14(4): 1-8, 2016, Article no.BJMCS.24037 *ISSN: 2231-0851*

SCIENCEDOMAIN *international*

An Elliptic Neumann Problem Involving Critical Exponent

K. Ould Bouh¹ *∗*

¹*Department of Mathematics, Taibah University, P.O.Box 30097, Almadinah Almunawwarah, KSA.*

Author's contribution

The sole author designed, analyzed and interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/BJMCS/2016/24037 *Editor(s):* (1) Dragos-Patru Covei, Department of Applied Mathematics, The Bucharest University of Economic Studies, Piata Romana, Romania. *Reviewers:* (1) Nutan Singh, Chhattisgarh Swami Vivekanand Technical University, India. (2) Andrej Kon'kov, Moscow Lomonosov State University, Russia. Complete Peer review History: http://sciencedomain.org/review-history/13265

> *Received: 31st [December 2015](http://sciencedomain.org/review-history/13265) Accepted: 1st February 2016*

Original Research Article Published: 11th February 2016

Abstract

This paper is devoted to study the following nonlinear elliptic problem with Neumann boundary condition, (P_μ) : $-\Delta u + \mu u = Ku^3$, $u > 0$ in Ω and $\partial u/\partial \nu = 0$ on $\partial \Omega$ where Ω is a smooth bounded domain in \mathbb{R}^4 , μ is a positive parameter and *K* is a C^3 positive Morse function on Ω. Using dynamical methods involving the study of *Palais-Smale condition* of the associated variational structure *J*, we prove some existence results of (P_μ) .

Keywords: Variational problem; critical points; palais- smale condition.

2010 Mathematics Subject Classification: 35J20, 35J60.

1 Introduction

Let us consider the nonlinear Neumann elliptic problem:

 $(P_{q,\mu})$ $\begin{cases} -\Delta u + \mu u = u^q, & u > 0 \text{ in } \Omega \\ \frac{\partial u}{\partial \nu} = 0 & \text{ on } \partial\Omega, \end{cases}$

^{}Corresponding author: E-mail: hbouh@taibahu.edu.sa, kamal.bouh@gmail.com;*

where $1 < q < \infty$, Ω is a smooth bounded domain in \mathbb{R}^4 , μ is a positive parameter and $\frac{\partial u}{\partial \nu}$ is the normal derivative of *u*.

It is well known that problem $(P_{q,\mu})$ appears in several domains of applied sciences. For example, in biological pattern formation, it was used as a steady-state equation for the shadow system of the Gierer- Meinhardt system [1] and as parabolic equations in chemotaxis, (Keller-Segel model [2]).

For the subcritical case, i.e. $q < \frac{n+2}{n-2}$, it was proved by Lin, Ni and Takagi [2] that, if μ is very small, the only solution of this problem is the constant one, however they proved that this problem has a nonconstant solutions which blow up at one or several points for large μ . concerning the critical case, i.e. $q = 5$, it was sho[wn](#page-6-0) that, t[he](#page-6-1) only solution of problem $(P_{q,\mu})$ is the constant one when μ is small and in convex domains [3].

Note that, many works has been devoted to study the solutions of problems of type $(P_{q,\mu})$ with the Dirichlet boundary conditions see for example [4], [5], [6], [7], [8], [9], [10].

In this paper, we study problem $(P_{q,\mu})$ for fixed μ when $n=4$ and the exponent $q=3$ is critical:

$$
(P_\mu)\quad \left\{\begin{array}{rcl} -\Delta u + \mu u &=& Ku^3,\quad u>0\qquad \text{in }\Omega\\ \frac{\partial u}{\partial \nu} &=& 0 \qquad \text{on }\partial\Omega, \end{array}\right.
$$

where *K* is a C^3 positive Morse function on $\overline{\Omega}$.

Our goal is to to provide some sufficient conditions of the function *K* under which the problem (P_u) has a positive solution.

Before stating the theorems, we will introduce the following notations and assumptions. For $a \in \overline{\Omega}$ and $\lambda > 0$, let

$$
\delta_{(a,\lambda)}(x) = c_0 \frac{\lambda}{1 + \lambda^2 |a - x|^2}
$$

where c_0 is chosen so that $\delta_{(a,\lambda)}$ is the family of solutions of the following problem

$$
-\Delta u = u^3, \quad u > 0, \quad \text{in } \mathbb{R}^4.
$$

(H₁) Let
$$
y_0
$$
 be a maximum of the function $K_1 = K_{|\partial\Omega}$ and max $K(y)_{y \in \Omega} \leq 2K_1(y_0)$.
\n(H₂) $c_3 \frac{\partial K}{\partial \nu}(y_0) - \frac{4}{3}\pi w_2 K_1(y_0) \mathcal{H}(y_0) < 0$ where c_3 , w_2 are constants defined below.

 $(H₂)$

In the assumption (\mathbf{H}_2) , we also denote by $\mathcal H$ for the mean curvature of the boundary of Ω . In the first part of this work, we establish the following existence result.

Theorem 1.1. *Suppose that the function K satisfy the assumptions* (*H*1) *and* (*H*2)*. Then problem* (P_{μ}) *has a solution under the level* $c_{\infty} := (S_4/2)^{1/2} K_1(y_0)^{-1/2}$.

The proof of this theorem is based on the fact that the associate functional *J* does not satisfy the *Palais-Smale condition* along the flow lines under the level c_{∞} defined at the point y_0 which is in the boundary. The same argument can be applied if the level c_{∞} defined at an interior point. This is our aim in the second part of this paper.

(\textbf{H}_{3}) Assume that y_1 is a maximum of the function *K* in Ω and

$$
\max K(y)_{y \in \partial \Omega} \leq K(y_1)/2.
$$

We have the following result

Theorem 1.2. We suppose that the assumption (H_3) holds, the problem (P_μ) has a solution under *the level* $d_{\infty} := (S_4)^{1/2} K(y_1)^{-1/2}$.

To briefly outline the remainder of the paper, we introduce the variational function associate to the problem (P_μ) and present a basic preliminaries in Section 2. In Section 3, we give some careful expansions of *J* associated to the problem (P_μ) . The proofs of theorems will be carried out in Section 4.

2 Preliminary Results

Let us define the following variational formulation corresponding to the problem (P_μ) :

$$
J(u) = \frac{\int_{\Omega} |\nabla u|^2 + \mu \int_{\Omega} u^2}{\left(\int_{\Omega} K |u|^4\right)^{1/2}}, \qquad u \in H^1(\Omega). \tag{2.1}
$$

It is well known that the critical points of this variational formulation *J* are solutions of problem (P_μ) up to constant multipliers. In the sequel, we will assume that the space $H^1(\Omega)$ is equipped with the norm *∥.∥* and its corresponding inner product *⟨., .⟩* defined by

$$
||w||^2 = \int_{\Omega} |\nabla w|^2 + \mu \int_{\Omega} w^2
$$
, and $\langle w, v \rangle = \int_{\Omega} \nabla w \nabla v + \mu \int_{\Omega} wv$, $w, v \in H^1(\Omega)$

We set $\Sigma = \{u \in H^1(\Omega) / ||u||^2 = 1\}$ and $\Sigma^+ = \{u \in \Sigma / u \ge 0\}.$

Note that the functional *J* defined by (2.1) does not satisfy the Palais-Smale condition on Σ^+ . Many authors have studied the failure of The Palais-Smale condition for *J* (see Brezis-Coron [11], Lions [12], Rey [13], Struwe [14]).

In the following we will describe the sequences that fail the Palais-Smale condition for *J*. For $\varepsilon > 0$ small enough and $p \in \mathbb{N}^*$, we d[efin](#page-2-0)e

$$
V(p, \varepsilon) = \left\{ u \in \Sigma^+ / \exists a_1, ..., a_p \in \overline{\Omega}, \exists \lambda_1, ..., \lambda_p > 0, \text{ s.t. } ||u - \sum_{i=1}^p K(a_i)^{-\frac{1}{2}} \delta_i|| < \varepsilon, \lambda_i > \varepsilon^{-1}, \varepsilon_{ij} < \varepsilon \text{ and } \lambda_i d_i < \varepsilon \text{ or } \lambda_i d_i > \varepsilon^{-1} \right\}
$$

where $\delta_i = \delta_{(a_i, \lambda_i)}$, $d_i = d(a_i, \partial \Omega)$ and $\varepsilon_{ij}^{-1} = \lambda_i/\lambda_j + \lambda_j/\lambda_i + \lambda_i\lambda_j|a_i - a_j|^2$.

Proposition 2.1. *(see [15], [12] and [16]) We suppose that there is no critical point of J* in Σ^+ *and let* $(u_r) \in \Sigma^+$ *be a sequence such that* $J(u_r)$ *is bounded and* $\nabla J(u_r) \rightarrow 0$ *. Then, there exist an extracted subsequence of* u_r *, denoted also* (u_r) *, a sequence* $\varepsilon_r > 0$ ($\varepsilon_r \to 0$) and an integer $p \in \mathbb{N}^*$ *such that* $u_k \in V(p, \varepsilon_k)$.

For sake of simplicity, [w](#page-7-0)e will [sup](#page-6-7)pose, [in t](#page-7-1)he sequel, that If $u \in V(p, \varepsilon)$, then

 $\lambda_i d_i < \varepsilon$ when $i \leq q$ and for $i > q$, $\varepsilon^{-1} < \lambda_i d_i$.

3 Some Useful Estimations

In this section, we will study the Euler functional *J* associated to problem (P_μ) . We will determine some expansions of *J* which are useful in the proof of our results.

Proposition 3.1. For $\varepsilon > 0$ small enough and $u = \sum_{i=1}^p K(a_i)^{-\frac{1}{2}} \delta_{(a_i,\lambda_i)} \in V(p,\varepsilon)$, we have the *following expansion*

$$
J(u) = \left(\frac{S_4}{2}\right)^{1/2} \left(\sum_{i=1}^q K(a_i)^{-1} + 2 \sum_{i=q+1}^p K(a_i)^{-1}\right)^{1/2} \left[1 + \frac{c_3}{\theta} \sum_{i \le q} \frac{1}{\lambda_i K(a_i)^2} \frac{\partial K}{\partial \nu}(a_i) - \frac{4\pi w_2}{3\theta} \sum_{i \le q} \frac{\mathcal{H}(a_i)}{\lambda_i K(a_i)} + O\left(\sum_{r \neq k} \varepsilon_{kr} + \sum_{i > q} \frac{1}{(\lambda_i d_i)^3} + \mu \sum_{i} \frac{\log \lambda_i}{\lambda_i^2}\right)\right],
$$

where

$$
\theta = \frac{S_4}{2} \Big(\sum_{i=1}^q K(a_i)^{-1} + 2 \sum_{i=q+1}^p K(a_i)^{-1} \Big) \quad ; \qquad S_4 = \int_{\mathbb{R}^4} \delta^4_{(0,1)} \quad ;
$$

$$
w_2 = \int_{\mathbb{R}^4} \delta^4_{(0,1)} y^2 \quad ; \qquad \quad c_3 = \int_{\mathbb{R}^4} \frac{x_4 dx}{(1+|x|^2)^4}
$$

Proof. We have

$$
J(u) = \frac{\int_{\Omega} |\nabla u|^2 + \mu \int_{\Omega} u^2}{\left(\int_{\Omega} K |u|^4\right)^{1/2}} = \frac{N}{D^{1/2}}, \qquad u \in H^1(\Omega). \tag{3.1}
$$

$$
\int_{\Omega} |\nabla u|^2 = \sum_{i} \int_{\Omega} K(a_i)^{-1} |\nabla \delta_i|^2 + \sum_{i \neq j} \int_{\Omega} K(a_i)^{-1/2} K(a_j)^{-1/2} \nabla \delta_i \nabla \delta_j
$$
\n(3.2)

$$
\int_{\Omega} u^2 = \int_{\Omega} \left(\sum_{i} K(a_i)^{-1/2} \delta_i\right)^2 = \sum_{i} \int_{\Omega} K(a_i)^{-1} \delta_i^2 + \sum_{i \neq j} \int_{\Omega} K(a_i)^{-1/2} K(a_j)^{-1/2} \delta_i \delta_j \tag{3.3}
$$

So

$$
N = \sum_{i} \int_{\Omega} K(a_i)^{-1} \mid \nabla \delta_i \mid^2 + \mu \sum_{i} \int_{\Omega} K(a_i)^{-1} \delta_i^2 + O\Big(\sum_{i \neq j} \int_{\Omega} \nabla \delta_i \nabla \delta_j + 2 \sum_{i \neq j} \int_{\Omega} \delta_i \delta_j\Big)
$$

$$
D = \int_{\Omega} K u^4 = \int_{\Omega} K \big(\sum_{i} K(a_i)^{-1/2} \delta_i\big)^4 = \sum_{i} K(a_i)^{-2} \int_{\Omega} K \delta_i^4 + O\Big(\sum_{i \neq j} \int_{\Omega} \delta_i^3 \delta_j\Big)
$$

On the other hand, we have

$$
\int_{\Omega} |\nabla \delta_i|^2 = \frac{S_4}{2} - \frac{5}{3} \pi w_2 \frac{\mathcal{H}(a_i)}{\lambda_i} + O(\frac{1}{\lambda_i^2}) \qquad \text{for } i \le q \tag{3.4}
$$

$$
\int_{\Omega} K \delta_i^4 = \frac{S_4}{2} K(a_i) - \frac{2}{3} \pi w_2 \frac{\mathcal{H}(a_i)}{\lambda_i} K(a_i) - \frac{2c_3}{\lambda_i} \frac{\partial K}{\partial \nu}(a_i) + O\left(\frac{1}{\lambda_i^2}\right)
$$
(3.5)

$$
\int_{\Omega} |\nabla \delta_j|^2 = S_4 + O(\frac{1}{\lambda_j^2}) \qquad \text{for } j > q
$$
\n(3.6)

$$
\int_{\Omega} K \delta_j^4 = S_4 K(a_j) + O\left(\frac{1}{\lambda_j^2}\right) \tag{3.7}
$$

$$
\int_{\Omega} \nabla \delta_j \nabla \delta_i = O(\varepsilon_{ij}) \quad ; \quad \int_{\Omega} K \delta_j^3 \delta_i = O(\varepsilon_{ij}) \quad ; \quad 3 \int_{\Omega} K \delta_j \delta_i^3 = O(\varepsilon_{ij}) \tag{3.8}
$$

We have also

$$
\int_{\Omega} \delta_i^2 = O\Big(\frac{\log \lambda_i}{\lambda_i^2}\Big), \quad \text{and } \int_{\Omega} \delta_j \delta_i = O(\varepsilon_{ij}).
$$
\n(3.9)

4

Thus,

$$
N = \sum_{i \leq q} K(a_i)^{-1} \left(\frac{S_4}{2} - \frac{5}{3}\pi w_2 \frac{\mathcal{H}(a_i)}{\lambda_i}\right) + \sum_{i > q} K(a_i)^{-1} S_4
$$

+ $O\left(\mu \sum_{i} \frac{\log \lambda_i}{\lambda_i^2} + \sum_{i \neq j} \varepsilon_{ij} + \sum_{i \leq q} \frac{1}{\lambda_i^2} + \sum_{i > q} \frac{1}{(\lambda_i d_i)^3}\right)$
= $\frac{S_4}{2} \left(\sum_{i \leq q} K(a_i)^{-1} + 2 \sum_{i > q} K(a_i)^{-1}\right) - \frac{5}{3} \pi w_2 \sum_{i \leq q} K(a_i)^{-1} \frac{\mathcal{H}(a_i)}{\lambda_i}$
+ $O\left(\mu \sum_{i} \frac{\log \lambda_i}{\lambda_i^2} + \sum_{i \neq j} \varepsilon_{ij} + \sum_{i \leq q} \frac{1}{\lambda_i^2} + \sum_{i > q} \frac{1}{(\lambda_i d_i)^3}\right)$
= $\frac{S_4}{2} \left(\sum_{i \leq q} K(a_i)^{-1} + 2 \sum_{i > q} K(a_i)^{-1}\right) \left(1 - \frac{5\pi w_2}{3\theta} \sum_{i \leq q} K(a_i)^{-1} \frac{\mathcal{H}(a_i)}{\lambda_i}\right)$
+ $O\left(\mu \sum_{i} \frac{\log \lambda_i}{\lambda_i^2} + \sum_{i \neq j} \varepsilon_{ij} + \sum_{i \leq q} \frac{1}{\lambda_i^2} + \sum_{i > q} \frac{1}{(\lambda_i d_i)^3}\right)$

and

$$
D = \sum_{i \leq q} K(a_i)^{-2} \Big[K(a_i) \frac{S_4}{2} - \frac{2c_3}{\lambda_i} \frac{\partial K}{\partial \nu}(a_i) - \frac{2\pi w_2 K(a_i)}{3\lambda_i} \mathcal{H}(a_i) \Big] + \sum_{i > q} K(a_i)^{-1} S_4 + O\Big(\sum_{i \neq j} \int_{\Omega} \delta_i^3 \delta_j\Big)
$$

\n
$$
= \frac{S_4}{2} \Big(\sum_{i \leq q} K(a_i)^{-1} + 2 \sum_{i > q} K(a_i)^{-1}\Big) - \sum_{i \leq q} K(a_i)^{-2} \Big[\frac{2c_3}{\lambda_i} \frac{\partial K}{\partial \nu}(a_i) + \frac{2\pi w_2 K(a_i)}{3\lambda_i} \mathcal{H}(a_i) \Big]
$$

\n
$$
+ O\Big(\sum_{i \neq j} \int_{\Omega} \delta_i^3 \delta_j\Big)
$$

\n
$$
= \frac{S_4}{2} \Big(\sum_{i \leq q} K(a_i)^{-1} + 2 \sum_{i > q} K(a_i)^{-1}\Big) \Big(1 - \frac{2}{\theta} \sum_{i \leq q} K(a_i)^{-2} \Big[\frac{c_3}{\lambda_i} \frac{\partial K}{\partial \nu}(a_i) + \frac{\pi w_2 K(a_i)}{3\lambda_i} \mathcal{H}(a_i)\Big]
$$

\n
$$
+ O\Big(\sum_{i \neq j} \int_{\Omega} \delta_i^3 \delta_j\Big)\Big)
$$

So

$$
D^{-\frac{1}{2}} = \left(\frac{S_4}{2}\Big[\sum_{i\leq q} K(a_i)^{-1} + 2\sum_{i>q} K(a_i)^{-1}\Big]\right)^{-\frac{1}{2}} \left(1 + \frac{1}{\theta}\sum_{i\leq q} K(a_i)^{-2}\Big[\frac{c_3}{\lambda_i} \frac{\partial K}{\partial \nu}(a_i) + \frac{\pi w_2 K(a_i)}{3\lambda_i} \mathcal{H}(a_i)\Big] + O\Big(\sum_{i\neq j} \int_{\Omega} \delta_i^3 \delta_j\Big)\right)
$$

Using the formula of *N* and $D^{-1/2}$, the proof follows.

Proposition 3.2. *Let* y_0 *be defined in Theorem 1.1. For* λ_0 *large enough, we have*

$$
J(\delta_{(y_0,\lambda_0)}) \le c_\infty (1 - c \lambda_0^{-1})
$$

Proof. From Proposition 3.1, we have

$$
J(\delta_{(y_0,\lambda_0)}) = \left(\frac{S_4}{2K(y_0)}\right)^{1/2} \left[1 + \frac{2}{S_4 K_1(y_0)\lambda_0} \left(c_3 \frac{\partial K}{\partial \nu}(y_0) - \frac{4\pi w_2}{3} K_1(y_0) \mathcal{H}(y_0)\right) + O\left(\mu \frac{\log \lambda_0}{\lambda_0^2}\right)\right]
$$

where $\theta = \frac{S_4}{2K_1(y_0)}$.

Using the assumption (H_2) , the proof follows.

Proposition 3.3. *For* $a_i \in \Omega$ *such that* $\lambda_i d_i$ *is very large, we have*

$$
J(\delta_{(a_i,\lambda_i)}) = S_4^{1/2} K(a_i)^{-1/2} (1 + o(1)).
$$

Proof. From Proposition 3.1, we have

$$
J(\delta_{(a_i,\lambda_i)}) = \left(\frac{S_4}{K(a_i)}\right)^{1/2} \left[1 + O\left(\frac{1}{(\lambda_i d_i)^3} + \mu \frac{\log \lambda_i}{\lambda_i^2}\right)\right]
$$

Hence, the proof follows.

4 Proof of Our Results

Proof of Theorem 1.1

Using the fact that $K_1(y_0) = \max K_1(y)$, we get

$$
c_{\infty} = (S_4/2)K_1(y_0)^{-1/2} < (S_4/2)K_1(y)^{-1/2} \quad \text{for each} \quad y \in \partial\Omega.
$$

In addition, the assu[mpti](#page-1-0)on (H_1) gives $c_{\infty} < S_4 K(y)^{-1/2}$ for each $y \in \Omega$.

Thus, we derive that all the levels of the critical points at infinity are above c_{∞} .

Furthermore, using Propositions 3.1, 3.2 and 3.3, we deduce that $J(u) \ge c_\infty (1 - c\varepsilon)$, $\forall u \in V(p, \varepsilon)$, *p* \geq 1. Hence, we can always choose ε such that for a fixed λ_0

$$
J(\delta_{(y_0,\lambda_0)}) < J(u), \quad \forall \, u \in V(p,\varepsilon), \, p \ge 1. \tag{4.1}
$$

We argue by contradiction, assuming that under the level $c_{\infty}(y_0)$ there is no solution of (P_{μ}) . Let $u(s)$ be the solution of the f[ollow](#page-3-0)[ing](#page-4-0) equ[ation](#page-5-0)

$$
\frac{\partial u}{\partial s} = -\nabla J(u) , \quad u(0) = \frac{\delta_{(y_0, \lambda_0)}}{\|\delta_{(y_0, \lambda_0)}\|}
$$

Observe that (4.1) implies that $u(s) \notin V(p, \varepsilon)$, for each $p \geq 1$.

Thus, for each $s \geq 0$, we have $|\nabla J(u(s))| \geq c$ (*c* depends only on ε). Indeed, if there exists a subsequence (s_k) such that $\nabla J(u(s_k)) \to 0$ with the fact that $J(u(s_k))$ is bounded this implies that $u(s_k) \in V(p, \varepsilon)$. Therefore,

$$
\frac{\partial J(u(s))}{\partial s} = -\left| \nabla J(u(s)) \right|^2 \le -c^2, \quad \text{for each } s \ge 0.
$$

Then, we get $J(u(s))$ goes to $-\infty$ when *s* goes to ∞ , this we derive a contradiction.

Proof of Theorem 1.2

Using the fact that $K(y_1) = \max K(y)$, we get $d_{\infty} = S_4 K(y_1)^{-1/2} < S_4 K(y_1)^{-1/2}$ for each $y \in \Omega$. In addition, the assumption (H_1) gives $d_{\infty} < (S_4/2)K_1(y)^{-1/2}$ for each $y \in \partial \Omega$.

Thus, from Propositi[ons](#page-1-1) 3.1, 3.2 and 3.3, we derive that, for a fixed λ_1 , we can choose ε so that

$$
J(u) > J(\delta_{(y_1,\lambda_1)}), \quad \text{for each } u \in V(p,\varepsilon), \ p \ge 1. \tag{4.2}
$$

Now, we argue by contradiction and using the same argument in the proof of Theorem 1.1, it is easy to deduce the proof [of](#page-3-0) [Theo](#page-4-0)rem [1.2](#page-5-0).

5 Conclusion

Thus its been concluded that under some assumptions on the function K, there exists solutions of the nonlinear Neumann elliptic problem (*Pµ*) under levels defined at some boundary or interior points.

Acknowledgements

I would like to thank Deanship of Scientific Research at Taibah University for the financial support of this research project.

Competing Interests

Author has declared that no competing interests exist.

References

- [1] Gui C. Multi-peak solutions for a semilinear Neumann problem. Duke Math. J. 1996;84:739- 769.
- [2] Lin CS, Ni WN, Takagi I. Large amplitude stationary solutions to a chemotaxis system. J. Differential Equations. 1988;72:1-27.
- [3] Zhu M. Uniqueness results through a priori estimates, I. A three dimensional Neumann problem. J. Differential Equations. 1999;154:284-317.
- [4] Pacella Adimurthi F, Yadava SL. Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity. J. Funct. Anal. 1993;113:318-350.
- [5] Ben Ayed M, Chtioui H. Existence results for a nonlinear elliptic equation with critical Sobolev exponent. Differential and Integral Equations. 2004;18:1-18.
- [6] Ben Ayed M, El Mehdi K, Pacella F. Blow-up and symmetry of sign changing solutions to some critical elliptic equations. J. Differential Equations. 2006;230:771-795.
- [7] Ben Ayed M, Ould Bouh K. Nonexistence results of sign-changing solutions to a supercritical nonlinear problem. Comm. Pure Applied Anal. 2007;5:1057-1075.
- [8] Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical exponents. Comm. Pure Appl. Math. 1983;36:437-477.
- [9] Ould Bouh K. Nonexistence result of sign-changing solutions for a supercritical problem of the Scalar curvature type. Advance in Nonlinear Studies (ANS). 2012;12:149-171.
- [10] Ould Bouh K. Sign-changing solutions of a fourth-order elliptic equation with supercritical exponent. Electron. J. Diff. Equ. 2014;77:1-13.
- [11] Brezis H, Coron JM. Convergence of solutions of H-systems or how to blow bubbles. Arch. Rational Mech. Anal. 1985;89:21-56.
- [12] Lions PL. The concentration compactness principle in the calculus of variations. The limit case. Rev. Mat. Iberoamericana. 1985;1(I):165-201, II:45-121.
- [13] Rey O. An elliptic Neumann problem with critical nonlinearity in three dimensional domains. Comm. Contemp. Math. 1999;1:405-449.
- [14] Struwe M. A global compactness result for elliptic boundary value problems involving nonlinearities. Math. Z. 1984;187:511-517.
- [15] Bahri A, Coron JM. On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of topology of the domain. Comm. Pure Appl. Math.1988;41:255–294.
- [16] Rey O. The question of interior blow-up points for an elliptic Neumann problem: The critical case. J. Math. Pures Appl. 2002;81:655-696.

——– *⃝*c *2016 Bouh; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.*

Peer-review history:

The peer [review history for this paper can be accessed](http://creativecommons.org/licenses/by/4.0) here (Please copy paste the total link in your browser address bar) http://sciencedomain.org/review-history/13265