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ABSTRACT

The optimum length of extended surfaces with uniform cross sectional area has been
analyzed numerically, based on the concept of entropy generation minimization. The
extended surface studied is a pin fin. The rate of entropy generation is investigated for
different boundary conditions. First, some correlations are introduced to calculate this rate,
and then a model is offered to find optimum length of the fin for adiabatic and convection
heat transfer boundary conditions. The accuracy of the model presented is compared with
experimental data. Although Bejan introduced a correlation to calculate optimal Reynolds
number and consequently the optimum length of a pin fin, but the results showed the new
method has high accuracy compared with the Bejan method. Also, it is found that there is a
strong relation between optimum length (based on the entropy generation minimization
concept) in one side, and temperature distribution in the other side.

Keywords: Entropy generation minimization; optimum length; Pin fin; temperature
distribution.
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1. INTRODUCTION

The entropy generation in the process is due to irreversibilities occurring inside the system.
This internal entropy generation can be caused by the friction, unrestrained expansions, and
the internal transfer of energy over a finite temperature difference. In addition to this internal
entropy generation, external irreversibilities are possible by heat transfer over finite
temperature differences as the Q is transferred from a reservoir or by the mechanical
transfer of work. Equation of (1) is valid with the equal sign for a reversible process and the
greater than sign for an irreversible process. Since the entropy generation is always positive
and the smallest in a reversible process, namely zero, it may deduce some limits for the heat
transfer and work terms.

Nomenclature
cA cross sectional area( 2m ) Re         Reynolds number

DC drag coefficient Sgen entropy generation(J/K)
D diameter(m) T temperature(K)

DF drag force(J) U velocity(m/s)
H        enthalpy (J) W          work(J)
h convective coefficient  2W / m K Greek letter symbols

k thermal conductivity(W/m.K) ρ density  3kg / m
L         length (m) λ air thermal conductivity(W/m.K)
m mass flow rate(kg/s) μ dynamic viscosity(Pa.s)
Nu Nusselt number υ kinematic viscosity( 2m /s)
Ns entropy generation number Subscript
P        pressure(Pa) b base
Pr       Prandtl number  ambient
p         perimeter(m)
q         heat transfer rate(J)

gen

gen

QdS= + S
T

S 0

 


 


(1)

Considering a reversible process, for which the entropy generation is zero, the heat transfer
and work terms therefore are:

Q T.dS  and W=P.dV (2)

For an irreversible process with a nonzero entropy generation, the heat transfer becomes,

irr genQ T.dS - T. S     (3)

And thus is smaller than that for the reversible case for the same change of state, dS.
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Furthermore, the work is no longer equal to PdV but is smaller.

irr genW =P.dV - T. S    (4)

Showing that the work is reduced by an amount proportional to the entropy generation. For
this reason, the term genT. S is often called lost work. Although it is not a real work or
energy quantity lost but rather a lost opportunity to extract work. So, minimizing entropy
generation is very important in many industries. One of the this applications is in the heat
exchanger industry. The compact heat exchangers are widely used in automobile, chemical,
petrochemical, air-conditioning systems, oil, and food industry, and therefore using
optimization by entropy minimization play a key role in saving energy, and decreasing
environmental pollution. Bejan [1] was one of the first researchers who considered the
entropy generation minimization in convective heat transfer. Asadi and Khoshkhoo [2-5]
carried out some researches about transferring heat by radiation in the Plate-Fin heat
exchanger. Based on their research the amount of the heat transferring using radiation is
just 2% compared with convection in the Plate-Fin heat exchanger and Finned-Tube heat
exchangers. Hence, we can ignore radiation in the Plate-Fin heat exchanger with a good
approximation in order to minimize entropy generation.

Many researchers investigated about optimization using minimizing entropy generation [6-
38]. However, the topic of entropy generation in extended surfaces was remained
unexplored. Entropy generation minimization was first introduced by McClintock [39], who
developed equations for optimum design of fluid passages for a heat exchanger. Then,
Bejan [1] examined the coupling losses due to heat transfer across a finite temperature
difference and frictional pressure drop. He used the number of entropy generation units, sN ,
as  a basic parameters in analyzing the heat exchanger performance. Establishing the
theoretical framework for the minimization of entropy generation was done by Poulikakos
and Bejan [40].  However in recent years, many heat exchanger tools were introduced based
on the concept of entropy generation minimization. For example, Radermacher [42] studied
on a numerical approach for modeling of air-to-refrigerant Fin-and-Tube heat exchanger with
Tube-to-Tube heat transfer. Liu et.al, [41] presented a general steady state mathematical
model for fin-and-tube heat exchanger. Jiang and Radermacher [42] offered a general-
purpose simulation and design tool for air-to-refrigerant heat exchangers. Entropy generation
minimization of a double-pipe pin fin heat exchanger was analyzed by Sahiti and Krasniq
[43]. They derived their results on the basis of the behavior of entropy generation number as
a definition of Reynolds number. They concluded that not all definition forms for the entropy
generation number leads to the right conclusions. Thermal hydraulic design of fan-supplied
tube-fin condenser for refrigeration was investigated experimentally by Hermes and Waldyr
[44]. Ibrahim and Moawed [45] carried out an experimental investigation to clarify heat
transfer characteristics and entropy generation for individual elliptic tubes with Longitudinal
fins. The investigated geometrical parameters included the placement of the fins at the front
of the tube, at the rear of the tube and at the front and rear of the tube. The results indicated
that the fin position on the elliptic tubes has as effect on the results of heat transfer
coefficient, friction factor, and irreversibility ratio. Zhang and Yang [46] introduced a
distributed parameter model in optimization the plate-fin heat exchanger based on the
minimum entropy generation. Huee and Lee [47] conducted an analytical study on optimal
design of refrigerant circuitry of fin-and-tube condenser based on the entropy generation
minimization. They validated their model by comparing their numerical results with
experimental data for an R410A multi-pass condenser. The resulting refrigerant circuit
design enhanced heat transfer performance and lowered entropy generation in comparison
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to simple refrigerant circuitries. The application of the entropy generation minimization
method to the pseudo-optimization of the configuration of the heat exchange surfaces in a
solar Rooftile was studied by Giorgio et.al, [48]. He found that the geometry with pin-fins has
the best performance, and the optimal pin array shape parameters can be determined by a
critical analysis of the integrated and local entropy maps and of the temperature contours.
Pussoli and Barbasa [49] presented an investigation in optimization of peripheral finned-tube
evaporators using entropy generation minimization. They experimentally validated semi-
empirical models for the air-side heat transfer and pressure drop with entropy generation
minimization theory to determine the optimal characteristics of peripheral finned-tube heat
exchanger. Minimizing the entropy generation rate of the plate-finned heat sinks using
computational fluid dynamics and combined optimization was carried out by Zhou and Yang
[50]. The results showed that the overall rate of entropy generation decreases as the result
of introducing the additional constrained variables into the optimization process. Gediz et.al,
[51] focused on the effect of aspect ratio on entropy generation in a rectangular cavity with
differentially heated walls. Aggrey and Tunde [52] presented the results of a numerical
analysis of entropy generation in a parabolic trough receiver at different concentration ratios,
inlet temperatures and flow rates. The results showed that there is an optimal flow rate at
which the entropy generated is minimum, for every combination of concentration ratio and
inlet temperature. Wenhhua, Xuan and Jian [53] analyzed entropy generation of fan-supplied
gas cooler within the framework of two-stage 2CO transcritical refrigeration cycle. They
suggested that the analysis with isolated gas cooler can lead to overestimated or unrealistic
predictions on the heat transfer performance compared to the analysis within the framework
of entire cycle.

In this paper a pin fin is analyzed for the rate of entropy generation. After introducing some
correlations to calculate the entropy generation rate, optimization process has been done.
Finally, the optimum value of fin length is compared with experimental studies.

2. MATHEMATICAL DESCRIPTION

There is an important relationship between lost available work and entropy generation.

lost gen

gen
in out

W =T.S

S QS = - - mS+ mS
t T





 


 



  

(5)

This equation represents the Gouy-Stodola theorem. This theorem states that the lost
available work is directly proportional to the entropy production. The terms of entropy
production is arising heat transfer and fluid friction. For the entropy production due to heat
transfer:
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 

yx yx yx x
gen x

y
y x y

qq q + dyq + dx qq υs ρyxS dxdy= dy+ dx- dy- dx+ s+ dx υ + dx ρ+ dx dy
T T T T x x xT+ dx T+ dy
x y

υ ρss ρ
                + s+ dy υ + dy ρ+ dy dx-sυ ρdy-sυ ρdx+ dx

y y y t


                   

 

      
            



dy

(6)

For the two-dimensional Cartesian system,
2 22 22

y yx x
gen 2

ν νν νk T T μ
S 2 + + +

x y T x y x yT

                                                       

 (7)

And for friction factor,

in

out

gen

h=constant

ρ

ρ

νS =m dP
T

 
 
 
 
  (8)

Recently, the Bejan number was named by Paoletti. Accordingly Be=1 is the limit at which
the heat transfer irreversibility dominates, Be=0 is the opposite limit at which the
irreversibility is dominated by fluid friction effects, and Be=0.5 is the case in which the heat
transfer and fluid friction entropy generation rates are equal.

For the external flow, there are three thermodynamic statements,

in outm =m =m   (9)

in outmh + q dA-mh =0  (10)

gen out in
w

q dAS =ms -ms -
T


   (11)

Where wT is the temperature of wall. The canonical form 1dH=Tds+ dP
ρ
 
 
 

may be written:

   out in ave out in out in
1H -H =T s -s + P -P
ρ

(12)

Combination Equations (11) and (12) the entropy generation rate will be:

  D
gen Aexternal w

F U1 1S = q - dA+
T T T



 

 
 
 

 (13)

Also, a fin generates entropy internally, because the fin is no isothermal
,

 gen Ainternal w

qS = dA -
T T

qB
b

 
   

 
 (14)
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In this expression, qB and Tb represent the base heat transfer and absolute temperature.
Adding Equations of (13) and (14) side by side obtaining the entropy generation rate for a
single fin is possible.

D
gen 2

F U
S = +

TT
qB B 



 (15)

Where B is the base-stream temperature difference  T Tb  . Also, Drag coefficient for a
pin fin is:

D
D

D
0.246

F
C =

1 ρU DL
2

C 5.484 Re
















(16)

Needing to the rate of heat transfer, q , in order to calculate the entropy generation is
necessary. The rate of heat transfer can be calculated for different conditions. Applying the
conservation of energy requirement results in:

 
2

c s
2

c c

dA dAd T 1 1 h+ - T-T =0
A dx A k dxdx


   
   
   

(17)

For the uniform profile, cA , is constant and sA =Px where sA is the surface area measured
from the base to x , and P is the fin perimeter. So,

 
2

2
c

d T hP- T-T =0
kAdx

 (18)

Bejan et.al, (1995) solved this equation, and suggested some correlations to calculate the
rate of entropy production based on the adiabatic conditions on the tip fin. Here, our focus is
on the remained conditions, very long fin, and Convection heat transfer. So, for Convection
heat transfer, the rate of heat transfer is:

       
     c

sinh mL + h/mk cosh mL
q= hPkA T -T

cosh mL + h/mk sinh mLb  (19)

Where,

c

hPm=
kA

and c bM= hPkA θ (20)

And using Equation of (15), the rate of entropy generation will be:
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       
     

 2 0.754 2.754 0.246
0.5

c
sinh mL + h/mk cosh mL 2.742 ρD .U .μ .LT

S = hPkA . -1 .
T cosh mL + h/mk sinh mL T
b

gen


 

                       

 (21)

Similarity for adiabatic boundary condition, the rate of entropy generation is:

   2 0.754 2.754 0.246
0.5

c
2.742 ρD .U .μ .LT

S = hPkA . -1 .tanh(mL)
T T
b

gen


 

           
      

 (22)

Now, calculating the optimum flow length, based on the minimizing entropy generation, is
possible.

 
 

22
1 1 -1

opt,1
a ± a + h/mk -1

L =Log .m
h/mk +1

 
 
 
  

(23)

   2 2

1 3
D

2 M T -T h/mk -1 m
a =

C .U .D.ρ.T

b 

 

 
   (24)

These equations dictate the optimum length of flow for the convection heat transfer
boundary condition. Also, the optimum length when there is adiabatic boundary condition in
system is:

 -1 2
opt,2 2L =m .sinh a 1  (25)

 0.754 2.754 0.246 2

2 2
c b

2.742 ρD .U .μ .T
a

m hPkA θ
  


(26)

3. VALIDATION

In order to validate results obtained, a comparison of numerically results with experimentally
results has been performed. The comparison has been made for a rod 5mm in diameter has
one end maintained at100 C . The surface of rod is exposed to ambient air at 25 C . The
convection heat transfer coefficient and thermal conductivity of the fin are 100 and 398

2W/m .K ,respectively. The emissivity and absorptivity of copper are assumed that be 0.83
and 0.13 ,respectively. The experimental results have been derived from Bejan’s research
on the optimum dimensions of extended surfaces with uniform cross sectional area. He
suggested that the number of entropy generation for a rod with adiabatic boundary condition
is:
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0.5

S D L D0.5
0.5 0.5 L

D
D

k
1λN = + BC Re Re
2Reπ λNu Re tanh 2Nu

2 k Re

 
 
 
  
  

   

(27)

0.50.5
-1D

L,opt 0.5 3
D D

Re k 8Re = sinh
λ2Nu πC BRe

             
(28)

Also, Masoud Asadi and N.D.Mehrabani [4] presented an equation to determine the optimum
diameter versus Reynolds number,

0.333

D,opt
D

8Re = 2.38
πC B

 
 
 

(29)

In Equation of (27) through (29) DRe , LRe and B are respectively:

D
U D

Re =
υ
 (30)

L
U L

Re =
υ
 (31)

3

2
B

ρυ kT
B=

q
 (32)

Table 1. Input information

 U /m s  2υ /m s  2λ W/m .K  2k W/m .K Pr  3ρ /kg m  L m

20 615.89 10 326.3 10 398 0.707 1.1614 0.200

Table 2. Thermal quantity results

DRe DC B Nu m M  q W
6293.2 0.637 128.14 10 30.12 14.17 8.3 8.24

4. DISCUSSION

The validation of numerical method showed that the optimum length of the fin based on the
Bejan research is 63 mm, while for the presented method is 223mm. To discuss about the
reason of this difference, it is necessary that we notice to the temperature distribution along
the fin. Fig. of (1) demonstrates the temperature profile for the adiabatic condition.
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Fig .1. Fin temperature Distribution

Moving along the fin the temperature decreases, but there is an inverse trend from x=225
onwards. In fact, although temperature decreases with growing the length of the fin, when
the fin length reaches to 225 mm there is a moderate increase trend in the temperature
profile of the fin. Also, it is useful to see the function of entropy generation for the case study
presented.

Fig. 2. Function of entropy generation
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In this figure the red graph is the function of the entropy generation, and the green one is the
derivative of the entropy generation function. As it is evident from the Figure of (2) the
entropy generation for the fin increases along the fin. However, from the x=65 mm onwards
the entropy generation will be constant approximately, and based on the concept of entropy
generation minimization the difference between the rate of the entropy generation at x=63
mm and 225 mm is negligible. The concept of entropy generation minimization dictates that
when the function mentioned will be optimum that its derivative be zero. Referring to the
green graph, it can be found that the difference to zero for the derivative of entropy
generation function based on the Bejan model is very much compared with this new method.
In addition, it is clear that when x is 63 mm the fin performance is not favorable, because the
difference between fin and ambient temperature is so much, about 27C . On the other
hands, considering  both temperature profile and entropy generation function simultaneously
will reveal that when the fin temperature reaches to its optimum value, to have maximum
rate of heat transfer,  the entropy generation function will be constant( 223x  mm).
Furthermore, for a very long rod the rate of the entropy generation is:

   2 0.754 2.754 0.246
0.5

c
2.742 ρD .U .μ .LT

S = hPkA . -1
T T
b

gen
 

           
      

 (33)

1.341
0.754 2.754 0.246 2

opt 2 2

3.656ρ .U .μ .L.T
D =

θ π hkb


    
  

(34)

Equation of (34) states that the length of the rod is so much as the rod diameter have to be
negative value to the rate of the entropy generation be optimized, and this is another reason
that the presented model has high accuracy in comparison to previous method.

5. CONCLUSION

Pin fins are widely used as effective elements for heat transfer enhancement. For this
reason, extensive work has been carried out to select and optimize pin fins for various
application such as electronic devices, chemical, food, and petrochemical industry. One of
the strong tools in optimization, which has been introduced recently by Bejan, is entropy
generation minimization. In this paper, some correlations to calculate the rate of entropy
generation are offered for two boundary conditions, adiabatic and convection heat transfer.
Then, the optimum fin length is presented for both boundary conditions. The accuracy of the
model has been compared with experimental studies. The results showed high level of
accuracy of the model, which can be used as a strong tool in optimization process of pin fins.
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