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ABSTRACT

Electrical machines are critical components in industrial processes. A motor failure may
yield an unexpected interruption at the industrial plant, with consequences in costs, product
quality, and safety. To determine the conditions of each part of motor, various testing and
monitoring methods have been developed. In this paper, a review on effective fault
indicators and condition monitoring methods of rotating electrical machines has been
accomplished. Fault detection methods divided to four groups: electrical, mechanical,
chemical and thermal indicators. Some fault detection methods based on electrical
symptoms like stator current, voltage, their combination or spectrum discussed in electrical
group. In second branch, mechanical symptoms like torque, vibration and so on used for
condition monitoring. Third group, chemical indicators, assigned to some chemical
parameters of materials like oil characteristic or wear and debris in oil analysis. In last group,
thermal symptoms in rotating electrical machines will be spoken. Between all methods,
some of them are more known like vibration and some of them are recently added like motor
current signature analysis (MCSA). Nowadays, combined methods and methods used
artificial intelligence (AI) in condition monitoring are more popular. In every group, the fault
detection method and the faults that can be detected have been mentioned. Mathematical
equations of some new signal processing method have been discussed in literature
presented in appendix.
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1. INTRODUCTION

Fault diagnosis and condition monitoring have been studied in the recent decade to prevent
costly interruptions due to motor faults and recognize faulty conditions as soon as possible
[1–7]. Electrical motors are subjected to faults which may redound to secondary faults. The
sources of motor faults may be internal, external or due to environmental conditions. Internal
faults can be classified with reference to their origin.

Internal faults can be classified with their outbreak location: stator or rotor. Common
machine faults in rotor according to [8] are:

1) Bearing failure;
2) Rotor broken bars;
3) Rotor body failure;
4) Bearing misalignment;
5) Rotor misalignment;
6) Bearing loss of lubrication;
7) Rotor mechanical or thermal unbalanced;

And common faults become apparent in stator as categorized in [8] are:

1) Frame vibration;
2) Stator earth faults;
3) Damage of insulation;
4) Stator turn-to-turn faults;
5) Stator phase- to- phase faults;
6) Displacement of conductors;
7) Failure of electrical connections;

These failures can be detected with several procedures. In this paper, they are discussed by
their detection method and parameters will be measured to four groups.

2. FAULT DETECTION METHODS

There are several indicators for faulty conditions of rotating electrical machines help us to
distinguish machine conditions. In this paper, fault detection methods persuaded by their
fault indicators. So condition monitoring method can be analyzed in four groups as
presented in Fig. 1.
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Fig. 1. Fault diagnosis methods

2.1 Electrical Analysis

Some of the electrical faulty condition symptoms are motor current signature, voltage, flux,
power and so on. Probable faults can be detected by comparison between electrical signals
in healthy and unknown conditions.

Some of the electrical methods are based on signal injection and response analysis. For
instance, a method based on signal injection with high-frequency proposed in [9] for fault
detection in closed-loop drives, but it’s difficult to implement for many applications due to
invasiveness and hardware limitations.

Akin et al. in [10] reported that the reference frame theory directly added into the main motor
control subroutine in DSP program can successfully be applied to real-time fault diagnosis of
electric machinery systems to find the magnitude and phase quantities of fault signatures
even though in nonideal conditions such as offset, unbalance, etc.

In the rated rotor flux test by applying an ac voltage source across each side of the shaft,
high shaft current and yoke flux have been utilized. This induces circulating current between
the rotor bars and shaft, and the current or flux of each bar is indirectly monitored using iron
filings/magnetic viewer or a thermal imaging camera. The influence of a cracked or broken
bar or shorted rotor laminations can be observed by this test [11]. These methods are being
done under standstill condition and don’t seem efficient for online condition monitoring.

An automated technique for monitoring of rotor condition of voltage source inverter-fed
induction machines at standstill has been proposed in [11]. In this algorithm, the motor is
excited with a set of pulsating fields at a number of angular positions for observing the
change in the impedance pattern for broken bar detection. This technique can be performed
without any extra hardware but it’s still an offline test.
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2.1.1 Motor current signature analysis (MCSA)

MCSA is one of the most popular approaches since it provides sensor less diagnosis of rotor
and bearing problems [11,12,13]. MCSA requires the measurement and manipulation of
lengthy steady-state data and an accurate measurement/estimate of the rotor speed for
obtaining a reliable and high-resolution assessment but MCSA is not so effective for
applications where the load constantly changes.

The prior MCSA techniques assume stationary and high SNR for signal. The nonstationary
of stator current is accommodated by the commonly used windowing techniques [14]. The
highly transient and dynamic nature of the induction motor stator current during fault
conditions demand analysis through algorithms and techniques fit to analyze nonstationary
and nonlocalized signals, such as wavelet transform or other time-frequency techniques.
The availability of the advanced signal processing tools, such as higher order spectrum
analysis [15], high-resolution or subspace methods [16] and wavelet analysis [17,18] have
revolutionized the signal processing for fault detection in electrical motors.

MCSA usually has been attempted looking at fs)21(  and fs)21(  frequencies, lower
sideband (LSB), and upper sideband (USB), which s is slip and f is main frequency [19].
The sideband amplitudes are affected by load level and power rating, constructive details,
and by manufacturing asymmetries [20].

Because of the vicinity of signal main frequency to produced components and sidebands,
broken bar detection may be difficult by this method [21]. Also, this problem exists under low
slip operation. MCSA-based online rotor fault detection is not very effective since the current
regulator masks the fault signatures in the current [22-24]. In addition, online monitoring
techniques can fail if the operating frequency constantly changes due to adjustable speed
operation. In [23,24], spectrum analysis of variable speed controller was proposed for rotor
fault detection in field-oriented drives, but the methods can only be applied for a specific
control scheme and are strongly influenced by controller parameters [25].

In [19] some new fault indicators for bar-breakage detection are exposed based on the
sidebands of phase-current upper harmonics; the ratios
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of such indicators, and they are independent on load torque and drive inertia. This method
has low independence with respect to machine parameters and has linear dependence on
fault gravity.

Jung et al. in [26] conducted an advanced online diagnosis system using MCSA and made
up of the optimal slip-estimation algorithm, the proper sample selection algorithm, and the
frequency auto search algorithm for more productivity.

In [27] have been compared different fault diagnosis methods like three phase current
vector, the instantaneous torque, and the outer magnetic field. Finally, it’s declared that
MCSA can be the best method for diagnosis the rotor faults.

As a basic tool, various reference-frame-theory-based applications are reported in the recent
studies, like finding deviation in an actual Concordia pattern used to determine the types and
magnitude of faults in drive systems and stator, respectively [28,29], obtaining negative-
sequence stator-fault-related indices from the line current [30], and detecting negative-
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frequency rotor asymmetry signatures at standstill based on complex fault signature vectors
[31].

Time-frequency analysis has been investigated vastly in recent years but its complexity and
heavy hardware requirements are limitations for simple low-cost drive systems [22].

There are several ways for data comparison in signal processing like Kolmogorov–Smirnov
(KS) technique, Plateau algorithm, Holf–Winters (HW) technique and Mark–Burgess (MB)
technique. If two time data series or distributions are at a significant variance the KS
technique [32,33], a nonparametric and distribution-free technique [34] is best choice. They
are being used for comparison motor current signal with reference signal. The reference
signal is motor current signal in healthy condition. The KS parameter is evaluated by taking
the vertical difference between the two data distributions under test into consideration. The
Plateau algorithm is apposite for handling long-term deviations and seems not suitable for
condition monitoring. Holf–Winters (HW) algorithm is a forecasting technique needs a
spontaneously event detection procedure, and Mark–Burgess (MB) technique is intended for
detecting real-time changes. The KS technique is the best known of several distribution-free
techniques that test general differences between data distributions. It is more valuable for
applications, which are responsive to data distributions [14].

2.1.1.1 Order tracking method

Similar to vibration analysis in nonstationary condition or in variable speed motors instead of
tracking absolute frequency, frequencies can be explained by multiple of a base frequency
that is usually power source frequency. For instance this method in [35] used for detection
inter-turn in Permanent Magnet Synchronous Motor (PMSM). In [35] by applying a Vold-
Kalman Filter (VKF) [36] tried to use order tracking method for selected voltage and current
harmonics and detect inter-turn in PMSM. Vold-Kalman Filter Order tracking (VKF-OT)
beneficiary is that allows extracting both the amplitude and phase of the analyzed orders at
each time instant directly from the original data. Furthermore, its tracking performance does
not depend on the slew rate (rotational speed rate of change) [35] and make order tracking
on noisy signal easy.

2.1.1.2 Time and frequency domain analysis

There are some restrictions of the Fourier transform, for example it cannot be used for non
periodic or nonstationary signals; otherwise, the resulting FFT spectrum will make little
physical sense [17,37,38].

However, for machinery operating under unsteady conditions, because of variation in the
rotating speed and operating load, even if the machine is in the normal state, the spectrum
of the vibration signal is always altering in sampling time. When a nonstationary signal is
transformed into the frequency domain, most of the information about the transient
components of the signal will be lost [39], hence, a hybrid method has been proposed in
[40].

Time-frequency analysis [41] methods can simultaneously generate both time and frequency
information from a signal. Therefore, in later studies, time-frequency analysis methods are
widely used to detect faults since they can determine not only the time of occurrence but
also the frequency ranges of the location [42]. Time-frequency methods mostly use in
vibration analysis and MCSA. There are several time-frequency analysis methods, such as
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the Short-Time Fourier Transform (STFT), Wavelet Analysis (WA), and the Wigner-Ville
Distribution (WVD), which may be used for condition monitoring of rotating machinery in
transient and unsteady operating conditions. Those time-frequency techniques have been
applied to fault diagnosis and condition monitoring in practical plant machinery [18,43,44].
Also Hilbert transform and Zhao–Atlas–Marks distribution in [45] applied to fault diagnosis of
motors in nonstationary conditions but this method is not as common as prior methods.

Misalignment detection using STFT and WA signal processing techniques is shown in Fig. 2
[25].

(a)                                                               (b)

Fig. 2. Misalignment detection using STFT and the wavelet technique: (a) STFT (b)
STFT and wavelet technique [3]

In the field of machinery fault monitoring, Wavelet Analysis (WA) has been used widely in
the diagnosis of rolling bearings, gearbox and compressors. This technique also has been
used for feature extraction and noise cancellation of the various signals [18,43-46].

In [18,43,47], a fault diagnostic technique for rotating machinery is investigated based on
discrete wavelet transform. In Reference [48] a time-averaged WA according to Morlet
continues wavelet used for fault diagnosis of a gear set. Also, reference [49] presents a
combination of Continuous Wavelet Transform (CWT) and Kolmogorov-Smirnov test for fault
detection of the bearings and gear box in transient conditions. In [46,50] CWT is used for
extract the features of roller bearing fault signals. Reference [51] used CWT for fault signal
diagnosis in an internal combustion engine.

In [52], the application of the Wigner-Ville distribution is reported to detect a broken tooth in a
spur gear. Reference [53] shows that the WVD can be applied to the description of machine
conditions and it is an effective method in machinery fault diagnosis. Reference [44] applies
a PWVD to identifying the influence of the fluctuating load conditions for gearbox. A Digital
Signal Processing (DSP) implementation is presented in [54] to detect mechanical load
faults in induction motors during speed transients based on WVD and stator current analysis.

2.1.2 Flux monitoring

Magnetic flux can be a fault indicator and monitored both inside the machine (search coils)
or outside (axial coils). Coil installation and noisy spectra are the main difficulties [19]. One
of the most applications of this algorithm is fault detection in rotor cage. The estimated rotor
flux in [24] suggested for the diagnosis of rotor faults in vector-controlled drives. In [84]
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Dorell et al. showed a relation between air gap eccentricity and air gap flux and vibration
signals.

Cruz et al. in [55] presented an algorithm for diagnosis of rotor faults which starts with the
measurement of the amplitude of the rotor flux oscillations. It’s showed that the ratio
between dsi and the average value of qsi , current changes in d and q axis respectively,
gives the degree of asymmetry of the motor or the number of adjacent broken bars, if the
total number of rotor bars is known. But this algorithm needs some additional modules for
calculating the current average values and tracks the amplitude of currents.

2.1.3 Motor power monitoring

Motor power signature analysis is focused on the detection of double-slip frequencies
present in the electric input power spectrum [56] similar to MCSA. These harmonics are
evaluated with respect to the average power (dc component), thus obtaining some fault
severity factors. In addition, this method needs to acquire both currents and voltages. Also
the dependence on the drive inertia is another limitation of this fault indicator [57]. Bellini et
al. in [57] tried to detect rotor broken bar by this approach.

2.1.4 Partial discharge (PD) monitoring

This test mainly used in high voltage motors and generator stator windings. By using Partial
Discharge Analyzer (PDA) sensors placed within the winding or at the winding terminals,
stator winding PD pulses will separate from electrical interference (usually harmless) based
on pulse arrival time or pulse shape and easily can be detected [58]. PD is a symptom of
many stator winding insulation failure mechanisms. IEEE 1434-2000 reviews all types of PD
measurement methods used in rotating machines [59].

There are several discharge monitoring techniques. Among these methods RF coupling
method, capacitive coupling method and broad-band RF method [60] are more known. A
Radio Frequency Current Transformer (RFCT) installed on neutral point of winding can
detect Radio Interference Frequency Intensity (RIFI) caused by PD. Arcs occurred at any
location cause RF current flow into the neutral point because of its low potential. The RIFI
meter had a narrow bandwidth of about 10 kHz centered at 1MHz [60]. By using a
frequency-based method with low power hardware, it is possible to take advantage of the RF
technique without the need for wideband signal capture and its associated overheads [61].

Second method use specialized pulse height analyzer with bandwidth 80 MHz. In this
approach connection to the winding is made through coupling capacitors at the machine line
terminals [60]. Initially, the capacitors were connected to the machine during an outage, but
latterly described how the capacitors could be permanently built into the phase rings of the
machine and the measurements can be made without service interruption. In [62] showed
that the pulse has a rise time (defined as 10%–90% of peak) of 4 ns and the frequency
content of this pulse extends to over 100 MHz, thus, an 80-pF capacitor installed on high-
voltage machine terminals can be used as the coupling device.

It has been shown that serious PD, sparking or arcing, has faster rise-times than the
background corona and PD activity, and therefore produce a much higher bandwidth of
electromagnetic energy, up to 350 MHz. If this energy is detected, at as high a frequency as
possible, the ratio of damaging discharge signal to background noise is increased.
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Frequencies above 0.4 MHz do not propagate from the discharge place along the winding,
as with the lower frequency techniques, but by radiation from the winding [60]. This radiation
can be detected by an RF aerial located inside the enclosure of the machine or outside,
close to an aperture in it and it is basic concepts of broad-band RF monitoring method.

2.1.5 Voltage spectrum analysis

The Growler test and rated rotor flux test with high current ac excitation are another
commonly used offline tests for rotor testing [63-67]. A Growler is an electrical device used
for testing insulation of a motor for shorted coils with an iron core and excited by AC current
for detection insulation problem.

The method consists of inserting an auxiliary small winding which is a coil  “sneak’’ that
forms an angle 0 with the A stator phase as shown in Fig. 3 [68]. This coil has no
conductive contact with the other phases but it is mutually coupled with all the other circuits
on both the stator and rotor sides [69].

Fig. 3. Auxiliary winding emplacement [69]

Mirimani et al. in [70] investigated the effect of static eccentricity on the back EMF of an Axial
Flux Permanent magnet (AFPM) through 3D-FEM (Finite Element Method) as shown in Fig.
4 [68]. The back EMF of the four coils of one phase is obtained to propose a suitable
criterion for precise eccentricity fault detection.

Fig. 4. 3D-FEM model of the axial flux permanent magnet motor [68]
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In the case of a healthy motor the auxiliary winding voltage Park components spectra
contain one peak at the motor main supply frequency. The Lissajous curve is an ellipse as
shown in Fig. 5 [71]. In the different cases of voltage unbalances, the Lissajous curves are
also ellipses that have different angles as shown in Fig. 6 [71]. In comparison with damaged
and non defected motor, the value of their superior and inferior radiuses will increase [68].

It is also well known that the effects of stator winding inter-turn faults may be detected by
monitoring the Zero-Sequence Voltage Component (ZSVC) [72,73]. This method benefit is
that it’s separate from motor drive against some other methods like MCSA, but it needs to
access to stator winding neural point. In [35] attempted to detect inter-turn fault in PMSM by
first harmonic amplitude of ZSVC and stator currents third harmonic. Briz et al. [74] used
voltage and current zero-sequence components for recognition of faults in induction
machine.

Fig. 5. Park’s Currents Vector of a healthy motor [71]

Fig. 6. Park’s currents vector for a motor with coils in shortcut [71]
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2.2 Mechanical Analysis

There are several mechanical symptoms for faulty condition of electrical machine, such as:
vibration, noise, torque and so on.

2.2.1 Vibration monitoring

As almost 80 percent of common rotating equipments problems are related to misalignment
and unbalance, vibration analysis is an important tool that can be used to eliminate recurring
problems [75,76]. In many cases, the overall vibration level of the machine is sufficient to
diagnose mechanical failures [77,78], but in [2] showed that this is not an efficient method for
all faults. In [79] showed that the electromagnetic force is the most sensitive indicator of air
gap eccentricity. Therefore identifiable signatures should be found in the vibration pattern of
rotating electrical machines. The only drawback of this indicator is its low accessibility.
Nevertheless, since vibrations are the consequences of the forces on the machine structure,
identifiable signatures should be found in the vibration pattern. The measured vibration and
associated current harmonics are closely correlated [14].

Literature survey [80-83] shows that most of the bearing fault diagnoses are based on
vibration analyses like wavelet transform and Hilbert–Huang transforms or current-based
analysis.

In [84] illustrated how eccentricity faults can be identified from vibration analysis using
condition monitoring techniques.

The overall RMS of vibration can be calculated by different definition based on the spectrum
in frequency domain across all of the effective frequency range, i.e., from DC to maximum
analysis frequency range. One of the suggested formulas is [85]:

BW

fpower
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In above equation, BW is noise power bandwidth of window, f is analysis frequency band

and sf is sampling frequency band.

Another special frequency analysis is Cepstrum that defined:

221 )})}({{log()( tfFFC 
(2)

This can be used for examining behavior of gearboxes [21].

2.2.1.1 Frequency-domain analysis

The most common tools of vibration monitoring in industrial plants is frequency analysis.
Finley et al. [86] compiled a resume table with a comprehensive list of electrically and
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mechanically induced components in the vibration pattern. Their analysis is based on
analytical formulas.

In [87], a strategy presented based on monitoring slot passing frequencies in high frequency
vibration components. Their presented analysis was based on rotating wave approach
whereby the magnetic flux waves in the air gap are taken as the product of permeance and
Magneto Motive Force (MMF).

Vibration pattern for the healthy motor and with dynamic eccentricity has been compared in
[88] as shown in Fig. 7. In paper [88] has been showed that the low frequency components
of vibration (measured by accelerometers fixed on the outer casing of motor) can be used as
signatures for the detection of eccentricity in induction motors.

2.2.1.2 Order tracking methods

The advantages of order tracking over the other vibration techniques mainly lie in analyzing
non stationery noise and vibrations which will vary in frequency and amplitude with the
rotation of a reference shaft. The analysis of non stationery conditions needs additional
information, as compared to steady state conditions, for an accurate result to be obtained.
Order domain analysis relates the vibration signal to the rotating speed of the shaft, instead
of an absolute frequency base [21].

Fig. 7. Vibration pattern for healthy motor (top) and with 37% dynamic eccentricity
(bottom), 1.9% and motor fed at 100Hz in both cases [89]

2.2.2 Noise monitoring

Measuring and analyzing the acoustic noise spectrum [90] is another method of condition
monitoring in rotating electrical machinery which require special consideration. Acoustic
noise emitted from air gap can be an indicator of probably eccentricity in induction motor.
But, the application of noise measurement in a noisy environment like a plant is not so
efficient. In [89] an approach for air gap eccentricity detection presented and a test carried
out in an anechoic chamber. Slot harmonics in the acoustic noise spectra were introduced
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as an indicator of static eccentricity. Li and He [1] used Hilbert-Huang Transform (HHT) for
analyzing nonstationary noise signals incorporates a threshold-based denoising technique to
increase the SNR for health monitoring in electrical machines.

Reference [91] examines whether acoustic signal can be used effectively to detect the
various local faults in gearboxes using the smoothed Pseudo Winger-Ville Distribution
(PWVD).

Scanlon et al. [92] showed that by extraction hide information of acoustic noise signal can
predict machinery resident life time.

Defects in the roller element bearings cause particular frequencies to be excited. These
frequencies can be detected in acoustic noise spectrum. In [93], an automated approach to
degradation analysis is proposed that uses the acoustic noise signal from a rotating machine
to determine the remaining useful life of the machines.

2.2.3 Torque monitoring

By comparison between the estimated torque from the model and measured torque can
detect some faults in electrical motors, so it’s necessary to have a good model and an
algorithm to be aware of air gap real torque. The electromagnetic torque estimation has
been commonly used in electrical drives to control the torque and the rotor speed of AC
electrical machines. So, it is needed to compute stator flux or rotor flux exactly in which the
accuracy and the robustness are directly related to electrical machine parameters [94]. In
addition, the flux estimation needs to have knowledge about only two parameters of these
three parameters: stator phase voltages, currents, and the rotor speed by using an
appropriate model [95].

In reference [96] torque estimation beside torsional vibration analysis used for gearbox fault
detection in traction system and by measuring the torque their work has been validated.

Guzinski et al. in [97] for identification problems related to transmission system in High
Speed Train (HST) used the load torque observer without adding any additional sensors.
The presented observer system was able to detect the meshing frequency of the test bench
which has very small amplitude in the tested healthy gear.

From the input terminals, the instantaneous power includes the charging and discharging
energy in the windings. Therefore, the instantaneous power cannot represent the
instantaneous torque. From the output terminals, the rotor, shaft and the mechanical load of
a rotating machine constitute a torsional spring system. This torsional spring system has its
own natural frequency [98]. The attenuation of the components of the air gap torque
transmitted through the torsional spring system is different for different harmonic orders of
torque components [99,100].

The locked-rotor torque and breakdown torque will decrease in unbalanced voltage situation.
If the unbalanced voltage was extremely severe, the torque might not be adequate for the
application although the full-load speed is reduced slightly when the motor operates with
unbalanced voltages [101] and it can be an indicator of unbalance voltage condition.
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2.3 Chemical Indicators

Insulation degradation can be monitored chemically by the presence of special matter in the
coolant gas or by detection some particular gases such as ozone, carbon monoxide or even
more complex hydrocarbons, like acetylene and ethylene [60]. Electrical discharge activity,
heat and some other electrical and mechanical faults may lead to insulation degradation.
The product materials can be gas, liquid or solid. Each of them needs a particular detection
method.

An ion chamber was designed in [102] to detect the products of heated insulation and it was
applied to a large turbo generator.

The metal wear debris in oil can be classified ferromagnetic wear debris and
unferromagnetic wear debris. When wear debris is in the coil of inductive wear debris
sensor, the magnetic field distribution of the coil is changed, and then the equivalent
inductance of the coil was changed. This technique for metal wear debris in oil is a
noncontacting and quick method and can be off-line and on-line [103].

In addition oil particle can be detected for fault diagnosis. With modern diagnostic tools, oil
analysis is used to monitor the condition of equipment as well as condition of a lubricant.
Various faults such as misalignment, unbalance, overload or accelerated heating condition
may lead to wearing in electrical machinery. The different types of wear are: abrasive wear,
adhesive wear, cavitations, corrosive wear, cutting wear, fatigue wear and sliding wear [75].
Some types of oil analyses are: viscosity, solids content, water content, total acid number,
total base number and flash point [75].

As mentioned, wear particles are the prime indicators of the machine’s health. There are
many techniques to evaluate the type and concentration of such particles. The techniques
include: spectrometric analysis, infrared analysis, X-ray fluorescence (XRF) spectroscopy,
particle counting, direct reading ferrography and analytical ferrography [75].

2.3.1 Spectrometric analysis

This is one of the main techniques that typically reported in PPM (Parts Per Million). This
technique generally monitors the smaller particles and large wear metal particles present in
the oil will not be detected.

For larger wear particles, there are available techniques such as: acid digestion method,
microwave digestion method, direct read (DR) ferrography and Rotrode filter spectroscopy
(RFS).

2.3.2 Infrared analysis

Specific groups of atoms called functional groups by this method can be detected. An
appropriate wavelength is directed at the sample being analyzed, and the amount of energy
absorbed by the sample is measured. The amount of absorbed energy is an indication of the
extent of presence for that particular functional group in the sample. It is hence possible to
quantify the results. This analysis was first introduced in 1979. After several years a new
method extracted from this analysis named Fourier Transform-Infrared Analysis (FT-IR). By
this technique, a beam of light is focused through a film of used oil and the wavelengths are
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then compared to light transmitted through new oil of the same type. The differences in
readings provide information with respect to the degradation of the used oil [75].

2.3.3 Wear particle analysis (WPA) or ferrography

Ferrography or WPA utilizes microscopic analysis to evaluate the particles type, shape, size
and quantity. The components specifications allow a process of elimination in which the
abnormal wear can be identified. This analysis is used in two ways: A routine monitoring and
trending of the solid contents, Observing and analyzing the type of wears [75,104].

2.3.4 XRF (X-ray fluorescence) spectroscopy

The XRF spectroscopy entails the excitation of electrons from their orbits. This leads to
emission of UV rays with characteristic frequencies, which can be analyzed. During Rotrode
atomic emission spectroscopy, an electrical discharge produces plasma, causing thermal
emission. When the atoms return to the normal state, the excess energy is emitted as light.
Each element emits light at different frequencies on the electromagnetic spectrum. The
amount of light emitted at a given frequency corresponds to the concentration of the element
present in the sample. Also atoms can be excited by bombardment of X-rays [75].

2.3.5 Image processing

The image processing and computer vision system reveals more information in the form of
quantitative data not revealed by the human eye. This technique is used to collect
quantitative information from wear particle images. Image analysis system is developed to
process and store the information of particle shape and edge detail features. In [105]
particles have been defined as regular, irregular, circular and elongated. So, an image
processing technique is applied for analyzing wear debris.

2.4 Thermal Monitoring

Due to thermal limitation of various parts of rotating electrical machines such as insulations,
coil and so on, it’s necessary to have a good idea about machine parts temperature.
Thermal monitoring for electrical machines has two aspects, measuring the temperature and
thermal modeling, which each one of them has been illustrated shortly.

Also recently a new wireless sensor for bearing temperature monitoring presented [106].
This sensor is a combination of a ring-shaped permanent magnet and a Hall Effect sensor
that detect variation in magnetic field because of growing in temperature.

2.4.1 Temperature measurement

There are three main approaches for temperature measurement in electrical machines: 1)
Measuring local point temperatures by embedded temperature detectors (ETD) or resistance
temperature detectors (RTD); 2) Using thermal images, fed with suitable variables, to
monitor the temperature of the perceived hottest spot in the machine; 3) Measuring
distributed temperatures of the machine or bulk temperatures of the coolant fluid [60].

These demonstrate the fundamental difficulty of temperature monitoring; the conflict
between easily made point measurements, which give only local information, and bulk
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measurements that are more difficult and run the risk of overlooking local hot-spots.
Choosing location of settling detectors requires careful consideration during specification.
Bulk measurement can be found from the measurement of the internal and external coolant
temperature rises, obtained from thermocouples located.

Milic and Srechovic in [107] presented a new non-contact measurement system for hotspot
and bearing fault detection in railway traction system (RTS).

Of course, due to rotating parts in electrical motors, these methods are not efficient and
thermal modeling is inevitable.

2.4.2 Thermal modeling

Generally, thermal models of electric machines are classified into two categories [98,108]:

1) Finite Element Analysis (FEA) based model
2) Lumped Parameter (LP) thermal model

Finite Element Method (FEM) or Finite Difference Method (FDM) tools have traditionally
been used to model the thermal performance of electric machines. Their applications have
been limited only to small sectors of the stator and rotor and have not shown full-scale
simulation for motors with complicated geometry. The accuracy of model is generally
dependent on the number of thermally homogenous bodies used in model [109,110]. By this
work, researcher may simplify the complicated geometry and shorten computational time for
constructing elements and calculating large system matrices.

On the other hand lumped parameter equivalent thermal circuit is easy to solve and gives a
good overall view of the temperature rise in different parts of the machine without much
computational time [111]. Chowdhury claimed that the lumped parameter thermal equivalent
circuit proposed in [112] is easy to visualize as all the parameters are directly derived from
the machine geometry. Boglietti et al. [108] compared the LP and FEA for thermal modeling
of electrical machines.

There are two ways for extraction parameters of lumped parameter model. The first one is
by using comprehensive knowledge of the motors, physical dimensions and construction
materials. The second one is to identify the parameters from extensive temperature
measurement at different locations in the motor explained in previous session. Even though
an electric machine is made up of various materials that have different characteristics, the
machine can be assumed to consist of several thermally homogenous lumped bodies [98].
For example, a simplified model of an induction model and a PMSM consisting of two
lumped thermal bodies are presented in [113,114]. Likewise in [115], Milanfar and Lang
developed a thermal model of electric machine to estimate the temperature of the motor and
to identify faults like turn-to-turn faults and bearing faults.

A time-domain lumped thermal model of an induction motor obtained in [116]. The
temperature distribution and the energy destruction are shown in Fig. 8.

Nategh et al. in [117] presented a lumped parameter thermal model for a permanent-magnet
assisted synchronous reluctance machine (PMaSRM) developed for propulsion in a hybrid
electric vehicle. They divided the stator slot into a number of elliptical copper and
impregnation layers and modeled stator winding by some approximation.
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(a)

(b)

Fig. 8. Thermal model of an induction motor in the flow loop 3 h after startup. The
temperature distribution is shown in (a), and the energy destruction is shown in (b)

[116]

Jankowski et al. [116] described the development of a time-dependent lumped-parameter
thermal model of an induction motor, and showed that how this thermal model can be used
to minimize the internal temperature during operation.

Kolondzovski et al. in [118] discussed about thermal issues of different types of electric
motors and different rotor types. Similarly, EL-Refaie et al. in [119] presented multibarrier
interior permanent magnet machines lumped parameter model.
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Idoughy et al. [120] proved that the analytical techniques may risk underestimating the
hotspot winding temperature, especially when the fill factor is below 0.3. In addition, the
temperature variation in the axial direction is not considered and hotspot temperatures often
arise in the end windings.

In [121,122] it’s claimed that they can calculate rotor and stator respectively under the
steady state and transient steady by off-line experiment and their model can respond to
changes in the cooling conditions. However, their models are generally sensitive to unknown
machine parameters and their variation. Also, by DC signal injection thermal parameter of
electrical machines components can be achieved [123,124]. This method applied for
induction motors fed by closed-loop inverter drives in [125].

3. MODEL BASED & AI-BASED METHODS

A model-based fault monitoring method presented in [126] for variable speed drives without
frequency analysis. Nowadays, AI-based which use fuzzy logic, neural network, particle
swarm optimization [127] and so on are so popular for researchers. Some of them are
explained in this paper.

3.1 Artificial Neural Network

Nejjari et al. in [128] used learning Park’s vector pattern based on artificial neural network to
discern healthy and faulty patterns. Also, Wang et al. in [129] used combination of these two
algorithms for condition monitoring of rolling bearings.

Tag Eldin et al. [130] used Artificial Neural Network and applied result of the RMS
measurement of stator voltages, currents and motor speed to train a neural network to
monitor and diagnosis external motor faults.

Asiri [131] decided to detect six different types of PD using neural networks and classify
different types of PD according to the location of PD activity.

3.2 Fuzzy Logic

The fuzzy logic tool provides a technique to deal with imprecision and recently attracted
researchers attention for different applications like fault diagnosis. The utility of fuzzy sets
lies in their ability to model uncertain and vague data. Fuzziness in a fuzzy set is
characterized by its membership functions [132].

An extraction method based on the Relative Crossing Information (RCI) in [133] proposed for
condition monitoring of a machine under the variable rotating speed, by which the
instantaneous feature spectrum can be automatically extracted from the time-frequency
distribution of the fault signal. The performance of this approach is evaluated using three
time-frequency techniques, namely STFT, WA, PWVD and finally using a sequential fuzzy
diagnosis method.

Reference [134] claimed that using fuzzy sets and uncertainty phenomena with possibility
theory may help in fault diagnosis of satellite applications. A combination of neural network
and fuzzy logic used in [129] for condition monitoring of rolling bearings. Also, [135]
propounds an intelligent condition diagnosis method for rotating machinery developed using
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least squares mapping (LSM) and a fuzzy neural network. In [133], possibility theory is also
applied to combine with PWVD technique for fault diagnosis.

4. CONCLUSIONS

Condition monitoring methods for rotating electrical machines have been surveyed in four
groups. These groups consisted of: electrical analysis, mechanical analysis, chemical
analysis and thermal analysis. In each group, there are several symptoms that faulty
condition in machines can be detected by them.

Methods based on signal injection seem profit for fault detection in closed-loop drives, but
it’s difficult to implement for many applications due to invasiveness and hardware limitations.
MCSA, the most popular technique, provides sensor less diagnosis of some motor problems
but it’s not so effective for applications where the load constantly changes. Time-frequency
analysis has been investigated vastly in recent years but its complexity and heavy hardware
requirements are limitations for simple low-cost drive systems.

Motor power analysis because of need to both currents and voltages simultaneously and
dependence on the drive inertia has some limitation. PD monitoring mainly used in high
voltage motors and generator stator windings. Most of recurring problems in rotating
machinery like misalignments can be detected by vibration analysis. The measured vibration
and associated current harmonics are closely correlated. By detection ozone, carbon
monoxide and others in the coolant gas or oil analysis, some faults like insulation
degradation can be detected easily. Also thermal measurement and thermal modeling are
introduced as efficient tools for motors condition monitoring. Finally, AI- based algorithms
combined of one or more explained methods were studied.

Besides these methods and algorithms, nowadays web-based monitoring approaches are
interesting. They are using one or more of these mentioned procedures in softwares like
LabVIEW, as you see in [136] and shown in Fig. 9.

Fig. 9. Diagnosis session panel with decision method menu presented in [136]
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APPENDIX

Time-Frequency Analysis method equations which discussed at this paper are explained in
this session.

1) Short-Time Fourier Transform (STFT):

The short-time Fourier transform (STFT) [41] by breaking signal into short blocks and
applying an FFT to each part can determine the sinusoidal frequency and phase component
of the its local time domain.

Mathematically, the STFT of a signal )(tx is explained as follows [42]:
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In the above equation ω is an angular frequency, and )(h is the window function. With the
technique of windowing (such as Gaussian, Hamming, Hanning …), the STFT can provide
information about both time and frequency of the signal, since the time-varying concentration
information is required for real-time applications. STFT analysis may lose the transient and
temporal information and it is not good, but the STFT is simpler than the other methods. The
STFT spectrum can be defined as follows [40]:
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Of course other studies [137,138] showed that the techniques such as short-time Fourier
transform, where a nonstationary signal is divided into short pseudo-stationary segments,
are not suitable for the analysis of signals with complex time–frequency characteristics.

2) Wavelet Analysis (WA)

WA is another time-frequency signal analysis method that has been widely used and
developed recent decade. It has the local characteristic of the time domain as well as the
frequency domain, and its time-frequency window is changeable. The Continuous Wavelet
Transform (CWT) of )(tx is a timescale method of signal processing that can be defined
mathematically as the sum over all time of the signal multiplied by scaled and shifted
versions of the wavelet function )(t [42]:

dt
a
bttx

a
baCWTx 
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Where )(* t is the complex conjugate of which denotes the mother wavelet or basic
wavelet. a & b are parameters related to scale and time respectively. If a is small, higher-
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frequency components can be analyzed, and when it is large, lower-frequency components
can be analyzed. When b is given a value, the fundamental function can be shifted by a
distance in the direction in which time advances. The CWT spectrum is considered as
follows. Wavelet transform has the isometric characteristic.

3) Winger-Ville Distribution (WVD):

The Wigner-Ville Distribution (WVD) [41] is a very important quadratic-form time-frequency
distribution with optimized resolution in both the time and frequency domains. The WVD is
matched to linear chirps and can represent it effectively. The instantaneous frequency of
such signals can be estimated easily by picking the peak in the time-frequency plane 40.
However, the WVD does not yield a localized distribution for frequency variations that are
not linear [44,133].

The instantaneous frequency within the window can be considered to be nearly linear
because the VWD variants need windowing.

The Pseudo-Wigner-Ville distribution (PWVD) has better resolution and provides a more
accurate estimate of the instantaneous frequency. Therefore, it has been used extensively in
various applications to display time-frequency spectral information [17]. The PWVD equation
defined as follows [98,132]:
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In this equation is an angular frequency and )(h is the windows function.
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Winger-Ville distribution of a motor in healthy condition and with faulty bearing is shown at
Fig. 10 [98].

(a)
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(b)

Fig. 10. Winger-Ville distribution of motor (a) in healthy condition (b) Winger-Ville
distribution of motor with faulty bearing [98]
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