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Abstract
Compressed sensing can decrease scanning transmission electron microscopy electron dose and
scan time with minimal information loss. Traditionally, sparse scans used in compressed sensing
sample a static set of probing locations. However, dynamic scans that adapt to specimens are
expected to be able to match or surpass the performance of static scans as static scans are a subset
of possible dynamic scans. Thus, we present a prototype for a contiguous sparse scan system that
piecewise adapts scan paths to specimens as they are scanned. Sampling directions for scan
segments are chosen by a recurrent neural network (RNN) based on previously observed scan
segments. The RNN is trained by reinforcement learning to cooperate with a feedforward
convolutional neural network that completes the sparse scans. This paper presents our learning
policy, experiments, and example partial scans, and discusses future research directions. Source
code, pretrained models, and training data is openly accessible at https://github.com/Jeffrey-Ede/
adaptive-scans.

1. Introduction

Most scan systems sample signals at sequences of discrete probing locations. Examples include atomic force
microscopy [1, 2], computerized axial tomography [3, 4], electron backscatter diffraction [5], scanning
electron microscopy [6], scanning Raman spectroscopy [7], scanning transmission electron microscopy
(STEM) [8] and x-ray diffraction spectroscopy [9]. In STEM, the high current density of electron probes
produces radiation damage in many materials, limiting the range and types of investigations that can be
performed [10, 11]. In addition, most STEM signals are oversampled [12] to ease visual inspection and
decrease sub-Nyquist artefacts [13]. As a result, a variety of compressed sensing [14] algorithms have been
developed to enable decreased STEM probing [15]. In this paper, we introduce a new approach to STEM
compressed sensing where a scan system is trained to piecewise adapt partial scans [16] to specimens by deep
reinforcement learning (RL) [17].

Established compressed sensing strategies include random sampling [18–20], uniformly spaced sampling
[19, 21–23], sampling based on a model of a sample [24, 25], partials scans with fixed paths [16], dynamic
sampling to minimize entropy [26–29] and dynamic sampling based on supervised learning [30]. Complete
signals can be extrapolated from partial scans by an infilling algorithm, estimating their fast Fourier
transforms [31] or inferred by an artificial neural network (ANN) [16, 23]. In general, the best sampling
strategy varies for different specimens. For example, uniformly spaced sampling is often better than spiral
paths for oversampled STEM images [16]. However, sampling strategies designed by humans usually have
limited ability to leverage an understanding of physics to optimize sampling. As proposed by our earlier work
[16], we have therefore developed ANNs to dynamically adapt scan paths to specimens. Expected
performance of dynamic scans can always match or surpass expected performance of static scans as static
scan paths are a special case of dynamic scan paths and performance varies for different static scan paths [16].
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Exploration of STEM specimens is a finite-horizon partially observed Markov decision process
(POMDP) [32, 33] with sparse losses: a partial scan can be constructed from path segments sampled at each
step of the POMDP and a loss can be based on the quality of an scan completion generated from the partial
scan with an ANN. Most scan systems support custom scan paths or can be augmented with a field
programmable gate array (FPGA) [34, 35] to support custom scan paths. However, there is a delay before a
scan system can execute or is ready to receive a new command. Total latency can be reduced by using both
fewer and larger steps, and decreasing steps may also reduce distortions due to cumulative errors in probing
positions [34] after commands are executed. Command execution can also be delayed by ANN inference.
However, inference delay can be minimized by using a computationally lightweight ANN and inferring
future commands while previous commands are executing.

Markov decision processes (MDPs) can be optimized by recurrent neural networks (RNNs) based on
long short-term memory (LSTM) [36, 37], gated recurrent unit (GRU) [38], or other cells [39–41]. LSTMs
and GRUs are popular as they solve the vanishing gradient problem [42] and have consistently high
performance [40]. Small RNNs are computationally inexpensive and are often applied to MDPs as they can
learn to extract and remember state information to inform future decisions. To solve dynamic graphs, an
RNN can be augmented with dynamic external memory to create a differentiable neural computer (DNC)
[43]. To optimize a MDP, a discounted future loss, Qt , at step t in a MDP with T steps can be calculated from
step losses, Lt , with Bellman’s equation,

Qt =
T∑

t ′=t

γt
′−tLt ′ , (1)

where γ ∈ [0, 1) discounts future step losses. Equations for RL are often presented in terms of rewards, e.g.
rt =−Lt; however, losses are an equivalent representation that avoids complicating our equations with minus
signs. Discounted future loss backpropagation through time (BPTT) [44] enables RNNs to be trained by
gradient descent [45]. However, losses for partial scan completions are not differentiable with respect to
(w.r.t.) RNN actions, (a0, ...,aT−1), controlling which path segments are sampled.

Many MDPs have losses that are not differentiable w.r.t. agent actions. Examples include agents directing
their vision [46, 47], managing resources [48], and playing score-based computer games [49, 50]. Actors can
be trained with non-differentiable losses by introducing a differentiable surrogate [51] or critic [52] to
predict losses that can be backpropagated to actor parameters. Alternatively, non-differentiable losses can be
backpropagated to agent parameters if actions are sampled from a differentiable probability distribution
[46, 53] as training losses given by products of losses and sampling probabilities are differentiable. There are
also a variety of alternatives to gradient descent, such as simulated annealing [54] and evolutionary
algorithms [55], that do not require differentiable loss functions. Such alternatives can outperform gradient
descent [56]; however, they usually achieve similar or lower performance than gradient descent for deep
ANN training.

2. Training

In this section, we outline our training environment, ANN architecture and learning policy. Our ANNs were
developed in Python with TensorFlow [57]. Detailed architecture and learning policy is in supplementary
information (available online at stacks.iop.org/MLST/2/045011/mmedia). In addition, source code and
pretrained models are openly accessible from GitHub [58], and training data is openly accessible [12, 59].

2.1. Environment
To create partial scans from STEM images, an actor, µ, infers action unit vectors, µ(ht), based on a history,
ht = (a0,oi1, ...,at−1,ot), of previous actions, a, and observations, o. To encourage exploration, µ(ht) is
rotated to at by Ornstein–Uhlenbeck (OU) [60] exploration noise [61], εt ,

at =

[
cosεt − sinεt
sinεt cosεt

]
µ(ht) (2)

ϵt = θ(εavg− εt−1)+σW (3)

where we chose θ= 0.1 to decay noise to εavg = 0, a scale factor, σ= 0.2, to scale a standard normal variate,
W, and start noise ε0 = 0. OU noise is linearly decayed to zero throughout training. Correlated OU
exploration noise is recommended for continuous control tasks optimized by deep deterministic policy
gradients (DDPGs) [49] and recurrent deterministic policy gradients (RDPGs) [50]. Nevertheless, follow-up
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Figure 1. Simplified scan system. (a) An example 8× 8 partial scan with T= 5 straight path segments. Each segment in this
example has three probing positions separated by d= 21/2 px, and their starts are labelled by step numbers, t. Partial scans are
selected from STEM images by sampling image pixels nearest probing positions, even if a nominal probing position is outside an
imaging region. (b) An actor RNN uses its previous state, action, and an observed path segment to choose the next action at each
step. (c) A partial scan constructed from actions and observed path segments is completed by a generator CNN.

experiments with twin delayed deep deterministic policy gradients (TD3) [62] and distributed distributional
deep deterministic policy gradients (D4PG) [63] have found that uncorrelated Gaussian noise can produce
similar results.

An action, at , is the direction to move to observe a path segment, ot , from the position at the end of the
previous path segment. Partial scans are constructed from complete histories of actions and observations, hT .
A simplified partial scan is shown in figure 1(a). In our experiments, partial scans, s, are constructed from
T= 20 straight path segments selected from 96× 96 STEM images. Each segment has 20 probing positions
separated by d= 21/2 px and positions can be outside an image. The pixels in the image nearest each probing
position are sampled, so a separation of d≥ 21/2 simplified development by preventing successive probing
positions in a segment from sampling the same pixel. A separation of d< 21/2 would allow a pixel to sampled
more than once by moving diagonally, potentially incentivising orthogonal scan motion to sample more
pixels.

Following our earlier work [16, 23, 64], we select subsets of pixels from STEM images to create partial
scans to train ANNs for compressed sensing. Selecting a subset of pixels is easier than preparing a large,
carefully partitioned and representative dataset [65, 66] containing experimental partial scan and full image
pairs, and selected pixels have realistic noise characteristics as they are from experimental images. However,
selecting a subset of pixels does not account for probing location errors varying with scan shape [34]. We use
a Warwick Electron Microscopy Dataset containing 19 769 32-bit 96× 96 images cropped and downsampled
from full images [12, 59]. Cropped images were blurred by a symmetric 5× 5 Gaussian kernel with a 2.5 px
standard deviation to decrease any training loss variation due to varying noise characteristics. Finally,
images, I, were linearly transformed to normalized images, IN , with minimum and maximum values of−1
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and 1. To test performance, the 19 769 images were split, without shuffling, into a training set containing
15 815 images and a test set containing 3954 images.

2.2. Architecture
For training, our adaptive scan system consists of an actor, µ, target actor, µ ′, critic, Q, target critic, Q ′, and
generator, G. Simplified actor and generator architecture is shown in figures 1(b) and (c). To minimize
latency, our actors and critics are computationally inexpensive deep LSTMs [67] with a depth of 2 and 256
hidden units. Our generator is a convolutional neural network (CNN) [68, 69]. A recurrent actor selects
actions, at and observes path segments, ot , that are added to an experience replay [70], R, containing 105

complete histories of actions and observations. Partial scans, s, are constructed from histories sampled from
the replay to train a generator to complete partial scans, IiG = G(si). The actor and generator cooperate to
minimize generator losses, LG, and are the only networks needed for inference.

Generator losses are not differentiable w.r.t. actor actions used to construct partial scans i.e. ∂LG/∂at = 0.
Following RDPG [50], we therefore introduce recurrent critics to predict losses from actor actions and
observations that can be backpropagated to actors for training by BPTT. Actor and critic RNNs have the
same architecture, except actors have two outputs to parameterize actions whereas critics have one output to
predict losses. Target networks [49, 71] use exponential moving averages of live actor and critic network
parameters and are introduced to stabilize learning. For training by RDPG, live and target ANNs separately
replay experiences. However, we propagate live RNN states to target RNNs at each step as a precaution
against any cumulative divergence of target network behaviour from live network behaviour across multiple
steps.

2.3. Learning policy
To train actors to cooperate with a generator to complete partial scans, we developed cooperative recurrent
deterministic policy gradients (CRDPG, algorithm 1). This is an extension of RDPG to an actor that
cooperates with another ANN to minimize its loss. We train our networks by ADAM [72] optimized gradient
descent forM= 106 iterations with a batch size, N = 32. We use constant learning rates ηµ = 0.0005 and
ηQ = 0.0010 for the actor and critic, respectively. For the generator, we use an initial learning rate
ηG = 0.0030 with an exponential decay factor of 0.755m/M at iterationm. The exponential decay envelope is
multiplied by a sawtooth cyclic learning rate [73] with a period of 2M/9 that oscillates between 0.2 and 1.0.
Training takes two days with an Intel i7-6700 CPU and an Nvidia GTX 1080 Ti GPU.

We augment training data by a factor of eight by applying a random combination of flips and 90◦

rotations, mapping s→ s ′ and IN→ I ′N, similar to our earlier work [16, 23, 64, 74]. Our generator is trained
to minimize mean squared errors,

LG =MSE(G(s ′), IN) , (12)

between scan completions, G(s ′), and normalized target images, IN . Generator losses decrease during
training as the generator learns, and may vary due to loss spikes [64], learning rate oscillations [73] or other
training phenomena. Normalizing losses can improve RL [75], so we divide generator losses used for critic
training by their running mean,

Lavg← βLLavg +
1−βL
N

N∑
i

LG , (13)

where we chose βL = 0.997 and Lavg is updated at each training iteration.
Heuristically, an optimal policy does not go over image edges as there is no information there in our

training environment. To accelerate convergence, we therefore added a small loss penalty, Et = 0.1, at step t if
an action results in a probing position being over an image edge. The total loss at each step is

Lt = Et + δtT
clip(LG)

Lavg
, (14)

where clip(LG) clips losses used for RL to three standard deviations above their running mean. This adaptive
loss clipping is inspired by adaptive learning rate clipping [64] and reduces learning destabilization by high
loss spikes. However, we expect that clipping normalized losses to a fixed threshold [71] would achieve
similar results. The Kronecker delta, δtT , in equation (14) is 1 if t=T and 0 otherwise, so it only adds the
generator loss at the final step, T.

To estimate discounted future losses, Qrl
t , for RL, we use a target actor and critic,
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Algorithm 1. Cooperative recurrent deterministic policy gradients (CRDPG).

Initialize actor, µ, critic, Q, and generator, G, networks with parameters ω, θ and ϕ, respectively.
Initialize target networks, µ ′ and Q ′, with parameters ω ′← ω, θ ′← θ, respectively.
Initialize replay buffer, R.
Initialize average generator loss, Lavg.
for iterationm= 1,M do

Initialize empty history, h0.
for step t= 1,T do

Make observation, ot .
ht← ht−1,at−1,ot (append action and corresponding observation to history).
Select action, at , by computing µ(ht) and applying exploration noise, εt .

end for
Store the sequence (a0,o1, ...,aT−1,oT) in R.
Sample a minibatch of N histories, hiT = (ai0,o

i
1, ...,a

i
T−1,o

i
T), from R.

Construct partial scans, si, from hiT.
Use generator to complete partial scans, IiG = G(si).
Compute step losses, (Li1, ...,L

i
T), from generator losses, LiG, and over edge losses, E

i
t ,

Lit = Eit + δtT
clip(LiG)
Lavg

, (4)

where the Kronecker delta, δtT , is 1 if t=T and 0 otherwise, and clip(LiG) is the smaller of LiG and three standard
deviations above its running mean.
Compute target values, (yi1, ...,y

i
T), with target networks,

yit = Lit + γQ ′(H i
Q,a

i
t,o

i
t+1,µ

′(H i
µ,a

i
t,o

i
t+1)), (5)

where Hi
Q and Hi

µ are hidden states of live networks after computing Q(hit,a
i
t) and µ(hit), respectively.

Compute critic update (using BPTT),

∆ω =
1
NT

N∑
i

T∑
t

(yit−Q(hit,a
i
t))

∂Q(hit,a
i
t)

∂ω
. (6)

Compute actor update (using BPTT),

∆θ =
1
NT

N∑
i

T∑
t

∂Q(hit,a
i
t)

∂µ(hit)

∂µ(hit)
∂θ

. (7)

Compute generator update,

∆ϕ=
1
N

N∑
i

∂LiG
∂ϕ

. (8)

Update the actor, critic, and generator by gradient descent.
Update the target networks and average generator loss,

ω ′← βωω
′ +(1−βω)ω , (9)

θ ′← βθθ
′ +(1−βθ)θ , (10)

Lavg← βLLavg +
1−βL

N

N∑
i

(LiG) . (11)

end for

Qrl
t = Lt + γQ ′(ht+1,µ

′(ht+1)) , (15)

where we chose γ= 0.97. Target networks stabilize learning and decrease policy oscillations [76–78]. The
critic is trained to minimize mean squared differences, LQ, between predicted and target losses, and the actor
is trained to minimize losses, Lµ, predicted by the critic,
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Figure 2. Examples of test set 1/23.04 px coverage partial scans, target outputs and generated partial scan completions for 96× 96
crops from STEM images. The top four rows show adaptive scans, and the bottom row shows spiral scans. Input partial scans are
noisy, whereas target outputs are blurred.

LQ =
1

2T

T∑
t=1

(yt−Q(ht,at))
2 , (16)

Lµ =
1

T

T∑
t=1

Q(ht,at) . (17)

Our target actor and critic have trainable parameters ω ′ and θ ′, respectively, that track live parameters, ω
and θ, by soft updates [49],

ω ′
m = βωω

′
m−1 +(1−βω)ωm , (18)

θ ′
m = βθθ

′
m−1 +(1−βθ)θm , (19)

where we chose βω = βθ = 0.9997. We also investigated hard updates [71], where target networks are
periodically copied from live networks; however, we found that soft updates result in faster convergence and
more stable training.

3. Experiments

In this section, we present examples of adaptive partial scans and select learning curves for architecture and
learning policy experiments. Examples of 1/23.04 px coverage partial scans, target outputs and generator
completions are shown in figure 2 for 96× 96 crops from test set STEM images. They show both adaptive
and spiral scans after flips and rotations to augment data for the generator. The first actions select a path
segment from the middle of image in the direction of a corner. Actors then use the first and following
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Figure 3. Learning curves for (a)–(b) adaptive scan paths chosen by an LSTM or GRU, and fixed spiral and other fixed paths,
(c) adaptive paths chosen by an LSTM or DNC, (d) a range of replay buffer sizes, (e) a range of penalties for trying to sample at
probing positions over image edges, and (f) with and without normalizing or clipping generator losses used for critic training. All
learning curves are 2500 iteration boxcar averaged and results in different plots are not directly comparable due to varying
experiment settings. Means and standard deviations of test set errors, ‘Test: Mean, Std Dev’, are at the ends of labels in graph
legends.

observations to inform where to sample the remaining T− 1= 19 path segments. Actors adapt scan paths to
specimens. For example, if an image contains regular atoms, an actor might cover a large area to see if there is
a region where that changes. Alternatively, if an image contains a uniform region, actors, may explore near
image edges and far away from the uniform region to find region boundaries.

The main limitation of our experiments is that generators trained to complete a variety of partial scan
paths generated by an actor achieves lower performance than a generate trained to complete partial scans
with a fixed path. For example, figure 3(a) shows that generators trained to cooperate with LSTM or GRU
actors are outperformed by generators trained with fixed spiral or other scan paths shown in figure 3(b).
Spiral paths outperform fixed scan paths; however, we emphasize that paths generated by actors are designed
for individual training data, rather than all training data. Freezing actor training to prevent changes in actor
policy does not result in clear improvements in generator performance. Consequently, we think that
improvements to generator architecture or learning policy should be a starting point for further
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investigation. To find the best practical actor policy, we think that a generator trained for a variety of scan
paths should achieve comparable performance to generators trained for single scan paths.

We investigated a variety of popular RNN architectures to minimize inference time. Learning curves in
figure 3(a) show that performance is similar for LSTMs and GRUs. GRUs require less computation. However,
LSTM and GRU inference time is comparable and GRU training seems to be more prone to loss spikes, so
LSTMs may be preferable. We also created a DNC by augmenting a deep LSTM with dynamic external
memory. However, figure 3(c) shows that LSTM and DNC performance is similar, and inference time and
computational requirements are much higher for our DNC. We tried to reduce computation and accelerate
convergence by applying projection layers to LSTM hidden states [79]. However, we found that performance
decreased with decreasing projection layer size.

Experienced replay buffers for RL often have heuristic sizes, such as 106 examples. However, RL can be
sensitive to replay buffer size [70]. Indeed, learning curves in figure 3(d) show that increasing buffer size
improves learning stability and decreases test set errors. Increasing buffer size usually improves learning
stability and decreases forgetting by exposing actors and critics to a higher variety of past policies. However,
we expect that convergence would be slowed if the buffer became too large as increasing buffer size increases
expected time before experiences with new policies are replayed. We also found that increasing buffer sized
decreased the size of small loss oscillations [76–78], which have a period near 2000 iterations. However, the
size of loss oscillations does not appear to affect performance.

We found that initial convergence is usually delayed if a large portion of initial actions go outside the
imaging region. This would often delay convergence by about 104 iterations before OU noise led to the
discovery of better exploration strategies away from image edges. Although 104 iterations is only 1% of our
106 iteration learning policy, it often impaired development by delaying debugging or evaluation of changes
to architecture and learning policy. Augmenting RL losses with subgoal-based heuristic rewards can
accelerate convergence by making problems more tractable [80]. Thus, we added loss penalties if actors tried
to go over image edges, which accelerated initial convergence. Learning curves in figure 3(e) show that over
edge penalties at each step smaller than Et = 0.2 have a similar effect on performance. Further, performance is
lower for higher over edge penalties, Et ≥ 0.2. We also found that training is more stable if over edge penalties
are added at individual steps, rather than propagated to past steps as part of a discounted future loss.

Our actor, critic and generator are trained together. It follows that generator losses, which our critic
learns to predict, decrease throughout training as generator performance improves. However, normalizing
loss sizes usually improves RL [75], so we divide by their running means in equation (14). Learning curves in
figure 3(f) show that loss normalization improves learning stability and decreases final errors. Clipping
training losses can improve RL [71], so we clipped generator losses used for critic training to three standard
deviations above their running means. We found that clipping increases test set errors, possibly because most
training errors are in a similar regime. Thus, we expect that clipping may be more helpful for training with
sparser scans as higher uncertainty may increase likelihood of unusually high generator losses.

4. Discussion

The main limitation of our adaptive scan system is that generator errors are much higher when a generator is
trained for a variety of scan paths than when it is trained for a single scan path. However, we expect that
generator performance for a variety of scans could be improved to match performance for single scans by
developing a larger neural network with a better learning policy. To train actors to cooperate with generators,
we developed CRDPG. This is an extension of RDPG [50], and RDPG is based on DDPG [49]. Alternatives
to DDPG, such as TD3 [62] and D4PG [63], arguably achieve higher performance, so we expect that they
could form the basis of a future training algorithm.Further, we expect that architecture and learning policy
could be improved by AdaNet [81], Ludwig [82], or other automatic machine learning (AutoML) [83–87]
algorithms as AutoML can often match or surpass the performance of human developers [88, 89]. Finally,
test set losses for a variety of scans appear to be decreasing at the end of training, so we expect that
performance could be improved by increasing training iterations.

After generator performance is improved, we expect the main limitation of our adaptive scan system to be
distortions caused by probing position errors. Errors usually depend on scan path shape [34] and accumulate
for each path segment. Non-linear scan distortions can be corrected by comparing pairs of orthogonal raster
scans [90, 91], and we expect this method can be extended to partial scans. However, orthogonal scanning
would complicate measurement by limiting scan paths to two half scans to avoid doubling electron dose on
beam-sensitive materials. Instead, we propose that a cyclic generator [92] could be trained to correct scan
distortions and provide a detailed method as supplementary information [93]. Another limitation is that our
generators do not learn to correct STEM noise [94]. However, we expect that generators can learn to remove
noise, for example, from single noisy examples [95] or by supervised learning [74].
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To simplify our preliminary investigation, our scan system samples straight path segments and cannot go
outside a specified imaging region. However, actors could learn to output actions with additional degrees of
freedom to describe curves, multiple successive path segments, or sequences of non-contiguous probing
positions. Similarly, additional restrictions could be applied to actions. For example, actions could be
restricted to avoid actions that cause high probing position errors. Training environments could also be
modified to allow actors to sample pixels over image edges by loading images larger than partial scan regions.
In practice, actors can sample outside a scan region and being able to access extra information outside an
imaging region could improve performance. However, using larger images may slow development by
increasing data loading and processing times.

Not all scan systems support non-raster scan paths. However, many scan controllers can be augmented
with an FPGA to enable custom scan paths [34, 35]. Recent versions of Gatan DigitalMicrograph support
Python [96], so our ANNs can be readily integrated into existing scan systems. Alternatively, an actor could
be synthesized on a scan-controlling FPGA [97, 98] to minimize inference time. There could be hundreds of
path segments in a partial scan, so computationally lightweight and parallelizable actors are essential to
minimize scan time. We have therefore developed actors based computationally inexpensive RNNs, which
can remember state information to inform future decisions. Another approach is to update a partial scan at
each step to be input to feedforward neural network (FNN), such as a CNN, to decide actions. However, we
expect that FNNs are less practical than RNNs as FNNs may require additional computation to reprocess all
past states at each step.

5. Conclusions

Our initial investigation demonstrates that actor RNNs can be trained by RL to direct piecewise adaption of
contiguous scans to specimens for compressed sensing. We introduce CRDPG to train an RNN to cooperate
with a CNN to complete STEM images from partial scans and present our learning policy, experiments, and
example applications. After further development, we expect that adaptive scans will become the most
effective approach to decrease electron beam damage and scan time with minimal information loss. Static
sampling strategies are a subset of possible dynamic sampling strategies, so the performance of static
sampling can always be matched by or outperformed by dynamic sampling. Further, we expect that adaptive
scan systems can be developed for most areas of science and technology, including for the reduction of
medical radiation. To encourage further investigation, our source code, pretrained models, and training data
is openly accessible.
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