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ABSTRACT 
 

Purpose: This paper reviews the diverse agricultural applications of cyanobacteria for improving 
soil health, plant growth, and agricultural sustainability. 
Research Method: The paper provides a literature review summarizing recent research on 
cyanobacteria's roles in soil aggregation, biofertilization, abiotic/biotic stress tolerance, yield 
improvements, carbon sequestration, and bioremediation. Both laboratory studies                             
and field trials evaluating cyanobacteria's effects on soil properties and plant growth are               
discussed. 
Findings: Cyanobacteria can enhance soil structure, provide fixed nitrogen, mitigate salinity stress, 
increase crop yields, and sequester carbon. Their stress adaptations, antimicrobial metabolites, 
and synergies with plants and microbes underpin many benefits. However, translating laboratory 
research into effective field inoculants remains challenging. 
Research Limitation: Variability in effectiveness across cyanobacterial strains, plant species, and 
environments limits current understanding. More field testing is needed along with assessment of 
potentially negative impacts. 
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Originality/Value: This review highlights promising areas for cyanobacteria to promote agricultural 
sustainability while identifying knowledge gaps in genetics, plant-microbe interactions, and soil 
ecology that require further study. It emphasizes the need for locally-adapted, integrated solutions 
leveraging cyanobacteria's multifunctional traits. 

 
 

 
Keywords: Cyanobacteria; agriculture; soil health; biofertilizer; bioremediation; cyanobacterial strains; 

plant species. 
 

1. INTRODUCTION 
 
Agriculture plays a pivotal role in sustaining 
human life and ensuring food security for the 
growing global population. It is a scientific 
practice that involves cultivating plants and 
rearing animals for various purposes, such as 
producing food, fibre, and raw materials for 
industries. The importance of agriculture lies in 
its ability to provide nourishment, support 
economic development, and contribute to the 
overall well-being of societies. Through the 
application of scientific methods and 
advancements, agriculture has the potential to 
optimize crop yields, enhance livestock 
productivity, and mitigate environmental impacts, 
making it an indispensable field of study and 
practice. 

Cyanobacteria, historically characterized as 
proficient oxygenic phototrophs, adeptly employ 
photosynthesis to convert atmospheric CO2 and 
water into organic compounds [1]. Recent 
revelations have unveiled novel cyanobacterial 
lineages marked by the absence of genes linked 
to photosynthesis and CO2 fixation mechanisms 
[2,3]. Prominent among these non-photosynthetic 
cyanobacterial groups are 4C0d-2 and ML635J-
21, delineated through the assembly of 
metagenomic genomes [3,4]. 
 
Cyanobacteria yield ecological significance 
across diverse ecosystems, spanning aquatic 
and terrestrial realms. Their propensity for 
symbiotic associations with various organisms 
including bryophytes, fungi, and Azolla 
underscores their ecological importance [5]. 
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Within terrestrial landscapes, particularly in 
biological soil crusts, cyanobacteria occupy a 
pivotal role in shaping soil structure and 
influencing nutrient dynamics. Certain 
filamentous cyanobacteria produce extracellular 
polymeric substances that foster soil particle 
aggregation and enhance stability [6]. Notably, 
specific cyanobacterial strains, such as Nostoc 
and Anabaena, have been harnessed as 
biofertilizers, particularly in rice cultivation, 
leveraging their nitrogen-fixing abilities to 
mitigate reliance on conventional nitrogen 
fertilizers [7,8]. 
 
Cyanobacteria have also demonstrated adaptive 
mechanisms for salinity stress, exemplified by 
their active expulsion of sodium ions and efficient 
transport of potassium ions [9]. This adaptability 
has incited explorations into their potential 
applicability for remediating saline-affected soils. 
Additionally, the nexus between cyanobacterial 
filaments and oxygenic photosynthesis has been 
associated with prospective soil organic carbon 
sequestration, bearing implications for 
ecosystem carbon dynamics [10]. 
 
The exploration of non-photosynthetic 
cyanobacterial lineages presents an evolving 
domain necessitating comprehensive 
investigation concerning their roles in carbon and 
nitrogen cycling processes [11]. However, 
knowledge gaps persist, spanning cyanobacterial 
diversity, taxonomy, ecological functions, and 
mechanistic [12]. Addressing these gaps entails 
expanding culture collections and conducting 
comprehensive genomic analyses encompassing 
both cultivated and uncultured cyanobacterial 
cohorts [13]. 
 

2. SOIL TEXTURE AND FERTILITY  
 
Cyanobacteria play a major role in improving soil 
structure and fertility. They act as ecological 
engineers that can modulate ecological 
processes in the soil and create habitats for other 
organisms [14]. The type of crust that forms on 
the soil surface depends on the amount of 
moisture present. Cyanobacteria are the first 
organisms to establish biological soil crusts in 
arid environments. As the crusts develop, other 
organisms may also thrive in them. 
 

The addition of cyanobacteria under laboratory 
and field conditions has resulted in significant 
improvements in soil structure and aggregate 
stability [6]. Cyanobacteria improve soil 
aggregate stability by producing filaments and 

extracellular secretions that act as binding 
agents [15]. Chamizo et al. [6] inoculated two 
cyanobacterial species, the non-N2-fixing 
Phormidium ambiguum and the N2-fixing 
Scytonema javanicum, into different textured 
soils. After 90 days, cyanobacterial inoculation 
led to increased total exopolysaccharide content 
and soil penetration resistance with P. 
ambiguum, while total organic carbon and 
nitrogen contents increased with S. javanicum. 
The filaments and extracellular polysaccharides 
of cyanobacteria act as gluing agents to bind soil 
particles for enhanced aggregate formation [6]. 
 
Cyanobacterization, or soil inoculation with 
cyanobacteria, is effective for stabilizing burned 
soils and restoring post-fire ecosystems [16]. 
Recently, Shanthakumar et al. [17] showed 
inoculation of acid soils with acid-tolerant 
cyanobacteria species led to improved soil 
aggregate stability. The cyanobacteria tested 
were able to decrease soil pH through organic 
acid production, as well as increase 
exopolysaccharide content which aids in soil 
aggregation [17]. Cyanobacteria can establish 
symbiotic relationships with bryophytes, fungi, 
azolla, and gunnera due to their ability to form 
heterocysts and hormogonia. Heterocysts are 
specialized N2-fixing cells that provide microoxic 
conditions for the oxygen-sensitive nitrogenase 
enzyme. Hormogonia are short mobile filaments 
that allow dispersal and colonization of new 
environments. The only angiosperm that can 
form symbiotic relationships with cyanobacteria 
is Gunnera [18]. This is likely because Gunnera 
stem glands provide an anaerobic environment 
suited for the oxygen-sensitive nitrogenase 
enzyme of cyanobacteria. 
 
Cyanobacteria are a dominant group in biological 
soil crusts, where they contribute to soil fertility 
and structure. Cyanobacterial diversity varies in 
crusts depending on factors like crust age, soil 
texture, climate, and geography. Common 
cyanobacteria in biocrusts include Microcoleus, 
Chroococcidiopsis, Nostoc, Scytonema, 
Phormidium, Oscillatoria, and Nostoc [19]. The 
filamentous forms aid in soil binding and 
aggregation. Other physiological adaptions also 
allow crust cyanobacteria to survive in dry, high 
light conditions. The filaments and extracellular 
matrices of edaphic cyanobacteria improve soil 
aggregate stability by binding soil microbiota and 
particles over aggregates [10]. The 
exopolysaccharide sheath surrounding 
cyanobacterial filaments helps maintain soil 
moisture as well as protects cells from 
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desiccation. Cyanobacteria synthesize 
specialized UV-absorbing pigments like 
scytonemin and mycosporine-like amino acids to 
shield from high irradiation in biological crusts 
[20]. 
 

3. BIO-FERTLIZATION THROUGH 
NITROGEN FIXATION 

 
Cyanobacteria are able to fix atmospheric 
nitrogen (N2) through spatial segregation of 
nitrogenase in heterocysts and temporal 
separation of N2 fixation at night [21]. This ability 
has led to their use as biofertilizers, especially in 
flooded rice paddies. The enzyme nitrogenase is 
highly sensitive to oxygen, so cyanobacteria 
have evolved mechanisms to protect it and 
separate oxygenic photosynthesis from N2 
fixation [21]. These include upregulating N2 
fixation at night when oxygen levels are lower, 
and differentiation of heterocysts that have 
thicker cell walls and lack photosystem II to 
maintain an anaerobic cellular environment. 
 
In rice fields, cyanobacterial biofertilizers can fix 
25-30 kg of N ha/season/ [22]. The symbiotic 
Azolla-Anabaena system can contribute 20-40 kg 
N ha-1 to rice crops in about 25 days [23]. 
Anabaena azollae is the N2-fixing 
cyanobacterium that lives in leaf cavities of the 
aquatic fern Azolla. The cyanobacteria receive 
carbon from the Azolla host while providing fixed 
nitrogen. This symbiotic association allows Azolla 
to grow rapidly and accumulate high levels of 
nitrogen [24]. The steps for mass producing 
cyanobacterial biofertilizers for applications in 
rice cultivation in India have been established, 
with inoculum containing Aulosira, Nostoc, 
Anabaena, and Tolypothrix [25]. Aulosira, Nostoc 
and Anabaena are common filamentous, 
heterocystous cyanobacteria used in rice 
agriculture. 
 
The cyanobacterium Anabaena azotica can 
partially substitute nitrogen fertilizers in rice fields 
by 30-50% while sustaining yields [8]. Anabaena 
azotica is a heterocystous, filamentous 
cyanobacterium capable of providing significant 
amounts of biologically fixed nitrogen. Replacing 
a portion of chemical nitrogen fertilizers with this 
organism can reduce costs and environmental 
impacts while maintaining crop productivity. 
Cyanobacteria solubilize phosphates to a limited 
extent. They can sequester phosphorus as 
polyphosphates to mitigate stress [26]. 
Polyphosphate metabolism allows cyanobacteria 
to accumulate and store phosphorus when it is 

available in excess, and then utilize it for growth 
during phosphorus starvation conditions. This 
adaptation helps cyanobacteria thrive in soils and 
waters where phosphorus levels fluctuate. 
 
Cyanobacteria are mostly used as phototrophic 
plant bio-stimulants that provide fixed carbon, 
nitrogen, and phytohormones to promote plant 
growth. However, high inoculum rates and need 
for frequent irrigation hinder direct applications of 
cyanobacteria for soil conditioning. Their 
agronomic applications as biofertilizers or bio-
stimulants depend largely on successful 
commercial production. Mass culturing 
cyanobacteria can be challenging due to their 
relatively slow growth compared to other 
microbes. Contamination issues also commonly 
impact large-scale cyanobacterial cultivation 
intended for agricultural uses [27]. 
 

4. ECOLOGICAL IMPACT ON ARID SOIL 
CRUSTS 

 
Biological soil crusts containing cyanobacteria 
are abundant in arid and semi-arid environments, 
where they play a major role in improving soil 
structure, fertility, hydrology, and C and N fixation 
[28]. Crusts dominate ground cover in drylands 
across about 35% of the Earth’s land surface 
[29]. Filamentous cyanobacteria like Microcoleus 
contribute to soil stabilization in crusts by 
producing extracellular matrices that bind and 
glue together soil particles [19]. Microcoleus 
produces copious amounts of 
exopolysaccharides that aid in soil aggregation 
and moisture retention. The filamentous 
morphology also facilitates binding of soil 
particles [30].  
 
Other common crust cyanobacteria are 
Chroococcidiopsis, Nostoc, Scytonema, 
Phormidium, Oscillatoria, and Nostoc [19]. 
Chroococcidiopsis, in particular, has remarkable 
adaptions to survive extreme aridity. It has a 
multilayered, highly melanized cell wall and the 
ability to enter long-term dormancy [31]. Nostoc 
and Scytonema can fix N2 in crusts, while 
Oscillatoria contributes to C cycling. Inoculation 
of cyanobacteria from biological crusts into soils 
can increase carbon and nitrogen fixation, 
thereby improving fertility in arid lands [32]. For 
example, inoculation of Nostoc commune into 
degrade soils significantly increased total 
nitrogen and organic carbon content compared to 
uninoculated soils [33]. The added C and N from 
cyanobacteria improve conditions for plant 
establishment. 
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Cyanobacteria-based biocrusts have potential for 
restoring degraded drylands and mitigating 
desertification [34]. Biocrusts can be cultivated 
on-site then inoculated into degraded soils to 
kickstart ecological succession. They improve 
fertility and provide microbial community 
structure lacking in eroded desert soils. Wu et al. 
[35] showed artificially cultivated biocrusts 
increased water runoff efficiency and reduced 
runoff sediment and these Biocrusts can be used 
as green materials for rainwater harvesting in dry 
environments. The complex matrices formed by 
cyanobacterial exopolysaccharides absorb water 
like a sponge, capturing rainfall and reducing 
erosion [30]. 
 
Cyanobacteria in crusts possess various survival 
strategies to thrive in arid conditions, including 
synthesis of protective pigments and 
compounds, secretion of extracellular 
polysaccharides, and formation of microbial 
consortia [36]. To survive prolonged desiccation, 
crust cyanobacteria produce trehalose, a 
disaccharide sugar that helps preserve 
membranes and proteins [37]. Specialized UV-
absorbing pigments like scytonemin and 
mycosporine-like amino acids shield cells from 
high irradiation [38]. Exopolysaccharides also aid 
in moisture retention [39]. 
 

5. ENHANCING SALINE-SODIC SOIL 
QUALITY 

 
Cyanobacteria can tolerate and even thrive in 
saline and sodic soils due to various 
physiological adaptions. They possess salinity 
sensing and signalling mechanisms as well as 
tolerance mechanisms to cope with the adverse 
effects of high salinity [9]. Some key adaptions 
include active sodium efflux to prevent toxic 
accumulation, potassium transport systems to 
maintain homeostasis, production of organic 
osmolytes for osmotic balance, and modulation 
of enzymes to maintain metabolism under salt 
stress [9]. 
 
Certain cyanobacteria strains can decrease the 
electrical conductivity, pH, and exchangeable 
sodium content in saline-sodic soils. Kaushik and 
Subhasini [40] showed algalization with 
Anabaena sp. lowered these parameters. The 
ameliorative effect is attributed to active 
photosynthesis-driven sodium extrusion, based 
on radiotracer studies using 22Na and 24Na [41]. 
However, the ability to mobilize calcium for 
exchanging with sodium is likely needed for 

effective remediation of degraded alkali soils 
[42]. 
 
Pandey et al. [43] found the alkali-tolerant 
cyanobacterium Nostoc calcicola was prevalent 
in the sodic soils of India. Further, its 
bicarbonate-resistant mutant strain was more 
effective than the wild type in decreasing soil pH 
in laboratory incubations [43,44]. Bicarbonate 
toxicity is a key constraint in sodic soils, so 
bicarbonate-tolerant strains have potential for 
bio-amelioratio [44]. The cyanobacterium 
Hapalosiphon fontinalis decreased pH, electrical 
conductivity, and exchangeable sodium 
percentage (ESP) in saline soils [45]. White 
cotton mealybug numbers were also reduced by 
68% after H. fontinalis treatment due to changes 
in physicochemical properties. This 
demonstrates the bio-ameliorative and biocontrol 
potential of cyanobacteria. 
 
Co-cultures of cyanobacteria with other microbes 
have shown promise as bio-remediating                 
inoculants for salt-affected soils [46]. 
Cyanobacteria can stimulate plant responses 
that mitigate salinity stress and maintain ion 
homeostasis [47]. However, the priming benefits 
depend on the plant and cyanobacterial species 
as well as growth conditions. Overall, lab and 
field evaluation of cyanobacterial strains native to 
target saline- sodic soils will be important for 
developing effective microbial amelioration 
techniques. Their safety for crops over the long-
term should also be assessed. Technological 
advances are needed to scale up preparation of 
cyanobacterial inoculum to restore large, 
severely degraded areas [46] 
 

6. BUILDING RESISTANCE TO ABIOTIC 
STRESSORS 

 
Soil salinization is a significant agricultural 
challenge affecting approximately 20% of 
irrigated lands worldwide. Cyanobacteria offer a 
promising solution to enhance salt tolerance in 
crops such as rice, wheat, and millet through 
various mechanisms, including nitrogen fixation, 
the release of extracellular polysaccharides, 
compatible solutes, plant hormones, and 
antioxidative enzymes [46,48]. For instance, the 
inoculation of rice with halotolerant cyanobacteria 
like Nostoc calcicola, N. linkia, and Anabaena 
variabilis has been shown to increase root 
length, seedling growth, and grain yield under 
saline conditions by improving soil nitrogen 
content and biological activity [49,50].  
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Similarly, a consortium of Nostoc ellipsosporum 
and N. punctiforme has demonstrated 
improvements in the physical structure, nutrient 
status, and microbial activity of salt-affected 
soils, leading to enhanced millet and wheat 
growth [51]. Anabaena sphaerica and 
Scytonema hofmanni contribute to salt                  
tolerance in rice and wheat by regulating 
osmolytes and antioxidants through the 
production of exopolysaccharides and plant 
hormones [52]. 
 
In addition to salinity stress, cyanobacteria also 
play a vital role in enhancing drought tolerance in 
plants. Inoculation with Microcoleus sp. and 
Nostoc sp. has been shown to promote seed 
germination and seedling establishment, 
particularly in water-deficit conditions, benefiting 
dryland restoration efforts [53]. Furthermore, 
Spirulina meneghiniana and Anabaena oryzae 
have been found to increase lettuce growth 
under limited moisture conditions by                    
modulating plant antioxidants and osmolytes 
[54]. 
 
Cyanobacteria exhibit impressive capabilities in 
heavy metal remediation by efficiently removing 
toxic heavy metals such as Cd, Cr, Cu, and Zn 
from contaminated soils. Species like Anabaena 
variabilis, Nostoc muscorum, Aulosira 
fertilissima, and Tolypothrix tenuis have been 
instrumental in reducing the levels of these 
metals in soils amended with coal fly ash [55]. 
Oscillatoria sp. and Synechocystis sp. have been 
successful in increasing wheat tolerance to Cr by 
decreasing bioavailable metal fractions [56]. 
Additionally, Spirulina platensis has been 
effective in restricting Cd translocation and 
enhancing antioxidants in maize grown in Cd-
contaminated soils [57]. 
 
Another crucial application of cyanobacteria lies 
in pesticide detoxification, where they can 
degrade or sequester pesticides, including 
organophosphates, organochlorines, and 
herbicides, in both soil and water bodies, thus 
reducing their phytotoxicity. Fischerella sp. and 
Scytonema hofmanni have been known to 
mitigate the toxicity of methyl parathion by 
utilizing it as a phosphate source [58]. 
Synechocystis sp. and Phormidium sp. have 
effectively bio-absorbed the neonicotinoid 
imidacloprid from soils [59]. Furthermore, the 
inoculation of Spirulina platensis has induced 
protective amino acids in bean plants, 
counteracting the effects of the herbicide 
fusillade [60]. 

Innovative approaches are emerging, such as 
plant genetic engineering using cyanobacterial 
genes, to develop stress-resilient crops. For 
example, transforming poplar with a heat shock 
protein (HSP70) gene from the halotolerant 
Aphanothece halophytica has resulted in 
increased tolerance to salinity, drought, and 
extreme temperatures [61]. Similarly, Arabidopsis 
lines expressing a water stress protein (WSPA1) 
from Nostoc commune have exhibited improved 
performance under saline conditions [62]. 
Overexpression of Anabaena flavodoxin genes 
has enhanced tolerance against drought, heat, 
salinity, and oxidative stress in tobacco, creeping 
bentgrass, and alfalfa by modulating antioxidants 
and stress proteins [63,64,65]. 
 

7. BUILDING RESISTANCE TO BIOTIC 
STRESSORS 

 
Cyanobacteria offer valuable properties for 
agricultural applications, including antibacterial 
activity against crop pathogens like 
Pseudomonas aeruginosa, Ralstonia 
solanacearum, and R. syzygii. For instance, 
research has shown that Spirulina platensis, 
Nostoc sp., and Stigonema sp. filtrates can 
inhibit the growth of P. aeruginosa by releasing 
bioactive substances such as fatty acids, 
norharmane, and 4,4’-dihydroxybiphenyl 
[66,67,68]. Cell extracts of Anabaena flos-aquae 
have also demonstrated potent antibacterial 
effects against the potato brown rot pathogen R. 
solanacearum [69]. Moreover, indigenous 
rhizospheric cyanobacteria isolated from chili 
fields have shown promising biocontrol 
capabilities against chili bacterial wilt caused by 
R. syzygii [70]. 
 

Cyanobacteria are also known for their antifungal 
properties, as they produce secondary 
metabolites, enzymes, and volatiles that combat 
phytopathogens like Fusarium, Alternaria, 
Aspergillus, and Botrytis in various crops, 
including rice, tomato, lupine, and maize. 
Methanolic extracts of Nostoc commune, for 
example, effectively inhibit the mycelial growth of 
these fungi [71]. Anabaena variabilis has been 
found to reduce Fusarium wilt in tomatoes by 
releasing antifungal fatty acids and lipopeptides 
[72]. Additionally, cyanobacteria produce 
chitinase enzymes that suppress fungi like 
Fusarium oxysporum and Macrophomina 
phaseolina [73,74]. They also stimulate plant 
systemic resistance against foliar fungal 
pathogens by priming defence enzyme activity 
[75]. 
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Furthermore, cyanobacteria exhibit nematicidal 
activity through cell-free extracts, effectively 
targeting plant-parasitic nematodes like 
Meloidogyne, Heterodera, and Rotylenchulus 
species by inhibiting mobility, egg hatching, and 
juvenile mortality [76,77]. They enhance host 
plant tolerance by triggering systemic resistance 
pathways mediated by salicylic acid and 
jasmonic acid signalling [78]. 
 
In terms of pest control, cyanobacterial strains 
produce insecticidal metabolites toxic to crop 
pests such as cotton bollworm, Colorado potato 
beetle, and rice stem borer. Crude extracts of 
Nostoc sp. have demonstrated larvicidal activity 
against cotton bollworm Helicoverpa armigera 
[79]. Toxins derived from Anabaena variabilis 
and Synechococcus leopoliensis have been 
found to inhibit the feeding behavior of the 
Colorado potato beetle Leptinotarsa 
decemlineata on potato foliage. Additionally, 
Anabaena oryzae, A. cylindrica, and Nostoc 
muscorum have shown field control of rice whorl 
maggot and stem borer by inducing systemic 
resistance against insects [80]. 
 
Lastly, cyanobacterial genes have been 
employed in plant genetic engineering to create 
transgenic plants with enhanced resistance to 
biotic stress. For example, rice lines expressing 
insecticidal Bacillus thuringiensis cry genes, 
along with promoters and 5’-UTRs from 
Anabaena sp., have exhibited improved 
resistance against lepidopteran pests [81]. 
Similarly, the expression of osmotin, a PR-5 
family protein from the halotolerant Aphanothece 
halophytica, has conferred transgenic tobacco 
with resistance to fungal pathogens such as 
Phytophthora parasitica, Alternaria alternata, and 
Botrytis cinerea [82] 
 

8. ANTIMICROBIAL METABOLITES FOR 
PLANT DISEASE CONTROL 

 
Cyanobacteria produce a diverse array of 
bioactive metabolites that can inhibit fungal and 
bacterial phytopathogens [83]. Crude extracts 
prepared from cyanobacteria using various 
organic solvents have shown antifungal activity 
against Aspergillus, Fusarium, Sclerotinia, 
Rhizoctonia, Pythium and other pathogens [84]. 
Cyanobacterial strains such as Anabaena, 
Nostoc, Hapalosiphon, Scytonema, Tolypothrix, 
and Fischerella produce antifungal alkaloids, 
lipopeptides, polyketides, and other compounds 
[85,86,87]. 
 

The antifungal metabolites from cyanobacteria 
act through mechanisms such as disruption of 
membrane integrity, inhibition of respiration, 
interference with cell division, and deprivation of 
nutrients. These multiple modes of action can 
prevent development of resistance in fungal 
pathogens [88]. Cyanobacteria also have 
antibacterial properties attributed to peptides, 
fatty acids, and phenolic compounds which 
disrupt membranes, inhibit enzymes, and 
interfere with metabolism in bacteria [89]. 
 
Application of live cyanobacterial cells or their 
extracts can induce systemic resistance against 
pathogens in plants. Anabaena extracts triggered 
defence enzyme activity in zucchini leaves, 
leading to reduced powdery mildew severity [90]. 
Foliar sprays of Nostoc piscinale and Anabaena 
variabilis suppressed rice sheath blight caused 
by Rhizoctonia solani via induced 
phytohormones and antifungal metabolites [91]. 
Combining biocontrol traits with N2-fixing ability 
gives multifunctional benefits to these bio-
inoculants [92]. 
 
However, cyanobacteria can also produce toxins 
which may limit their utilization for plant disease 
control. The cyanotoxins microcystins and 
nodularin are potential public health hazards if 
they accumulate in produce or leach into water 
sources [93]. Further studies are needed under 
field conditions along with safety and risk 
assessments before widespread adoption of 
cyanobacteria as bio-fungicides or antibacterial. 
 

9.INFLUENCE ON CEREAL CROP YIELDS 
 
Cyanobacteria have a long history of use in rice 
paddy agriculture to enhance soil fertility, provide 
fixed nitrogen, and ultimately increase yields. In 
early studies, cyanobacterial inoculation was 
found to increase rice grain weight and the 
number of productive tillers per plant [94,95]. 
These positive effects result largely from 
biological nitrogen fixation by heterocystous 
genera like Nostoc and Anabaena. 
 
Modern research has focused on integrating 
cyanobacteria into integrated nutrient 
management systems for rice. Anabaena azotica 
was able to substitute 30-50% of urea nitrogen 
without compromising grain yields when applied 
along with 50% of the recommended mineral 
fertilizer [8]. The cyanobacteria provided between 
22-39 kg ha−1 of nitrogen based on the 
substitution rate. 
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Cyanobacteria also influence rice yield 
components like tillers per hill and filled grains 
per panicle [96]. Inoculation with Nostoc 
muscorum increased tiller production, grains per 
panicle, and straw yield of rice over uninoculated 
controls [97]. Combining cyanobacteria with plant 
growth-promoting bacteria can further improve 
yield attributes and productivity [98]. Seed 
biopriming with cyanobacteria shows potential to 
enhance germination, seedling vigor and 
subsequent growth and yields of rice [99]. 
Cyanobacteria supply growth-promoting 
substances and mobilize nutrients like zinc in the 
rhizosphere, which translate to better crop 
performance [100]. However, the effectiveness 
varies based on the cyanobacterial strain, plant 
genotype, and environmental conditions [99]. 
 
While cyanobacteria contribute to soil fertility and 
plant nutrition, their ability to decrease incidence 
of diseases like bacterial leaf blight and sheath 
blight also contributes to enhanced productivity in 
rice systems [92]. Both biofertilization and 
biocontrol traits make them well-suited to 
sustainable agriculture approaches. However, 
maintaining cultures and scaling production 
remain challenges for widespread application to 
cereal crops like rice and wheat.  
 

10. TERRESTRIAL CARBON 
SEQUESTRATION 

 
Cyanobacteria contribute to terrestrial carbon 
cycling through oxygenic photosynthesis, carbon 
fixation, and incorporation into soil organic 
matter. Their natural abundance in agricultural 
soils and ability to fix CO2 make cyanobacteria 
potential organisms for enhancing soil carbon 
sequestration. The filamentous morphology of 
many cyanobacteria also aids in soil particle 
aggregation, which physically protects organic 
carbon from decomposition [33]. Incorporation of 
cyanobacterial biomass directly contributes 
carbon to the soil, while their oxygenic 
photosynthesis creates aerobic conditions that 
slow C mineralization by heterotrophs. 
Cyanobacteria grown on agricultural waste 
substrates can provide a carbon-negative source 
of biofertilizer [101]. Photosynthetic activity 
further reduces CO2 levels in the rhizosphere, 
thus the cyanobacteria act as a carbon sink 
[102]. 
 
Biological soil crusts rich in cyanobacteria 
increase total organic carbon and carbon 
sequestration rates in arid soils. While non-
photosynthetic bacteria dominate the 

rhizosphere, cyanobacteria occupy soil 
microsites at the surface where they contribute 
significantly to C fixation [103]. Their Carbon 
inputs are protected from decomposition by soil 
aggregates. 
 

Cyanobacteria genetically engineered to 
overexpress inorganic carbon uptake systems 
could further optimize CO2 sequestration in soils. 
However, there are still challenges translating 
laboratory studies to effective field application for 
enhancing soil C storage. Maintaining 
cyanobacterial inoculants in soils requires 
adequate light, moisture, temperature, and 
nutrients. Better understanding synergies 
between cyanobacteria, plants and heterotrophic 
microbes that accelerate soil Carbon 
sequestration is also needed [104]. 
 

11. PROGRESS AND LIMITATIONS 
 

Algalization refers to the application of algae or 
cyanobacteria as inoculants to improve soil 
health and plant growth. Cyanobacteria have a 
long history of use as algalizers in flooded rice 
systems to provide biofertilization. Traditional 
practice in parts of Asia involves inoculating rice 
paddies with native cyanobacteria from genera 
such as Nostoc, Anabaena, Aulosira, and 
Tolypothrix [105].  
 

Cyanobacterial inoculation forms algal mats on 
the water surface that can contribute 25-30 kg N 
ha−1 and increase rice yields 10-24% (De, 1939; 
Singh, 1961) [7,95[. Coating rice seeds with 
cyanobacteria before sowing stimulates 
germination, plant growth, and grain yield [106]. 
The exopolysaccharides of cyanobacteria also 
improve soil structure and fertility [107]. 
However, the efficacy of cyanobacteria-based 
algalization depends on species selection, rice 
cultivar, temperature, water, soil nutrients, and 
other conditions [23]. Contamination, limited shelf 
life of inoculum, and variability in field 
performance currently constrain more 
widespread adoption [108] Scaling up production 
of cyanobacteria is challenging compared to 
fungal and bacterial biofertilizers. 
 

Targeted uses of cyanobacterial algalizers show 
potential improvements in area such as                 
salt-affected soils, degraded drylands, and cold 
deserts [41,45] Cyanobacteria inoculation was 
found to increase soil organic carbon, total 
nitrogen, and aggregation in the desert soils 
[53,109]. However, field testing is still limited. 
Cyanobacteria also face competition from other 
microorganisms in the rhizosphere. Integrating 
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cyanobacteria with plant growth-promoting 
bacteria or fungi may improve colonization and 
effectiveness [110,111]. Further innovations are 
needed to make algalization an affordable and 
reliable means of improving soil health and crop 
yields. 
 

12. FUTURE PROSPECTS FOR 
AGRICULTURAL APPLICATIONS  

 

Cyanobacteria have potential to enhance 
agricultural sustainability and soil resilience 
through pathways like carbon sequestration, 
nitrogen fixation, and bioremediation. However, 
much remains unknown regarding their 
taxonomy, phylogeny, genomics, and ecology in 
soil systems [12]. Advancing fundamental 
knowledge should be a priority for directing 
applied research and biotechnological 
innovations [112]. Culture-independent 
techniques have revealed new cyanobacterial 
clades and expanded phylogenetic diversity [2,3]. 
Further sampling of under-studied environments 
combined with genomes and metagenomes will 
likely uncover novel cyanobacteria relevant to 
agriculture [113]. The stressful conditions 
cyanobacteria endure in soils and their adaptions 
merit more study. 
 

Elucidating Cyanobacteria -plant-microbe 
interactions is also crucial. Cyanobacteria 
influence soil microbiomes through organic 
matter input, oxygenation, nutrient alterations, 
and bioactive compounds. However, we have 
limited knowledge of these complex dynamics in 
the rhizosphere and effects on plant health. 
Potential negative impacts like cyanotoxins or 
competition with crops require investigation [93]. 
Advances in cultivation techniques, formulation, 
stabilization, and delivery systems are essential 
for translating laboratory research into effective 
cyanobacterial inoculants. Most agricultural 
applications have involved commonly studied 
genera, while bioprospecting novel strains may 
reveal enhanced traits. Finally, stakeholders like 
farmers, industries, policymakers, and 
consumers should be engaged to develop 
integrated, scalable solutions using 
cyanobacteria to sustain food production and 
ecosystem services [114]. 
 

13. CYANOBACTERIAL APPLICATIONS 
IN THE PHYTOREMEDIATION OF 
CONTAMINATED FIELDS 

 

Cyanobacteria exhibit inherent tolerance 
mechanisms that enable their survival in 

environments contaminated with heavy metals 
and organic pollutants, rendering them promising 
candidates for phytoremediation processes [115]. 
These microorganisms possess the capacity to 
accumulate heavy metals such as Cd, Cr, Ni, Zn, 
As, and Pb via extracellular sequestration, efflux 
systems, and intracellular chelation [116]. 
Noteworthy genera like Phormidium, 
Microcoleus, Nostoc, Anabaena, and Oscillatoria 
have demonstrated resistance to chromium and 
significant bioremediation potential [117]. 
 
In the realm of organic pollutant degradation, 
specific strains of cyanobacteria have undergone 
genetic modification to facilitate the breakdown of 
pollutants. Solvent-tolerant species like 
Synechocystis and Synechococcus have been 
engineered to degrade organic contaminants 
[118]. A synergistic approach involves integrating 
metal-resistant cyanobacteria with aquatic plants 
in wetland systems, offering a viable strategy for 
the phytoremediation of metal-contaminated 
water bodies [119]. 
 
Furthermore, cyanobacteria-derived bio-
surfactants, such as microcolin, exhibit promise 
in solubilizing and degrading petroleum 
hydrocarbons, thereby serving a crucial role in oil 
spill bioremediation efforts [120]. Despite their 
diverse detoxification capabilities, 
comprehensive large-scale field studies are 
imperative to fully comprehend the efficacy and 
feasibility of utilizing cyanobacteria for 
phytoremediation purposes. Ongoing 
advancements in genetic engineering and 
synthetic biology hold the potential to further 
enhance the biodegradation capacities of 
cyanobacteria. 
 

14. CONCLUSION 
 

Cyanobacteria offer immense opportunities to 
improve agricultural sustainability through bio-
fertilization, bioremediation, disease control, and 
carbon sequestration. However, knowledge gaps 
around genetics, plant-microbe interactions, and 
soil ecology must be addressed to direct applied 
research. Advancing cultivation techniques and 
field delivery methods is vital for developing 
effective cyanobacterial inoculants. With 
innovations in biotechnology and soil 
management, cyanobacteria could reduce 
agrochemical reliance, improve stress resilience, 
restore degraded lands, and sustain productivity. 
However, effectiveness varies based on strain, 
plant species, and agro-climatic conditions. 
Realizing their potential requires cross-
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disciplinary engagement and locally-adapted 
solutions to strengthen climate resilience, soil 
health, and productivity. Further research on 
genetics, plant interactions, field performance, 
stress mechanisms and formulations can help 
utilize cyanobacteria's full potential for 
sustainable agriculture. 
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