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ABSTRACT

The aim of this study is to show that geometric phase is a consequence of curvature in non-
Euclidean geometries being related to the areas of spherical and hyperbolic triangles. In
hyperbolic geometry it is well-known that the angular deficit of a hyperbolic triangle is related
to Wigner rotation and Thomas precession, whereas in spherical geometry, its relation to
automorphic functions arising from Fuchsian differential equations containing non-essential
singularities has not been appreciated. It is the aim of this paper to fill this lacuna. Fuchsian
differential equations with non-essential singularities are solved by a power series solution
(indicial equation) and the quotient of two solutions will undergo linear-fraction
transformations which tessellate the half-plane or unit disc with curvilinear triangles or lunes
depending on the number of singular points. Their inverse is multivalued, periodic or
automorphic, functions.  Analytic continuation   about a singular point does not give back the
original solution. Multivaluedness is the cause of geometric phase. Examples are the
Pancharatnam phase of beams of polarized light, the Aharonov-Bohm effect, the Dirac
monopole and angular momenta with ‘centripetal’ attraction in the case of spherical
geometry. These will be compared with non-collinear Lorentzian boosts that are responsible
for Wigner rotation and Thomas precession in hyperbolic geometry, where the angle defect
is related to the Euclidean measure of hyperbolic distance of two sides of a hyperbolic
triangle in velocity space. For a right hyperbolic triangle, the angular defect is the angle of
parallelism. A finite geometric phase requires non-integral quantum numbers and thus
cannot be associated with ‘particles’. By conformal transformation, the homologues of the
poles can be transformed into vertices of lunes, curvilinear triangles and polygons which
place restrictions on the range of angular momenta. In contrast to quantum mechanics,
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where space is continuous and quantum numbers discrete, the space is now discrete, made
up of tessellations which are repetitions of the fundamental region without lacunae and
without overlap and the interval of the quantum numbers is continuous. Many of the
equations of mathematic physics can be reduced to second-order Fuchsian equations with
real coefficients in the limit of vanishing kinetic energy where essential singularities are
reduced to simple poles. For only then will the solutions to the differential equations be
rational functions in order that the covering group will be cyclic and the covering space will
be a ‘spiral staircase’ like the different leaves of a Riemann surface.

Keywords: Geometric phase; non-Euclidean geometries; Gaussian curvature; holonomy;
multivaluedness; Aharonov-Bohm effect; Dirac monopoles; automorphic
functions; monodromy group; Fuchsian differential equations; Wigner rotation.

1. INTRODUCTION

Quantum mechanics goes to great lengths to ensure that the wave functions are single-
valued. This means discarding terms in the solution of the Schrödinger equation that either
blow up at the origin or diverge at infinity. Solutions of second-order differential equations
which are rational lead to multivaluedness and great efforts were spent, in the late
nineteenth century, to uniformize the solutions so as to render them single-valued. However,
multivaluedness is not a stigma and it will explain numerous phenomena from the interaction
of polarized beams to the Aharonov-Bohm effect. In this paper we treat multivaluedness
from the theory of automorphic functions.

If a vector is parallel-transported around a closed curve it may not necessarily return as the
same vector it started out as. The effect is known as holonomy and it has been attributed to
positive, Gaussian curvature [1]. Holonomy also occurs when we solve a Fuchsian
differential equation as a power series and analytically continue around a singular point. We
will not, in general, get back the solution we started with but one that differs from it by a
phase factor.

We will show that geometric phase is a manifestation of periodicity with respect to a group of
motions of the tessellations of a disc or half-plane by lunes or curvilinear triangles,
depending on whether the Fuchsian differential equation has two or three regular singular
points, respectively. Functions whose only singular points are rational functions will be
solutions to a Fuchsian differential equation of two singular points, while the solutions of one
with three regular points will not reduce to elementary functions but rather can be expressed
as a Euler beta integral.

Differential equations containing only regular singular points, like the hypergeometric
equation have very little to do with equations of mathematical physics [2]. Although
equations of mathematical physics have a regular singular point at the origin, they possess
an essential singularity at infinity that prevents the solution from diverging at infinity. The
regular singular point at the origin has two linearly independent solutions, which are powers
of the radial coordinate whose exponents are determined by the roots of the indicial
equation. Their quotient is an automorphic function, whose inverse is a periodic function that
will undergo a linear-fractional transformation and its motion will tessellate the plane with
lunes or curvilinear triangles without overlap or lacunae. Quantum mechanics eliminates one
of these solutions on the basis that it blows up at the origin and hence is unphysical. This
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eliminates the possibility of constructing automorphic functions as quotients of the two
independent solutions of the indicial equation.

Because the kinetic energy is finite, the other singularity at infinity is an essential singularity.
The solutions are exponential rising and decaying functions of the radial coordinate. In order
that the wave function be finite and single-valued, the rising solution is eliminated. The
essential singularity arises from a coalescence of two regular singular points and it is
analogous to the behavior of an automorphic function in the immediate neighborhood of limit
points of the group of motions which tessellate the half-plane or unit disc. Consequently, if
we allow for  multi-valuedness of the Schrödinger equation, its solutions will behave like
automorphic functions far from the limit points on the boundary when we consider the limit of
vanishing kinetic energy.

In the next three sections we will argue that the geometric phase requires positive Gaussian
curvature so that the ratio of the area of a curvilinear triangle to its angular excess is
constant. We will do so through a detailed discussion of the phasor, the Pancharatnam
phase of polarized light beams, the Aharonov-Bohm phase and the Dirac monopole.
Periodicity is with respect to a group of motions which tessellate the half-plane or disc, which
have natural boundaries, the real half-line and the principal circle respectively, along which
the essential singularities lie. Periodicity requires at least two regular points, and the elliptic
motion is a rotation. Non-integral quantum numbers are required in order that the group not
reduce to the identity, corresponding to the equivalence class of null paths. As such, non-
integral quantum numbers do not represent particles, whose quantum numbers must be
integers but rather should be considered as resonances.

We then discuss ‘centripetal attraction’, where the angular momentum varies over a
continuous range of non-positive, non-integral values. The quotient of the solutions to the
differential equation will take on each value only once in the fundamental region, which is a
lune. This forms a dichotomy with quantum mechanics, where the angular momenta are
discrete and space is continuous. Now the angular momenta are continuous and space is
discrete. We then go on to reconstruct the original Schrödinger equation: for negative kinetic
energy the essential singularity is an exponential function, while for positive kinetic energy it
is a circular function. As long as the kinetic energy is zero, the Schrödinger equation, even in
the presence of a potential, can be reduced to a Fuchsian form with multiple space scales.

We conclude the paper with a comparison of geometric phase in hyperbolic geometry.
Although Wigner rotation and Thomas precession are known examples of geometric phase,
we relate the angular defect of a hyperbolic triangle to the Euclidean measures of the sum of
the lengths two sides of a hyperbolic triangle. In the case of a right triangle,the angular
defect coincides with the angle of parallelism discovered by Lobachevsky and Bolyai.

2. PHASOR AND THE CONSTRUCTION OF AN ESSENTIAL SINGULARITY

The linear-fractional transform,w = ………………………………………………………                            (1)

guarantees that the fundamental region will have the same number of poles and zeros,
where a, b, c and d are constants such that ad-bc=1. The difference between the number of
zeros, n and the number of poles p is
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∮ ′( )( ) = − , ……………………………………….………             (2)

where the contour encloses all zeros and poles. Setting f(z)=w, where w is given by (1), we
find: ∮ − = 0.…………………………………………... (3)

Multiple moments of order m,∮ ( ) , ……………………………………………            (4)

are analogues of essential singularities [3]. Since (4) vanishes for an automorphic function,
there can be no concentration of ‘charges’. Charges are the analogs of zeros and poles and
equation (3) expresses charge neutrality.

For real values of the coefficients in (1), the zeros will fall on the real axis. The contour in the
z-plane for the linear-fractional transformation (1) is a circle through the pole at –d/c and
zero, -b/a, as shown in Fig. 1. The phase, at point Pis the difference between the angle 
and the exterior angle  [3]



Lines of constant phase are circles passing through –b/a and–d/c.

The crucial and new, realization is that by adding  to both sides of (5) and adding and
subtracting  on the right-hand side give



The right-hand side of (6) is precisely the angular excess of a spherical triangle. We will
appreciate in the next section that the phasor (5) is the complementary angle to the
Pancharatnam phase (12) below.

Fig. 1. Thecontour is a circle passing through the pole at –d/c and the zero –b/a.

The three angles of the triangle in Fig. 1, and , correspond to three
regular singular points, which by a linear-fractional transformation can be placed at 0, 1 and
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∞ for convenience. Any three points can be transformed into any three other points, which
form a complete set of invariants. The simplest Fuchsian differential equation whose
solutions do not reduce to elementary rational functions is one with three singular points.
With  at the origin,  at 1, the phasor  will be found at infinity.
The automorphic function, w = ∫ (1 − ) ,………………………….      (7)

is a Euler beta integral and it satisfies the Fuchsian differential equation of second-order,

″ = + w′,……………………………………… (8)

where the primes stand for differentiation with respect to z. The value of the third angle  at
infinity can be determined from the Schwarzian derivative,

{w, z} = 1 −2 + 1 −2(1 − ) + (1 − ) (1 − )(1 − ) .
Equating the numerator of the last term with the canonical form [4],



results in


The negative sign will give the Euclidean result,



which is the negative of the phasor (5), while the positive root in (9) will give the correct
phasor (5). This proves that the phasor belongs to spherical geometry and not to Euclidean
geometry as previously believed.

3. PANCHARATNAM’S PHASE FOR POLARIZED LIGHT

Berry [5] claimed that Pancharatnam's phase [6] is one-half the solid angle subtended by a
geodesic triangle on the Poincaré sphere. Without any knowledge of what the Pancharatnam
phase is, it can safely be ruled out that the phase would be related to an interior solid angle
when it is well-known that all deductions are made on the surface of the Poincarésphere with
absolutely no knowledge of the interior angles, or points that the sphere encompasses [7].
Moreover, any shape on the surface of the sphere that has the same area will have the
same solid angle and consequently, it need not be a geodesic triangle. In contrast, we will
show that the complementary angle found by Pancharatnam is equal to one-half the area of
a spherical triangle as given by the angle excess.

Pancharatnam considered a polarized beam Cto be split into two beams in states of
polarization A and B and whose phase difference is the complementary angle to . In regard
to the phasor (5),  will be equal to the difference in the internal angle ACB and the exterior
angle ABC′,
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ACB - ABC′, …………………………………………………..               (11)

as shown in Fig. 2. Expressing the exterior angle in terms of the interior angle and adding
BAC to both sides of (11) give

2=BAC + ACB + ABC 

Equation (12) expresses twice the phase difference between two beams in terms of the area
of a spherical triangle given by the angle excess.

Fig. 2. The phase ∠ ′ is determined by the angle excess of the triangle∆ collinear to ∆ ′ . As → , the two beams will have opposite phases, while as→ ′, which is the opposite state of polarization to , the phase will vanish.

Actually, Pancharatnam defines CAB as the phase difference which he expresses in
terms of the triangle collinear toACB, i.e.,AC′B. In other words, the angle,

C′AB = AC′B - ABC,……………………………………… (13)

is the phasor (5), being the difference between the opposite internal angle and the external
angle of the third angle of the spherical triangle. Adding the angle C′AB to both sides of
(13) and adding and subtracting on the right-hand side yield:

2C′AB=C′AB + AC′B + ABC′ - 

The right-hand side of (14) is the area of the triangle C′ AB and replacing the left-hand
side by its complementary angle gives

= CAB =  (C′AB + AC′B + ABC′ - ), ………….………………………          (15)

which is equation (5.a) in Pancharatnam [6].
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As B→C, the phase C′AB′→ and the beams will have opposite phases. This is analogous
to the coalescence of the zero and pole to form a multipole. Alternatively, as B→C′, the
opposite state of polarization to C, the beams in the states of polarization A and  will have
zero phase difference.

Pancharatnam then asked what happens when the split component B tends to the opposite
polarized state A′ of the other polarized component of A? As B→A′ and →,where

 = C0AC′ = C0AC,………………………………………………….                (16)

will be given in terms of the area of the lune cut out by the great circles AC0A′ and C′A′, or
2C0AC′.

Fig. 2 also illustrates Pancharatnam’s observation that the emergent state of polarization C
can be obtained from the incident state of polarization C0 when polarized light passes
through a brief ringent medium. This can be viewed as a rotation of the Poincarésphere
through an angle in the counterclockwise direction about the AA′ axis.

4. THE AHARONOV-BOHM EFFECT

The fringe shift in a field free but multivalued, region due to a non-vanishing vector potential
was predicted by Ehrenberg and Siday [8] and rediscovered a decade later by Aharonov and
Bohm [9].It consists in a two-slit diffraction phenomenon in which the magnetic field is
confined to the interior of the solenoid placed in between the slits. Although the particles
passing through the slits never pass into a region of non-zero magnetic field, as the flux in
the solenoid is increased from zero, the phase of the path that goes through the upper slit
changes in respect to the phase of the path going through the lower slit so that a diffraction
pattern is produced although neither particle experiences a magnetic field. To explain such
an effect, Aharonov and Bohm insisted on the multivaluedness of the regions in which the
beams are travelling.

The problem is closely allied to the existence of a magnetic monopole, first postulated by
Dirac [10]. Dirac’s prescription was to write the wave function as a product of a field free
wave function, and a phase,( , ) = ( , ) ∫ ∙ , ……………………………………….              (17)

in units where = ħ = 1, where A is the vector potential and e is the electric charge. One
would expect that (17) would satisfy the Schrödinger equation= ( − ) = {−1/ / / + 1/ [ × ( − )]²} .…. (18)

But since the angular momentum,= × ( − ), ……………………………………………               (19)

equation (18) is independent of the vector potential A. In other words, (18) depends on the
angular momentum (19) whatever be its origin. So what is the significance of the phase
factor in (17) when (18) is effectively independent of A?
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If the integral in the phase is intended as a closed circuit then by Stokes’ law it is equal to the
magnetic flux, Φ, through the surface. If the magnetic flux is replaced by a monopole of
strength g, then (17) will be multivalued unless eg is an integer. This is Dirac’s quantum
prescription for the quantization of electric charge. The presence of a single monopole will
lead to the quantization of charge. So it is not the potential that has to be treated as a
physical field and which is also directly observable [11]. This also means that the shift in the
diffraction pattern is also independent of the choice of gauge of the vector potential [12].

For suppose that Ais observable. By a phase factor, the left-hand side of (18) can be
reduced to and with = − , the radial equation becomes+ ′ + = ,…………………………………………………. (20)

Where the prime denotes differentiation with respect to r and= −2 and = − ′ + .

Now we want to get curvature out of (18), and in order to do so the energy must be
subtracted from the Hamiltonian “which produces a trivial, computable phase change in the
solution” [13]. This is not trivial, however, since a finite energy would bring in higher-order
poles in the indicial equation and would introduce an essential singularity into the
Schrödinger equation.

Roughly speaking, the Schwarzian derivative, or Schwarzian for short, means curvature [14]
and we want to transform (20) into a form where the Schwarzian manifests itself. Two
systems are said to be strongly equivalent1 if a change in the unknown → transforms
one into the other. Under this transformation and with the zero-kinetic energy condition, (20)
becomes.

″ + + 2 ′ ′ + + ′ + ″ = 0. ………………………… (21)

If κ satisfies (20) with = 0, then the coefficient of vanishes in (21). But the surviving
coefficient would not be an invariant because it is independent of . Rather, if we choose κ
so that the coefficient of ′ vanishes, i.e., κ′/κ=-½ , then we find+ ′ + ″ = − ¼ − ½ ′. ………………………………………..    (22)

This is exactly the Schwarzian which is found to vanish identically. Hence, the vector
potential does not introduce curvature or multivaluedness. Multivaluedness is rather to be
associated with monodromy, or the failure to be single-valued as we ‘run around’ a path
encircling the singularity.

Wu and Yang [16] modified the angular momentum (19) to read= × ( − ) − ,       …………………………………………………      (23)

so that the square of the angular momentum,[ × ( − )]² = ² − ²,
_______________________________
1Two sets of linear differential equations are said to be weakly equivalent if one is converted into another when the
same transformation is applied to the unknowns as well as the independent variables. They are said to be strongly
equivalent when one set is transformed into the other when the transformation is applied only to the unknowns [15].
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has a negative contribution. In contrast, Aharonov and Bohm introduced the square of the z-
component of the angular momentum,= − = − + ,    ………………………………………   (24)

which also has a negative component to get

+ + − ² + = 0,      …………………………………… (25)

where = , outside the region of the magnetic field and k is the wave vector of the
incident particle. Since the solution to the radial equation, found by Tamm [17] is a Bessel
function,

( )√ , with index, = [ ( + 1) − + ¼],
Wu and Yang required(l+1)≥α2, or more precisely, + ½ > .
According to Wu and Yang [16], equation (18) has no meaningful solution for k2≤0. However,
it is precisely the equality that allows (18) to be transformed into the Fuchsian differential
equation,

″ 

Provided through the transformation → /√ Wu and Yang argued that since the
space around a monopole is spherically symmetric without singularities, the wave function of
the electron about the monopole should possess no singularities. Simon [13] contended that
holonomy results from a non-real Hamiltonian caused by magnetic fields, or some similar
type of phenomenon. It will be clear from our presentation, that analytic continuation about a
regular singular point gives rise to geometric phase which is due to an ‘attractive’ centripetal
potential, or a monopole in the expression for the angular momentum (23).

Equation (26) is valid about the singular point at the origin, as well as the singular point at
infinity. This can easily be verified by making the substitution r=1/z in (26) to get

″  

Then, the substitution →z will bring it into the exact same form as (27). This shows that
the singular points at r=0 and r=∞ are both symmetrical and regular.

The two independent solutions to (27) are:

r(1+2)/2 and r(1-2)/2 . ………………………………….. (28)

Since (28) are multivalued, one solution would have to be rejected to preserve the single-
valuedness of the Schrödinger wave function. The quotient of the two solutions, (28), will
undergo a linear-fractional transformation since any two independent solutions are linear
combinations of any other pair of solutions.
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Analytic continuation about the origin, or infinity, will not give back the solution that we
started with. The solutions (28) are automorphic functions with respect to the group of
rotations. The group tessellate the upper half-plane or unit disc1 by lunes, of the form shown
in Fig. 3, where r=0 and r=∞ correspond to the angular points of the lune.

Two circular arcs that cut out the lune intersect at an angle . The area of the lune is twice
that . In terms of the phasor, the phase angle would be half this angle, while
Panacharatnam gives the phase as the complementary angle. Since we want the phase to
vanish with the magnetic flux intensity, we choose the former and get

e .       ……………………………………………….       (29)

The phase factor,

= ,  ………………………………………………………      (30)

Fig. 3. Two circular arcs intersect at an angle .
is the change in the wave function during a circuit around the solenoid. Equation (30) says
that when Φ is an odd multiple of a fluxion, (2e)-1, the two beams (one bypasses the toroidal
magnetic and the other pass through its hole) should exhibit a (maximum) phase difference
of  (mod ), i.e. 2 ≡ (mod) ν = 0, ±1, ±2, ……………………………      (31)

This is what is observed in the interferogram that results from combining the beam with the
coherent reference beam that avoids the magnetic field [18]. It is seen that integral
quantization of the phase eliminates the phase factor (30) altogether.

Denote by ˪┘ Gauss’ bracket, which indicates the largest integer not exceeding Then
=exp(2πi/˪┘)is an elliptic generator with period ˪┘.In other words, there will be
˪┘distinct branches, or ˪┘‘steps’ in the ‘spiral staircase.’ The different branches are
gn=ng0 where n=0, 1, 2,…,└˩-1 are the winding numbers. Each step can be regarded as
a covering space corresponding to a particular branch of the multivalued function. In
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particular for destructive interference of the beams, ˪˩=2, so that there is a single branch
and the surface is simply connected.

5. ATTRACTIVE ANGULAR MOMENTUM

Many of the equations of mathematical physics can be transformed into Fuchsian differential
equations at vanishing kinetic energy. Consider the spherical Bessel function:− ( )

²
+ ² = 0. ………………………………………….     (32)

Bessel’sdifferential equation (32) has a regular singular point at r=0 and an essential
singularity at r=∞.  This can easily be checked by substituting z=1/r and noting that the
coefficient of  has higher-order poles at z=0.

The indicial equation at the regular point, z=0 has two independent solutions:

r +1 andr- ... …………….…………………      (33)

The second solution, is usually discarded on the basis that it blows up at the origin.
Although this makes  single-valued, we will not follow this practice. Rather, we form the
quotient of the two independent solutions,

s = ₁₂r
which is multivalued and automorphic with respect to the group of rotations that will
tessellate the half-plane or disc with lunes, if and only if k2=0. This is to say that there can be
no constant term appearing in the Schwarzian derivative [cf. equation (38) below
and ( + 1) < 0].
When k2≠0 there will be an essential singularity at r=∞.  We may study this singularity by
making the usual substitution, z=1/r and as z→0, equation (32) will reduce to

″ +  + ²⁴ = 0. ………………………………………….. (35)

The solution to (35) gives an essential singularity,

= sin(k/z), ……………………………………………….      (36)

At z=0 consisting of a pole of infinite order. It is the limit point of two sequences of zeros, one
on the positive real axis and the other on the negative real axis [3]. Since the integrand of (2)
is

( )( ) = − = − +
³
+ ⁴ ⁵ +⋯, ………………………………    (37)

and introducing it into (4) shows that it has a ‘charge’ of -1, a vanishing dipole moment, a
quadrupole moment of ⅓k3, a hexadecapole moment of k4/45, etc.

The automorphic function (34) will have the Schwarzian,
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{s,r} = ²≡ 2I, ………………………………………….    (38)

only in the case of vanishing kinetic energy, k2=0, where =2 +1.  As we have already
shown, the indicial equations will then be identical about r=0 and r=∞, thereby reducing the
second singular point from an essential to a regular singular point. This is necessary insofar
as the analytic continuation of the solution about the singular point will not give back the
solution that we started out with, but, rather the product of analytic continuations about two
singular points will give back the original solution. In the case of two singular points, the
generators will be inverses of one another. This is Riemann’s condition for the “periodicity of
the function” [2] and the group generated by these matrices is the ‘monodromy’ group, a
term coined by Jordan. The monodromy group is a group of transformations that fail to be
single-valued as we ‘run round’ a paththat encircles the singularity.

When the two poles are regular, a simply closed circuit in the counterclockwise direction
about r=0, described by the monodromy matrix,

S0 = 00 , …………….………………………………..         (39)

must be accompanied by a counterclockwise circuit about the other singular point at infinity,

S∞ = 00 , …………………………………………..    (40)

in order that Riemann’s condition,

S0S∞ = I, …………………………………………………             (41)

be fulfilled. The motions form a group--- the monodromy group. Periodicity results in a multi-
valued function only for non-integral values of . Integral values would reduce the
monodromy matrices, (39) and (40), to the identity matrix I and destroy the tessellations of
the half-plane or unit disc by lunes, just like integral values of the magnetic flux would make
the shift in the diffraction pattern disappear in the Aharonov-Bohm effect.

This is the condition for constructive inference, which is no longer possible when the singular
point at infinity becomes an essential singularity. The presence of the essential singularity
destroys the periodicity with respect to themonodromy group. The existence of a lune formed
from two circular arcs with angles π implies that ≤ 1 or equivalently, ∊ [−½, 0]. The
centripetal repulsion, ( +1) > 0 has now become centripetal ‘attraction’ ( +1) < 0.
Bessel’s differential equation (32) thus becomes identical with the Aharonov-Bohm equation,
(25). The automorphic function (34) can be written more generally as:= , …………………………………………………..          (42)

which gives a conformal representation of the S-lune upon the s-half plane. Inside the lune,
which is the fundamental region, the automorphic function takes on any value only once.
Thus, the linear-fractional transformation (42) will transform two circles cutting at an angle

π into any two others intersecting at the same angle. This result has been known since the
time of Kirchhoff [19].
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Thus, space and angular momentum have switched their characteristics: the former is now
discontinuous while the latter is continuous in the closed interval [-½,0]. The geometric
phase is now half the area of the lune,  For =-½ the regular and irregular solutions,
(33), coalesce and the phase vanishes. At the other extreme, =0, the geometric phase
for which the area of the lune becomes the area of a hemisphere and the Schwarzian
derivative (38) vanishes. Bessel’s differential equation (32) becomes weakly equivalent to

″=0 so that there is no invariant (38), exactly as in the case of the Schrödinger equation
(18).

6. RECONSTRUCTION OF THE SCHRÖDINGER EQUATION

For Fuchsianautomorphic functions, accumulationor limit, points occur on the principal circle,
or the real axis of the half-plane [20].  Not all points on the boundary are limit points of the
group. If the automorphic function is not a constant, each limit point of the group is an
essential singularity of the function. The behavior of the automorphic function at a limit point
is analogous to the behavior of the Schrödinger equation in the immediate neighborhood of
point at infinity. In this section, we first establish the form of the essential singularity in the
case of negative kinetic energy2 and then show that the Schrödinger equation can be
reduced to Fuchsian form, even in the presence of a potential at infinity, provided the kinetic
energy vanishes.

Consider the radial Schrödinger equation for bound states of the hydrogen atom:

″ − ( ) − − ¼ = 0, …………………………………………     (43)

where the parameter, γ = 1/k rB,withrB is the Bohr radius. As r→0(40) becomes [cf. equation
(26)]:

″ − ²
²

= 0, ………………………..……………………………..   (44)

which has two independent solutions (33),while, as r→ ∞, (43) transforms into

″ + ′ − = 0, …………………………………………….      (45)

when the substitution r=1/z is made. The two independent solutions are:₁ = / and ₂ = / .     ……………………………………….      (46)

Their ratio, ( ) = = / ,          …………………………………………………...     (47)

has an essential singularity at z=0 (r=∞). It can be considered as a limit of a rational function
which is the ratio of a pole of order n at z=0 and a zero of order n at z=-1/n [3]. The ratio,

→∞

( )ⁿ

ⁿ
= →∞

1 + ⁿ = / , ……………………………………..     (48)
______________________________________
2For positive kinetic energy the essential singularity is given by (36).
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has a finite limit coinciding with a transcendental function.

This occurs on the principal circle or the positive axis of the half-plane3. The essential
singularity thus consists of the merger of a pole of infinite order at z=0 and a zero of infinite
order at r=0-.This permits us to interpret poles and zeros as opposite charges [3].

Since equation (43) has two singular points, one at the origin and the other at infinity, there
are no limit points of the group of motions that separate the plane [21]. By transforming the
singular point at infinity into an essential singularity, where an infinite number of poles will
cluster, we introduce a boundary, either a principal circle or the real axis, depending if the
domain is the disc or the half-plane, respectively. The transform involves introducing the
kinetic energy which is presented by the last term in equation (43). The essential singularity
has a dipole moment, which is related to a bound state, such as in the Schrödinger equation
for the hydrogen atom (43), in contrast to an unbound state as in Bessel’s equation (32),
which has an infinite number of moments.

( ) = + 1+ .
Let us look for a solution to (43) of the Fuchsian type, ( ) = ( ). Then φ will be the
solution of

″ + 2 ′ + − ¼ = 0. ……………………………………     (49)

Introducing the Euler operator, = [22], (49) can be reduced to the Fuchsian form:( + ) = − ( − ¼ ) . ………………………………..    (50)

The resonances, or roots of the left-hand side of the equation, are 0 and – . This confirms
that for small r the solution should behave as . The stable manifold is parameterized by γ,
the coefficient of the attractive coulomb an potential.

Solving (50) recursively, we get the power expansion:= {1 + + ( ) − ¼ +⋯},
or in terms of our original wave function,= {1 + + ( ) − ¼ +⋯ }. …………………………..    (51)

The idea of such a power series solution is the same as Frobenius’ ‘trick’ to consider
logarithms as limiting cases of powers. Logarithmic solutions are admissible, and occur
when the roots of the indicial equation coalesce. Equation (51) shows that it is an analytic
function which has a branch pole of order – at r=0.

___________________________
3Points at infinity can be transformed to the principal circle by the linear-fractional transformation,
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When we apply the same procedure to the fixed point at infinity by setting r=1/z, we get( − ) = − − , …………………………………….    (52)

which is not an equation of the Fuchsian type. At vanishing kinetic energy, (49) can be
reduced to a Fuchsian type of differential equation by a transcendental change of variables,= / . Then introducing two radial coordinates [22], R0=R andR1=RlnR, (52) can be
brought into the form: ( + ) = ₁₀ , ………………… ………………………     (53)

where the 2-space scale operator is = / ₀.
There is an analogy between the essential singularity at infinity of differential equations, like
(32) and (18) and the limit point of a group, which is also an essential singularity [20]. The
essential singularities of the group are the essential singularities of the automorphic function.
The limit points either lie along the real axis in the half-plane or on the principal circle. When
an automorphic function is subjected to linear-fractional substitutions of the group, they will
fill the half-plane or principal circle with fundamental regions that do not overlap and have no
lacunae. However, in the immediate vicinity of a limit point, the automorphic function
assumes any number of different values. The fundamental regions tend to cluster in infinite
number about points on the principal circle or on the real axis of the complex plane. Thus,
the behavior of an automorphic function at a limit point on the boundary is analogous to the
confluence of two poles in a differential equation to produce an essential singularity at
infinity.

7.  ANGULAR DEFECT AND GEOMETRIC PHASE

It appears that the phasor (5) violates the exterior angle theorem of what was known as the
16th proposition in Euclid’s Elements. It states that an exterior angle of a triangle is greater
than either remote interior angle and so (5) would be negative. However, this is not true for
spherical geometry in which the extension of the line from the remote vertex of the triangle
meets the line parallel to the triangle is greater than a semi-circle [23]. Hence, all of what we
have said previously applies to spherical geometry.

In contrast, geometric phase is well-known in hyperbolic geometry, where it is the angle
defect that plays the role of the geometric phase. A classic example is the Wigner angle,
which is the angle that two non-planar Lorentz boosts get rotated through [24].We might try
to define the phasor as:= − , …………………………………………………………       (54)

forα>β.  However, this is just the condition that the triangle is Euclidean, − + + = ,
as we found in equation (10). Rather, it is the defect.= − ( − + + ) > 0, ……………………………………………      (55)

of the hyperbolic triangle, shown in Fig. 4, that is equal to its area. The defect of the
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Fig. 4. The defect of the hyperbolic triangle is equal to its area. The first Lorentz boost
is along the axis BA, while the second one occurs at an angle α along AC. The
resultant boost is BC and α goes from a minimum of 0 to a maximum of π/2.

hyperbolic triangle was associated with a geometric phase in  [25] and references cited
therein. The triangle in Fig. 4 represents the sum of two non-collinear Lorentz
transformations or ‘boosts’. The first is along the BA axis while the second is along AC
making an angle α with respect to the first. It is suggestive that the logarithm of the ratio of
the sine of (α-½Ω) to the sine of ½Ω is equal to the sum of the Euclidean measures of
hyperbolicarc lengths:

ln ( ½ )(½ ) = ½ + ½ . ...............................................     (56)

Whereas the hyperbolic tangent is the Euclidean measure of length of a ‘straight’ line in
hyperbolic geometry, the hyperbolic cosine is the Euclidean measure of arc length [26]4. For
a right hyperbolic triangle α=½π and the left-hand side of (54) becomes.

h = (½ ) = ½ , ..... ..................................................     (57)

which identifies Ω as the angle of parallelism. Two lines through a given point are parallel to
a given line that make an angle Ω with respect to the perpendicular from this point to the
given line whose distance is h.  Ω is a function only of the length h of this perpendicular and
as the latter decreases, the former increases until it becomes a right angle when h becomes
zero.

Combining (56) and (57) results inℎ = ℎ cosh b ℎ cosh = ℎ , ……………..   (58)

where the hyperbolic Pythagorean theorem, cosh = cosh ∙ cosh has been used. Equation
(58) is the well-known relationcos = ,               ……………………………………………………….  (59)

for the angle defect (55) [25].
___________________
4In spherical geometry, the spherical distance would be = ℎ (x), since ℎ is the hyperbolic
measure of arc length.
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8. CONCLUSIONS

Geometric phase is related to the curvature of non-Euclidean geometries. It has long been
known that in hyperbolic geometry, two Lorentz transformations along different directions are
accompanied by rotation whose angle is the defect of a hyperbolic triangle. Much less is
known about geometric phase in spherical geometry, where the geometric phase arises from
the multivaluedness of solutions to a second-order Fuchsian equation. The geometric phase
is now related to the angular excess of a spherical triangle in the case of three regular
singular points or a lune in the case of two singular points. The quotient of any two solutions
to the Fuchsian differential equation are functions automorphic with respect to a group of
linear-fractional transformations that tessellate the half-plane or unit disc by the curvilinear
triangles or lunes without lacunae and without overlap. The simple poles are conformally
mapped onto the vertices of the fundamental regions where the automorphic function can
only take any value just once. This imposes restrictions on the angular momentum quantum
numbers which can no longer be integral, for otherwise the phase factors would become
unity, which in the case of the Aharonov-Bohm effect would mean that the shift in the
diffraction pattern disappears. Other spherical geometric examples are the phasor, the
Pancharatnam phase of beams of interacting polarized light and the Dirac monopole. The
Dirac monopole is associated with the singularity of the Schrӧdinger equation in the limit of
vanishing kinetic energy where it becomes a Fuchsian differential equation.

Fuchsian differential equations can be looked as limits of vanishing kinetic energy of the
equations of mathematical physics where the essential singularities, prohibiting a blow up of
the solution at infinity are replaced by regular singular points. In the region of angular
momentum quantum numbers where the angular motion represents ‘centripetal’ attraction,
instead of repulsion, the geometric phase is one-half the area of a lune, which disappears
when the pole at infinity becomes an essential singular thereby recovering the Schrӧdinger
equation.
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