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ABSTRACT 
 

Underwater operations in the oil and gas industry involve hazardous activities for the extraction of 
the resources beneath ocean surfaces. These activities are inherently hazardous and can lead to 
significant health, safety and environmental consequences for both workers and the environment, 
impeding operations if proper risk management is not implemented. Reports available show fatality 
rate of 2.5 times higher in the oil and gas industry than obtainable in the construction industry. 
Classifying the risk of underwater hazards provides an effective risk profiling of the hazards and 
consequently application of fit for purpose control measures. This study leverages machine learning 
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clustering algorithms, such as K-Means and Agglomerative Hierarchical Clustering (AHC), to 
categorize hazards from underwater activities and identify high-risk hazard groups. Questionnaire 
were used to collect data from 418 underwater workers across 5 Niger Delta oil and gas companies 
assessing likelihood, frequency, and severity perspectives across 20 potential hazards. AHC and K-
Mean clustering with k=3 revealed Cluster 1 had 7 hazards associated with adverse weather, 
security threat, and structural failure. Cluster 2 had 9 underwater hazards associated with falling 
objects and loss of containment while cluster 3 had a total of 4 hazards which were hazards 
associated with fire, explosion, and blowout. Machine learning provides clustering of the underwater 
operation hazards resulting in data-driven taxonomies of the hazards based on risk attributes and 
enlightening areas demanding managerial focus. The clustering of similar hazards together implies 
that grouped hazards may benefit from common control measures rather than individual solutions 
hence achieve effectiveness, save cost and time. The study has shown that machine learning can 
be applied in risk assessment of hazards in underwater operations as in other reported areas of the 
oil and gas industry. 
 

 
Keywords: Machine learning; clustering algorithms; k-means; characterization; risk assessment; 

underwater. 
 

1. INTRODUCTION  
  
The extraction of oil and gas resources from 
beneath the ocean surface presents a unique set 
of challenges. While offering vast reserves of 
energy, underwater operations (offshore 
operations) carry inherent risks that can lead to 
significant consequences for both workers and 
the environment. The risks associated with 
activities in underwater operation far exceed the 
risk in other industries like the construction 
industry that is considered to be highly risky. The 
fatality rate in the oil and gas industry was 
reported to be 2.5 times higher than what was 
obtainable in the construction industry [1,2]. 
According to a report by the International 
Association of Oil and Gas Producers (IOGP), 
the offshore oil and gas industry had a fatal 
accident rate of 1.9 per 100 million hours worked 
in 2019, compared to 0.8 for the construction 
industry and 0.4 for the manufacturing industry 
[3]. Mitigating the threats/risks associated with 
underwater operation requires conducting risk 
assessment. Jia et al. in their study identified 
twenty hazards that are commonly associated 
with underwater operations in the Niger Delta 
region and performed risk assessment for these 
hazards. While this study evaluated the risk 
associated with each hazard, it did not categorize 
similar risks in term of risk level associated with 
underwater operations [4]. One critical aspect of 
successful risk management is effective 
categorization and profiling of underwater 
hazards. Grouping hazards based on their 
shared characteristics and risk levels can help to 
prioritize interventions and allocate resources 
efficiently. Proper risk management is crucial in 
mitigating the threats in underwater operations 

and ensuring the smooth running of operations. 
Machine learning has been shown to have a 
critical role in the grouping process. In their 
review of the application of machine learning in 
the upstream oil and gas sector, researchers 
have agreed that various types of machine 
learning and artificial intelligence techniques can 
be used for “data processing and interpretation in 
different sectors of upstream oil and gas 
industries [5]. They note that the achievements 
and developments promise the benefits of 
machine learning and artificial intelligence 
techniques towards large data storage 
capabilities and high efficiency of numerical 
calculations. Researchers have therefore, called 
for application of machine learning in diverse 
disciplines of the upstream oil and gas. The 
successful application of various machine 
learning techniques in reservoir engineering Well 
analytics [6-8], maintenance, data mining as well 
as other project administration methods as a 
supportive solution in conventional upstream oil 
and gas have shown potential for application in 
other areas of the industry [9,10]. 
 
Machine learning techniques, specifically 
clustering algorithms like Agglomerative 
Hierarchical Clustering and K-mean, offer a 
promising solution in achieving this classification 
of underwater hazards [11]. Clustering enables 
the reliable categorization of complex data points 
[9] into homogeneous segments, sharing 
common characteristics [12]. Since clustering 
has many applications for solving real-world 
problems such as community identification, 
anomaly detection, pattern recognition, and 
image processing that can be used in the variety 
of situations [12], the algorithms therefore, 
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presents a powerful tool for stratified hazard 
recognition. But it has to date been sparsely 
implemented in the domain of classifying 
underwater safety threats. This study is built on 
the previous works done [4] on the risk 
assessment and focus on the characterization 
and classification of the underwater hazards in 
the oil and gas industry in the Niger Delta region. 
 

2. MATERIALS AND METHODS  
 

2.1 Research Design 
 
This study adopted a cross-sectional research 
design, which is suitable for making 
generalizable inferences about a population 
based on data collected at one point in time. A 
cross-sectional design is a kind of observational 
design where the investigator measures the 
cause and effect in a study population 
simultaneously [13]. The design was relevant as 
it involved presenting the data from respondents 
without manipulation. Therefore, quantitative 
method was used to evaluate and examine the 
hazard occurrence, frequency, severity, and 
consequences. 
 

2.2 Study Area 
 
The Niger Delta is located on the continental 
margin of the Gulf of Guinea in equatorial West 
Africa, within the latitudes of 4° and 6° N and the 
longitudes of 5° and 8° E [14]. The Niger Delta 
region comprises of nine states namely: Abia, 
Akwa Ibom, Bayelsa, Cross River, Delta, Edo, 
Imo, Ondo and Rivers as shown in Fig. 1. It 
borders Ogun, Osun, Ekiti, Kogi, Anambra, 
Enugu and Ebonyi. The region is home to 
Nigeria’s vast oil and gas resources. It is also a 
rich ecosystem with high biodiversity, diverse 
flora and fauna, fertile land that can grow various 
crops and economic trees, and more freshwater 
fish species than any other ecosystem in West 
Africa. The oil & gas reserves in the region 
account for 90% of the government revenue. The 
Niger Delta is also known for its cultural diversity, 
with over forty ethnic groups and 250 languages 
spoken. 
 

2.3 Participants 
 
This study focused on underwater workers in the 
Niger Delta, who are exposed to hazards and 
risks that require risk assessment before 
performing their duties. The population of the 
study consisted of about 7500 employees from 
five selected oil and gas companies that operate 

offshore or underwater in the region. These 
companies were major oil multinationals, three of 
which were EU owned and two of which were 
America owned. This study assumed that the 
underwater hazards were similar across these 
companies. A purposive sampling technique was 
used to select a sample of 380 workers from the 
population, based on Taro-Yamane [15], sample 
size determination. To account for the attrition 
rate, 418 questionnaires were distributed, 
ensuring that the minimum sample size for a 
representative population was achieved. Only the 
valid questionnaires were used for the analysis. 
 

2.4 Data Collection and Quality Control 
 
Data were collected via a questionnaire and 
checklist. The template and structure of the 
questionnaire and checklist were adopted from 
ISO 19900, ISO 19901-2, ISO 19904, ISO 
19905-1 and industry Hazards Identification and 
Risk Assessment (HIRA) level 2. Before 
undertaking the data collection process, an 
official letter was addressed to respective 
management in the various studied facility 
seeking their consent. The management were 
assured of treating the information from 
respondents/participants confidentially. The 
questionnaire has three (3) sections namely, 
sections A, B, and C. Section A contained items 
on the likelihood of underwater hazards, in a 4-
point likert scale of Very likely, Likely, Unlikely 
and Very Unlikely respectively. Section B 
contained items on frequency or occurrence of 
hazards; in a 4-point Likert scale of frequently, 
occasionally, rarely and never respectively. 
Section C contained information on severity of 
hazards; in a 4-point Likert scale of Highly 
Significant, Significant, Minor and Insignificant 
respectively. These sections were in a 4-point 
Likert scale with ratings as 4, 3, 2 and 1; 
respectively. 
 

2.5 Data Analysis 
 
Data from the questionnaire received from 
respondents were entered into SPSS version 26 
sheet. SPSS was used in computing the mean 
and mode for likelihood, frequency, and severity 
ratings, providing an initial understanding of 
hazard perceptions from the respondents. 
Likelihood, frequency, and severity ratings were 
extracted as crucial features for subsequent 
machine learning algorithms, representing the 
nuanced perspectives of underwater workers. To 
categorize and profile underwater hazards, both 
Agglomerative Hierarchical Clustering (AHC) and 



 
 
 
 

Jia and Jia; J. Eng. Res. Rep., vol. 26, no. 8, pp. 236-246, 2024; Article no.JERR.120892 
 
 

 
239 

 

 
 

Fig. 1. Map of the Niger Delta region in Nigeria 
 
K-Means clustering algorithms were employed. 
The utilization of AHC employing the ward 
method facilitated the creation of a hierarchical 
structure that delineated hazard relationships 
based on similarity. Simultaneously, K-Means 
clustering with a predefined value of k=3 was 
applied to classify the hazards into high, medium, 
and low-risk categories. This choice of k=3 was 
informed by observed hazard categorizations 
during the analysis. Python library called Sklearn 
enabled the execution of machine learning 
algorithms, ensuring precision in clustering 
analysis. 
 
The questionnaires administered to 418 
underwater workers. The workers were informed 
that the collected data was just for the purpose of 
conducting a scientific study and they could 
discontinue participation in the study whenever 
they wished. Out of the 418 questionnaires 
distributed, 401 were considered fit to be used 
for the study, representing a response rate of 
95.93%. 
 

3. RESULTS 
 

3.1 Rating of Likelihood, Frequency, and 
Consequence of Hazards  

 
The result of the rating of the likelihood, 
frequency, and consequence of the underwater 

operation hazards by the respondents is shown 
in Table 1. The result from Table 1 revealed that 
most of the respondents rated that Adverse 
weather and sea condition/heavy storms hazard 
was very likely to occur in underwater operations. 
Adverse weather and sea condition/heavy storms 
hazard was ranked 1st, making it the underwater 
hazard to be experienced the most.  Both Strong 
current/wind and Piracy & bandit 
attack/kidnapping hazards were rated as likely to 
occur in underwater operation.  Strong 
current/wind and Piracy/bandit attack/kidnapping 
hazards were ranked 2nd and 3rd respectively as 
the hazards to be experienced in underwater 
operations. The likelihood of Rotating 
capstan/winch hazard to occur in underwater 
operation was rated by respondents as unlikely 
with a ranking of 20th. Similarly, poor installation 
hazard was rated as unlikely to occur making it to 
be the 19th ranked hazard to be experienced in 
underwater operation. In term of frequency of 
occurrence of these hazards, Adverse weather 
and sea condition/heavy storms hazard was 
rated to be occasionally experienced by most of 
the respondents. Adverse weather and sea 
condition/heavy storms hazard was ranked as 
the most frequent underwater operation hazard 
to be experienced. Also, Strong current/wind and 
Shallow waterway/poor visibility was stated to 
occasionally occur and was ranked as the 2nd 
most frequent underwater operation hazard. In 
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terms of frequency of the hazard occurring, 
Capsizing/overturning/toppling was stated rarely 
occur. Capsizing/overturning/toppling was ranked 
20th as the least frequent hazard experienced in 
underwater operation. Loss of buoyancy or 
sinking/adrift was also stated to rarely occur by 
the respondents and was ranked 19th. For 
consequence of the underwater operation 
hazards, majority of the respondents were of the 
view that if Piracy & bandit attack/kidnapping 
occurred it will result to major injuries.                 
Piracy & bandit attack/kidnapping was ranked 1st 

as the underwater operation hazard to                   
have the most consequence if it occurs. 
Fire/explosion was also stated to result to major 
injuries if it occurred and was ranked to be the 
2nd hazard to have the most                     
consequence. Blowout/release of fluid or gas 
was shown to result to major injuries if it occurs 
and was ranked 3rd out of the 20 hazards with 
the highest consequences. Rotating 
capstan/winch was the hazard out of the twenty 
hazards evaluated to have the least severity if it 
occurred. 

 

Table 1. Mean Response and Ranking of Likelihood, Frequency and Consequence of 
Underwater Hazards (Jia et al. 2022) 

 

Hazard 
ID 

Hazards Likelihood Frequency Consequence 

Mean Rank Mean Rank Mean Rank 

H01 Piracy & bandit attack/kidnapping 3.3 3 2.82 5 3.40 1 

H02 Shallow waterway/poor visibility 3.27 4 3.08 3 2.93 18 

H03 Adverse weather and sea 
condition/heavy storms 

3.48 1 3.15 1 3.21 6 

H04 Strong current/wind 3.43 2 3.13 2 3.13 7 

H05 Hyperbaric operations/falling 
overboard 

3 9 2.48 13 2.95 16 

H06 Rotating capstan/winch 2.73 20 2.41 15 2.71 20 

H07 Entrapment/entanglement of 
personnel 

2.88 14 2.46 14 2.98 15 

H08 Other main vessels/heavy object 
dropping or falling load/collision 

2.93 11 2.58 11 3.07 8 

H09 Embarking and disembarking 
from SPM 

3.03 8 2.74 6 2.76 19 

H10 Fire/explosion 3.06 6 2.42 16 3.39 2 

H11 Blowout/release of fluid or gas 2.87 16 2.43 18 3.34 3 

H12 Capsizing/overturning/toppling 2.82 15 2.23 20 3.22 4 

H13 Breakage or fatigue 3.13 6 2.83 8 2.96 10 

H14 Uncontrolled inclination/ leakage 
into hull 

2.79 17 2.38 17 2.88 17 

H15 Loss of buoyancy or sinking/adrift 2.78 18 2.25 19 3.15 5 

H16 Valve system/pump/pipeline 
failure 

2.97 12 2.66 9 2.95 11 

H17 Remote 
operation/power/cooling/gauging 
system failure 

2.9 13 2.66 10 2.93 14 

H18 Corrosion/debris accumulation 3.16 5 2.93 4 3.02 9 

H19 Malfunction of instrumentation or 
mechanical system 

3.08 10 2.83 6 3.01 12 

H20 Poor installation 2.78 19 2.54 12 2.99 13 

Likelihood: 4—Very likely (having a high probability of occurring more than once per year or more often), 3—
Likely (expected to occur once (approx. once in 10 years), 2—Unlikely (not expected for at least 100 years), 1—
Very Unlikely (Not expected to happen for at least 1000 years Severity: (Health Effects), 4—Fatality (Potential for 

one or fatalities), 3—Major injuries (Potential for one or more serious injuries; irreversible), 2—Minor injuries 
(Potential for one or more lost time injuries), 1—Negligible injuries (Potential for minor injuries or irritation) 
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3.2 Agglomerative Hierarchical Clustering 
(AHC) 

 

The dendrogram showing the clustering of the 
twenty underwater operation hazards is shown in 
Fig. 2. Three distinct clusters were identified after 
AHC clustering algorithm was ran on the data. 
Cluster 1 identified as the red leg in the 
dendrogram tree comprised of seven (H01, H02, 
H03, H04, H13, H18, and H19) underwater 
hazards with similar characteristics. 
 

The underwater hazards in cluster 1 were 
predominately related to weather, security threat, 
and structural failure hazardous events. For 
cluster 2 which is represented by the blue leg in 
the dendrogram tree, nine underwater hazards 
(H05, H07, H08, H20, H09, H16, H17, H06, and 
H14) were in this cluster. The hazards in cluster 
2 were related to falling/dropped objects, loss of 
containment, and structural failure hazardous 
event. For cluster 3 which is represented by the 
green leg in the dendrogram, four underwater 
operation hazards belong to that cluster. It was 
noticed that the hazards in that cluster were 
predominately fire/explosion and blowout 
hazardous events. 
 

The level of likelihood, frequency, and 
consequence in each cluster was represented by 
a parallel coordinate plot shown in Fig. 3. The 
parallel coordinate plot showed that cluster 1 (red 
line) which was made up of predominately 
weather, security threat, and structural failure 
hazardous events had a much higher likelihood 
of occurrence than the other two clusters. In 

terms of frequency, it was also revealed that 
cluster 1 is likely to occur more on a yearly basis 
than the other two clusters. In the case of the 
consequence, cluster 1 showed a greater 
consequence if the hazard occurred than cluster 
2 (blue line) but a lesser consequence than 
cluster 3 (green line). For cluster 2, the 
consequence associated with that cluster was 
the lowest but the frequency of occurrence of the 
hazards was relatively higher than cluster 3 
hazards. For the likelihood, cluster 2 had similar 
likelihood with cluster 3 implying that hazards in 
cluster 2 and 3 are likely to occur at almost 
similar rate. The result from the parallel 
coordinate plot showed that cluster 3 had the 
least likelihood and frequency of occurrence than 
the remaining two clusters. For the consequence, 
cluster 3 had the greatest consequence than the 
remaining two clusters. 
 

3.3 K-Mean Clustering 
 
The result of clustering with the K-Mean 
algorithm showed similar pattern as obtained 
with AHC. The centroid of the three clusters is 
presented in Table 2 and the cluster of the 
hazards based on the likelihood, frequency, and 
consequence is shown in the 3D plot as 
presented in Fig. 4. The result showed that 
cluster 1 had seven hazards in the cluster similar 
to what was obtained using the AHC algorithm. 
Cluster 2 had nine hazards in the cluster and 
cluster 3 had four hazards in the cluster. The 
result from the K-Mean algorithm produced 
identical result as the AHC. 

 

 
 

Fig. 2. Dendrogram of clustering of hazards using AHC 
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Fig. 3. Parallel coordinate plot 
 

Table 2. Centroid of the clusters after final clustering 
 

Variable Cluster1 Cluster2 Cluster3 Grand centroid 

Likelihood 2.8543 2.9712 3.3280 3.0195 
Frequency 2.3871 2.6487 3.0220 2.6505 
Consequence 3.1357 2.9175 3.1380 3.0490 

 

 
 

Fig. 4. K-Mean plot of clustering of the hazards 
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The result from the 3D plot showed that cluster 1 
had relatively high frequency and likelihood as 
the value of the standardized score were 
positive. The consequence of cluster 1 was also 
relatively high as shown in the 3D plot. For 
cluster 2, it was observed that likelihood was low 
but the frequency of the hazards was slightly 
positive but it had a generally low consequence. 
For cluster 3, the likelihood and frequency were 
relatively low but the consequence were 
relatively high. 
 

4. DISCUSSION 
 
The results of this study showed that the 
underwater workers in the Niger Delta faced 
various hazards and risks that could affect their 
health and safety. The most likely and frequent 
hazards experienced in underwater operations in 
the Niger Delta were adverse weather and sea 
condition/heavy storms. Storms and hurricane 
are regular occurrence experienced around the 
coastal communities and on offshore platforms 
thereby posing a threat to both the communities 
and the platforms [16].  Annually, approximately 
100 tropical disturbances form in the Atlantic 
Ocean from May to November [16]. The risk 
associated with adverse weather and sea 
condition can cause operational delays, 
disruptions, damage, or injuries to the workers 
and the equipment [16,17]. When severe 
weather conditions develop, Operators shutdown 
production and evacuate personnel ahead of the 
storm, and after the storm makes landfall, crews 
return to work, damage assessments are 
performed, and facilities are repaired, if required, 
prior to the resumption of production [17]. 
Adverse weather and sea condition also affect 
other support operations such as crane works 
and helicopter activities [18].  Therefore, it is 
important to monitor and forecast the weather 
and sea condition accurately and timely, and to 
plan and execute the operations accordingly. The 
second and third most likely hazards to occur in 
underwater operations in the Niger Delta were 
strong current/wind and piracy/bandit 
attack/kidnapping respectively. These hazards 
could pose serious threats to the security and 
stability of the workers and the vessels. Strong 
current/wind could affect the maneuverability and 
positioning of the vessels, as well as the 
performance and reliability of the underwater 
equipment. In challenging environments, subsea 
systems, including the riser, mooring system, 
and umbilical, are vulnerable to the impacts of 
currents, and their responses can be destructive 
[19]. Piracy/bandit attack/kidnapping could 

endanger the lives and property of the workers 
and the companies, and could disrupt the 
operations. Maritime Domain Awareness for 
Trade Gulf of Guinea in 2020 notes that twenty-
five successful piracy attacks have resulted in 
142 kidnapped seafarers in 2020. Despite the 
initiatives undertaken by coastal nations, 
including Nigeria, and external entities, the Gulf 
of Guinea (GoG) continues to be recognized as 
one of the world's most hazardous maritime 
regions. Records show that incidents of piracy 
have expanded from Ivory Coast to Congo-
Brazzaville [20]. Therefore, it is essential to 
implement effective measures to prevent and 
mitigate these hazards, such as enhancing the 
surveillance and protection systems, improving 
the communication and coordination among the 
stakeholders, and strengthening the legal and 
regulatory frameworks. The least likely and 
frequent hazards were rotating capstan/winch 
and poor installation, respectively. These 
hazards could cause mechanical failures or 
accidents that could result in injuries or               
fatalities to the workers or damage to the 
equipment.  
 
The agglomerative hierarchical and K-Mean 
clustering revealed three distinct groups of 
underwater hazards based on their likelihood, 
frequency, and consequence ratings. Cluster 1 
contained weather, security, and structural failure 
hazards like storms and capsizing. The high 
likelihood and frequency ratings match literature 
identifying adverse weather as a predominant 
contributor in offshore incidents. The clustering of 
these hazardous events might indicate that there 
is a relationship between these hazardous 
events. The reliability of offshore platform is 
adversely affected by adverse weather and sea 
condition [21,22]. Good understanding of the 
most prevalent underwater operation hazard 
(adverse weather) can help in mitigating the risk 
associated with structural failure hazardous 
event. This highlights the importance of good and 
reliable meteorological modeling and forecasting 
which can be utilized in the design stage of 
offshore platform. Cluster 2 grouped hazardous 
event such as falling objects, loss of 
containment, and additional structural failures 
into the same cluster. These set of hazards in 
this cluster were deemed to have the least 
consequences. Dropped object accidents are 
recognized risks in offshore operations. 
Monitoring crane lifts and preventative 
maintenance are key mitigations strategies to 
help reduce the risk. Building Information 
Modeling (BIM) can aid in the real time 
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monitoring of equipment and worker on platform 
to help mitigate the risk of falling object. 
Hydrocarbon leaks also carry major 
consequences, necessitating design, 
procedures, and barriers to limit escalation. 
Cluster 3 represented fire, explosion, and 
blowout hazardous events. The low probability of 
occurrence but high consequence hazards align 
with major incidents like Piper Alpha and 
Macondo [23,24,25]. Robust well control and 
emergency response preparedness are crucial to 
limit the safety and environmental impacts 
associated with these hazards. Overall, these 
groupings based on hazard characteristics can 
inform risk management strategies tailored to 
each cluster. Cluster 1 may benefit from 
monitoring, planning, and maintenance. Cluster 2 
could prioritize dropped object and asset integrity 
controls. Cluster 3 points to the critical need for 
well control and emergency response given the 
potential severe consequences. In each of the 
clusters, the application of machine learning 
provides opportunity for decision-makers to 
assess the risk level for handling activities in 
during underwater operations as in the case of 
logistics business [26]. 
 

5. CONCLUSION 
 

In conclusion, the study characterized and 
classified underwater hazards in Oil and Gas 
Operations in the Niger Delta region using 
Cluster algorithms such as K-Means and 
Agglomerative Hierarchical Clustering. Analyzing 
data from 418 respondents in the Niger Delta, 
distinct hazard clusters emerged, revealing 
potential shared control measures within each 
cluster. This data-driven taxonomy enhances risk 
profiling, allowing targeted risk management. The 
findings also underscore the importance of a 
nuanced approach to risk mitigation and provide 
practical insights for safeguarding underwater 
operations in the oil and gas sector thus saving 
money, time and achieving efficiency in controls. 
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