1 -1.281 -0.115 -0.205 1.337 -0.019 0.119 
ECO.l1 0.561 -0.051 0.072 -0.926 0.032 0.04 
BSI.l2 -0.015 -0.002 -0.002 -0.003 0.002 -0.001 
GTB.l2 0.105 0.01 -0.019 0.017 0.014 -0.062 
ZEN.l2 0.181 0.064 0.051 -0.034 -0.048 -0.009 
FBN.l2 0.126 0.133 -0.081 0.015 -0.019 0.013 
UBA.l2 0.19 0.053 -0.004 0.184 -0.067 -0.106 
ECO.l2 0.049 0.002 -0.05 0.019 0.036 0.023 
BSI.l3 -0.007 -0.21 -0.001 -0.004 -0.025 0.001 
GTB.l3 0.19 -0.795 -0.041 -0.021 0.924 0.008 
ZEN.l3 -0.096 1.365 0.02 0.028 -1.056 -0.006 
FBN.l3 0.085 4.118 0.004 0.054 0.192 0.044 
UBA.l3 0.057 -0.813 -0.032 0.165 1.097 -0.03 
ECO.l3 -0.079 1.736 -0.007 -0.064 0.601 -0.001 
BSI.l4 -0.002 -0.001 0.001 0.002 0.002 0.001 
GTB.l4 0.154 -0.13 0.047 0.066 0.023 -0.003 
ZEN.l4 -0.017 0.006 -0.033 -0.051 0.002 -0.006 
FBN.l4 0.208 0.182 0.014 -0.13 0.021 -0.008 
UBA.l4 0.202 0.125 -0.074 -0.039 -0.053 -0.032 
ECO.l4 0.077 -0.031 -0.087 0.097 0.034 -0.046 
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Table 5. Coefficient of BVAR using steady state diffuse prior 
  

BSI GTB ZEN  FBN UBA ECO 

BSI.l1 -0.29 0.099 0.12 -2.537 -0.057 0.081 
GTB.l1 4.387 0.009 0.086 -0.871 -0.059 0.001 
ZEN.l1 2.044 0.066 -0.23 0.034 0 -0.019 
FBN.l1 -2.63 0.045 0.168 0.001 0.021 0.028 
UBA.l1 15.67 0.023 -0 0.05 -0.044 -0.036 
ECO.l1 0.046 -0.004 0.003 -0.073 -0.067 -0.056 
BSI.l2 -0.02 0.13 0.081 -0.165 0.013 0.064 
GTB.l2 0.123 0.007 -0.15 0.135 -0.093 0 
ZEN.l2 0.23 0.061 -0.11 0.047 -0.042 0.013 
FBN.l2 0.072 0.11 0.059 -0.001 0.832 0.019 
UBA.l2 0.311 4.519 0 0.012 0.148 0.032 
ECO.l2 0.034 -0.226 -0.03 0.007 0.348 -0.028 
BSI.l3 -0.01 0.159 0.025 -0.036 -0.559 0.027 
GTB.l3 0.182 2.462 -0.04 0.064 0.082 0.002 
ZEN.l3 0.083 1.32 -0.01 -0.127 0.001 0.026 
FBN.l3 -0.06 -1.171 0.052 0 0.005 -0.026 
UBA.l3 0.418 0.223 0.001 0.049 0.048 0.006 
ECO.l3 0.029 -0.002 0.016 -0.024 0.013 -0.09 
BSI.l4 -0 -0.088 0.011 -0.163 -0.009 -0.249 
GTB.l4 0.195 0.113 0.024 -0.031 0.104 -0.049 
ZEN.l4 -0.07 0.006 -0.11 0.001 0 0.031 
FBN.l4 0.207 0.272 0.437 0.001 0.017 -0.038 
UBA.l4 0.252 0.028 0.015 0.027 -0.049 -0.012 
ECO.l4 0.013 -0.002 -0.44 -0.025 0.049 -0.124 
Const 1.008 -0.006 0.004 -1.213 -0.058 -0.116 

 
Table 6. Coefficient of BVAR using diffuse prior 

  
BSI GTB ZEN FBN UBA ECO 

BSI.l1 -0.05 -0.008 0.002 0.001 -0.002 0.002 
GTB.l1 2.423 0.059 0.068 0.037 0.029 0.001 
ZEN.l1 -0.19 -0.013 -0.2 -0.002 0.01 -0.004 
FBN.l1 -1.93 -0.08 -0.16 0.156 0.035 0.093 
UBA.l1 4.106 0.279 0.229 0.228 -0.053 0.001 
ECO.l1 1.299 0.065 -0.11 -0.026 -0.001 0.088 
BSI.l2 -0.24 -0.001 0.001 -0.001 0 0 
GTB.l2 1.129 -0.014 0.086 0.01 -0.012 0.036 
ZEN.l2 0.659 0.003 -0.1 -0.011 -0.024 -0.036 
FBN.l2 -0.22 -0.019 0.041 -0.094 -0.027 0.029 
UBA.l2 0.353 -0.021 -0.08 -0.047 0.008 -0.048 
ECO.l2 0.178 0.033 -0.05 -0.072 -0.057 -0.002 
BSI.l3 0.006 0.002 0.001 0.001 0 0 
GTB.l3 -1.01 -0.034 -0.03 0.025 0.012 0 
ZEN.l3 0.738 -0.015 0.032 -0.033 -0.003 0 
FBN.l3 -0.88 -0.009 0.088 -0.122 -0.037 -0.008 
UBA.l3 -2.84 0.107 -0.04 -0.07 0.048 -0.038 
ECO.l3 0.329 -0.006 0 0.022 -0.003 -0.001 
BSI.l4 -0.07 0.001 0 0.001 0 -0.001 
GTB.l4 1.342 -0.035 -0 -0.04 -0.003 -0.012 
ZEN.l4 0.208 0.033 0.023 -0.008 -0.002 0.009 
FBN.l4 -0.08 -0.042 -0.1 0.017 0.017 -0.049 
UBA.l4 -1.97 -0.03 -0.02 -0.064 0.012 0.088 
ECO.l4 -1.01 0.015 0.067 -0.021 -0.006 -0.073 
const 1.052 0.035 0.023 0.022 0.014 0.04 
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The coefficients comparison among the priors 
reveals a similarity between the posterior 
distributions of the Minnesota prior and those of 
the OLS_VAR for stock market predictions. The 
table also illustrates the interrelationship among 
the variables. Additionally, it can be observed 
that the SSVS prior predominantly shrinks most 
variables to zero, while OLS_VAR and 
Minnesota priors only allow the variables to 
shrink toward the vicinity of zero. Across the 
model, SSVS have the lowest coefficient and 
Minnesota have the highest coefficient. 
 
Tables 8, 9, 10, & 11 show the variance-
covariance matrix of variables BSI, GTB, ZEN, 

FBN, UBA and ECO. The observed variance-
covariance matrix confirms a strong relationship 
between the Banking Sector Index (BSI) and the 
individual stock prices of the five banks (GTB, 
ZEN, FBN, UBA, and ECO). This suggests that 
movements in the overall banking sector index 
are closely related to fluctuations in the stock 
prices of individual banks. The results highlights 
that GTBank (GTB) and Zenith Bank (ZEN) stock 
prices exhibit a particularly strong relationship 
compared to other bank stocks. This is supported 
by the variance-covariance values indicating 
higher covariance between GTB and ZEN 
compared to other banks. 

 
Table 7. Posterior Mean of all the coefficient of the six priors 

  
OLS DIFFUSE MINN SSVS STEADY 

BSI.l1 -0.339 -0.05 -0.329 -0.002 -0.113 
GTB.l1 5.507 2.423 5.421 0.76 6.064 
ZEN.l1 3.311 -0.19 3.218 1.156 1.494 
FBN.l1 0.599 -1.93 0.561 -0.059 1.367 
UBA.l1 7.718 4.106 7.112 0.37 -1.281 
ECO.l1 1.265 1.299 1.314 0.17 0.561 
BSI.l2 -0.435 -0.24 -0.401 -0.324 -0.015 
GTB.l2 1.253 1.129 1.153 0.08 0.105 
ZEN.l2 2.668 0.659 2.33 0.875 0.181 
FBN.l2 5.099 -0.22 4.489 0.516 0.126 
UBA.l2 1.022 0.353 0.755 5.091 0.19 
ECO.l2 1.248 0.178 0.845 0.518 0.049 
BSI.l3 0.018 0.006 0.011 -0.003 -0.007 
GTB.l3 0.396 -1.01 0.303 -0.035 0.19 
ZEN.l3 -2.826 0.738 -2.24 -0.043 -0.096 
FBN.l3 -4.334 -0.88 -3.191 -0.147 0.085 
UBA.l3 1.451 -2.84 0.145 -0.132 0.057 
ECO.l3 -1.719 0.329 -1.407 -1.724 -0.079 
BSI.l4 -0.232 -0.07 -0.174 -0.08 -0.002 
GTB.l4 0.776 1.342 0.664 0.194 0.154 
ZEN.l4 2.709 0.208 1.978 0.053 -0.017 
FBN.l4 0.827 -0.08 0.475 -0.045 0.208 
UBA.l4 4.284 -1.97 1.864 2.819 0.202 
ECO.l4 -0.564 -1.01 -0.473 0.009 0.077 
const 0.699 1.052 0.817 0.731 -0.113 

 
Table 8. Variance_Covariance of OLS 

 

 BSI GTB ZEN FBN UBA ECO 

BSI 135.568 3.605  4.572 1.832 1.867 1.939 
GTB 3.605 0.252  0.159 0.054 0.061 0.059 
ZEN 4.572 0.159  0.301 0.058 0.071 0.049 
FBN 1.832 0.054  0.058 0.117 0.039 0.039 
UBA 1.867 0.061  0.071 0.039 0.050 0.031 
ECO 1.939 0.059   0.049 0.039 0.031 0.122  
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Table 9. Variance_Covariance of MINN 
 

 BSI GTB ZEN FBN UBA ECO 

BSI 126.331  3.337 4.216 1.700 1.709 1.779 
GTB 3.337  0.241 0.147 0.049 0.056 0.054 
ZEN 4.216  0.147 0.284 0.054 0.064 0.045 
FBN 1.700  0.049 0.054 0.114 0.036 0.036 
UBA 1.709  0.056 0.064 0.036 0.048 0.029 
ECO 1.779  0.054 0.045 0.036 0.029 0.116 

 

Table 10. Variance_Covariance of SSVS 
 

 BSI GTB ZEN FBN UBA ECO 

BSI 147.929  4.117 5.005 2.025 2.021 2.072  
GTB 4.117  0.279 0.180 0.060 0.068 0.063 
ZEN 5.005  0.180 0.319 0.065 0.076 0.053 
FBN 2.025   0.060 0.065 0.126 0.043 0.043 
UBA 2.021    0.068 0.076 0.043 0.053 0.035 
ECO 2.072   0.063 0.053 0.043 0.035 0.125 

 

Table 11. Variance_Covariance of steady Steady inverse Wishart 
 

 BSI GTB ZEN FBN UBA ECO 

BSI 132.713  3.244 4.422 1.767 1.780 1.520 
GTB 3.244   0.236 0.159 0.056 0.056 0.046 
ZEN 4.422  0.159 0.289 0.060 0.070 0.038 
FBN 1.767  0.056 0.060 0.123 0.039 0.034 
UBA 1.780  0.056 0.070 0.039 0.048 0.023 
ECO 1.520  0.046 0.038 0.034 0.023 0.105 

 
Table 12. Forcasting performances of the priors for 10 steps ahead 

 

Actual OLS_VARS Minnesota Minnesota IW SSVS Diffuse Steady state IW 

-2.98 -2.562 -3.47 0.2213 1.623 -5.721 -0.096 

-3.18  2.487 3.07 0.0847 -1.579  14.962 -4.632 

0.42 -0.498 0.60 0.2598 0.080 -4.21 -10.543 

-2.36  2.150 2.35 0.2742 -0.315 6.683 -3.127 

-6.02  0.494 -1.43 -0.1946 -0.079 -7.03 -10.414 

-4.49  0.678 1.77 -0.1029 0.145 -12.44 -12.956 

-11.86 -0.530 1.58 -0.1302 0.041 -13.823 -3.592 

0.89  0.877 0.06 0.0273 -0.233 -14.182 19.339 

-5.79  1.288 1.71 -0.1047 0.043 -5.676 -8.286 

10.40  0.758 3.41 -0.1352 -0.078 32.638 17.127 

 
Table 13. Forcasts evaluations for the priors 

 

 ME  RMSE MAE  MPE  MAPE 

Minnesota -0.092 0.35085 0.252 66 98 

Minnesota (NIW) 2.34526 7.663893 6.360506 296.4384 353.9403 

SSVS -2.461787 6.095331 4.850008 100.2396 100.2396 

STEADY STATE -0.0296 0.4449004 0.3726 -98.63846 271.4615 

Diffuse -1.6171 11.08892 8.2903 323.5318  426.771 

OLS -2.608714 6.174951 4.781576 60.49834 94.45113 
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Variance-covariance matrix above reinforces the 
idea of interdependence and significant 
relationships between the stock prices of 
individual banks and the overall banking sector 
index, with GTBank and Zenith Bank playing 
particularly influential roles. 
 

It can be deduced from Table 1 and 2 that 
frequentist and Bayesian estimators agreed on 
estimate of the coefficients of vector 
autoregression. The stochastic search variable 
selection prior differs from the result of 
Minnesota and Ordinary Least Square estimates. 
Table 12 shows the forecast performance of the 
priors: 
 

3.4 Forecasting Performance of OLS, 
Minnesota, Ssvs And Steady State 

 

Forecast for 10 steps ahead was obtained using 
the training data and the estimate obtained in 
Table 5 above.  
 
Table 12 showed that there are slight                    
similarities between OLS_VAR and Minnesota 
prior on moderately mimicking the actual values 
with a better minnesota forecasted values. 
Minnesota Inverse Wishart and stochastic  
search variable selection priors have very low 
forcasted values while the diffuse prior has too 
high values. 
 
The forecast as shown in Table 13                             
was evaluated using Mean average,                       
Mean Average Error and Root Means Square 
Error. 
 
Using Table 13 below, Minnesota prior and 
Steady state prior have very low RMSE of 
0.35085 and 0.4449004 respectively, indicating 
better forecast accuracy. SSVS and OLS has 
approximately the same RMSE. Thus, minnesota 
and steady state priors out-performed all other 
priors. 
 
4. CONCLUSION 
 
In this paper, Bayesian Vector Autoregressions 
(BVAR) was adopted in forcasting the stock 
prices of some banks in Nigeria using different 
priors. The VAR model was formed using six 
variables of BSI, GTB, ZEN, FBN, UBA, and 
ECO stock prices. The three major priors 
proposed by earlier researchers: Minnesota by 
Litterman (1980, 1986), stochastic search 
variable selection (SSVS) by George et al. 
(2008), and Steady State by Villain (2009) were 

compared, and was observed that the 
forecasting performance of Minnesota prior of 
Bayesian vector autoregression out-performed 
other priors using the criteria: RMSE,                        
MAPE, MAE and ME. The result was supported 
by the Random Walk Theory which was 
proposed by Louise Bachelier [11] and                          
Burton Malkiel [12]. This study will be essential to 
many researchers especially the financial 
analysts and stock market professionals, to 
predict the prices of stock using the inter-
relationship among the prices of other prices and 
the contribution of the sectoral index [13-20]. 
This will enable them to come up with strategic 
plans for inflation targeting [21-25]. It is 
recommended that other classes of stochastic 
search variable selection prior for Bayesian VAR 
be considered for further studies [26-30]. 
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