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Abstract

Functional magnetic resonance imaging (fMRI) has become one of the most widely used
techniques in investigating human brain function over the past two decades. However, the
analysis of fMRI data is extremely complex due to its difficulties in big data processing,
complicated structure of relationship between hemodynamic response and brain activity, and
analysis using advanced technology and sophisticated techniques for classification and pattern
recognition. Hence, efficient and accurate machine learning models are necessary to interpret
fMRI data by incorporating spatial with temporal information. In this paper, we investigate a
class of spatial multitask learning models which incorporates spatial information of each task’s
neighborhood. Simulation and real application results show satisfactory performance from spatial
multitask learning algorithms.
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1 Introduction

Functional magnetic resonance imaging (fMRI) measures changes in blood oxygenation that are
associated to neural activity in a localized brain region. The general purpose of fMRI studies is
to detect blood oxygenation level dependent (BOLD) signal in response to a particular stimulus
and hence to infer regional neuronal activity by examining BOLD signal contrast in two or more
conditions. However, fMRI data has an extremely complicated structure. The subject’s 3D volume
brain is divided into a grid of volume boxes, or voxels. The BOLD signal is observed at each voxel
at each time point, resulting in an enormous amount of data. Hence, powerful models are necessary
for accurately detecting neuronal activity.

In addition to high dimensionality and complicated structure, analysis of fMRI data is challenging
due to artifacts and variability in the data. The major components of fMRI analysis include, but
are not limited to, the processing techniques to deal with these problems, statistical modeling and
inference from the data, and applications in medical diagnosis. The initial development of {MRI
was driven by cognitive psychology researchers, who are interested in exploring the brain’s active
responses to external tasks [1]. One of the most important research areas in the fMRI analysis
literature has focused on the detection of the active brain regions associated with human activities
or diseases; (see [2]-[7] and references therein). This could be modeled from either voxel level [4],
[7] or cluster level [2]. The statistical models for active region detection include the general linear
models [4] and autoregressive models [7]. In these models, each voxel is associated with a linear
regression task. As all the tasks are correlated, considering all voxels together may benefit the
modeling and inference. This has driven the use of multitask learning in this area (see [8]-[12]).

Multitask Learning (MTL) refers to a machine learning framework that learns multiple related tasks
simultaneously to improve generalization performance. This is especially true when the dataset is
small and the performance of single task learning is not as good. The intuition is that learning of
one task could benefit from the information of closely related tasks. A more formal explanation is
that the learning of related tasks introduces an inductive bias while helping significantly in reducing
the variance. MTL has been found successful in the study of many real applications (see [13]-[19]
and references therein). A variety of techniques and algorithms have been proposed for MTL for
different purposes and different problem domains. The idea of MTL could date back at least to the
application of NETtalk to learning both phonemes and their stresses (see [17], [19]), although the
concept of MTL was coined much later. In the context of neural network learning, backpropagation
has been used to learn multiple related tasks that are drawn from the same domain and share the
same hidden units (see [15]-[17]). MTL formulation was also proposed for k-nearest neighborhood,
kernel regression, and decision tree in [15].

In recent years, regularization theory was introduced into MTL. Regularized MTL algorithms are
usually problem dependent because the penalty term is designed according to prior knowledge of
the problem. For instance, by assuming all the tasks share a common component and each task
has an additional individual component, the authors in [18] proposed an MTL approach by trading
off the size of the common component and the individual components. By adjusting the trade-off
parameter, this method allows the data itself to demonstrate how closely the tasks are related and
how much improvement can be garnered by learning multiple tasks at the same time. In some
applications, not all tasks share the same components, but there is a cluster structure and only
tasks belonging to the same cluster share a common component, while the relationship between
tasks from different clusters may be weak. This has motivated the structured regularization for
MTL (see [20],[21]). Temporal priors were introduced in a study of the progression of Alzheimer’s
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disease, where each task is the status of patients at a time point, and the temporal relationship
arises naturally [22].

In high dimensional data analysis such as fMRI data, feature selection is a natural issue and sparse
penalty is required. In order to facilitate sparsity, the adaptive multitask lasso and elastic net were
introduced in [8] which utilizes the l; /I; mixed matrix norm. In [11], a new procedure called sparse
overlapping sets lasso was proposed. In [9], manifold regularization was introduced to multitask
feature selection for multi-modality classification in Alzheimer’s disease.

In this paper we propose a spatial regularization approach for MTL and apply it to fMRI data
analysis. In the problem of active region detection using fMRI data, the tasks (brain voxels) are
spatially related. It is natural to code the spatial information into the training process to improve
the learning performance. Works on this topic include [23], [24]. However, to the best of our
knowledge, the idea of coding spatial information in the regularization theory context is new. The
remainder of this paper is organized as follows. The linear regression model for single task is
described in Section 2. We develop the spatial regularized multitask learning models and provide
algorithms to solving the models in Section 3. In Section 4, the models are tested on both simulated
and real fMRI data. We finish with concluding remarks in Section 5.

2 Linear Regression for a Single Task

The most traditional method to solving a linear regression model is the ordinary least squares
method (OLS, [25]). In linear regression, a scalar response variable y is assumed to be linearly
dependent on a set of p predictors. The data is a sample of n observations subject to noise:

yi=xif+e, 1=1,2,...,n, (2.1)

where y; € R, z; € RP is a row vector, and S € RP is an unknown column vector. Denote

Y = (y1,y2,-- -, yn)T € R™ as a column vector of the response values, X = [z1;Z2;...;zs] € R"*?
the data matrix, and E = (e1,...,€,) ' the error vector. We can rewrite (2.1) as
Y = X3+ E.

The OLS estimator minimizes the sum of squared errors (SSE) made by predicting the true response
yi by z; 8, that is

n
B = argmin ||Y — X |3 = arg min 2:(31Z —z:8)%.
=1
Here and in the sequel || - ||, denotes the ¢g-Euclidean norm for any 1 < ¢ < oco. If X is of full rank,
the OLS estimator can be solved by a linear system

B=(X"X)'XTy. (2.2)

The OLS estimator is known as the best linear conditionally unbiased estimator. However, it could
be numerically unstable when the matrix X " X is singular or has a large conditional number. This
is usually the case when n < p or when the predictors are highly correlated. Even when the matrix
is well conditioned, it may be beneficial to introduce some bias to facilitate some desired properties
(such as sparsity). These considerations have led to the development and application of regularized
regression methods such as ridge regression [26], LASSO [27] and Elastic Net [28].

Ridge regression is a method that utilizes Tikhonov regularization of the OLS estimator. It shrinks
the coefficients in the estimator by minimizing the penalized SSE where the penalty term Xz 3||3
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is determined by a regularization parameter A2 > 0 and the Euclidean 2-norm square of 3, that is
Bridge = argmﬁin{llY—Xﬁllg + Xo|BII3} - (2.3)

Ridge regression estimator can also be solved by a linear system, which gives
Bridge = (XX +XI) ' XTY. (2.4)

Here and in the sequel, I denotes an identity matrix (whose dimension is omitted if it is clear from
the context or appears as subscript otherwise).

Although ridge regression is numerically stable, the coefficients are never exactly zero even when the
corresponding predictors are irrelevant to the response. To implement variable selection, Tibshirani
[27] proposed an alternative regularization approach called least absolute shrinkage and selection
operator (LASSO). It minimizes the SSE with an ¢; norm penalty.

Brasso =argm[}n{HY*Xﬂﬂg+/\1||5H1}7 (2.5)

where A1 > 0 is the regularization parameter. Nowadays it is well known that ¢; penalty leads to
sparse solution. Therefore, LASSO is advantageous for sparse models because of its facilitation of
variable selection.

The elastic net (EN, [28]) also combines shrinkage and variable selection, and in addition encourages
grouping of variables: groups of highly correlated variables tend to be selected together, whereas
the LASSO would only select one variable of the group. To implement the grouping effect, EN
ultimates both ¢ and ¢; penalty.

Ben = argmin {||Y = XB|liz + Xa|llz + Al|Bll: } (2:6)

EN is particularly useful in the “large p small n” setting where the number of predictors is much
bigger than the number of observations. Since ¢; norm is not differentiable at 0, the optimization
process to solve LASSO and EN is more complicated than ridge regression. The most commonly
used solvers include the LARS [29], cyclical coordinate descent [30], etc.

3 Spatial Multitask Learning

In fMRI studies, one of the important problems is detection of a functional region associated with
certain brain activities. For each voxel, this can be done by a linear regression model. As the brain
contains thousands of voxels, we need to solve thousands of linear regression problems. Of course
one can solve these problems voxel by voxel using the single task learning methods. However, this
is suboptimal because each functional region contains multiple voxels that are spatially continuous.
As a result, if one voxel is active, then its neighbors are very likely to be active as well. Conversely,
if one voxel is inactive, its neighbors are unlikely to be active. We expect such spatial information
will benefit the learning performance if it is used in the training process. In some applications,
Markov random field is used to incorporate the spatial information: image reconstruction [31] and
IMS proteomic data analysis in [32], for instance. In this paper, we propose a spatial regularization
approach for MTL.

In MTL regression, there are T' > 2 tasks. Assume the t-th task has the data matrix X; and
response vector Y; which are linked by

Y: = X8t + Ey.
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To code the spatial information, we first define a neighborhood system. It is defined by the user
and may be quite data dependent. An example of the 4 or 8 nearest neighborhood system in two
dimensional space is shown in Fig. 1.

(a) 4 Neighborhood (b) 8 Neighborhood
Fig. 1. Neighborhood structure for each task

Based on the neighborhood system, we define task similarity coefficient by

S 1, if task ¢ is a neighborhood of task k;
e 0, if task ¢ is not a neighborhood of task k.

We assume the neighborhood system is symmetrically defined so that wi, = wg¢. The penalty term
for spatial regularization is defined by

T
A Y wallBe - il
t,k=1
When A; becomes large, it forces the neighboring tasks to become very close, while as A5 tends to
0, the tasks are treated as independent.

By applying the spatial penalty to ridge regression, LASSO, and EN, we propose three new MTL
algorithms. We discuss their formulation and solution in the next three subsections. In the sequel
we will denote B = [B1; Ba;. . .; fr] € RPT as the column vector composed of all the task coefficients
and W = [wtk]Zkﬂ as the matrix of the task similarity coefficients.

3.1 Spatial ridge regression

When we learn all T' ridge regression problems simultaneously and apply the spatial penalty, the
resulted MTL learning algorithm, called spatial ridge regression algorithm, takes the form

T T T
BSR = arg mBin ,5:21 ||Yt - Xtﬂt”% + X2 t; ||6t||§ + As t,kzﬂ wtkHBt - Bk“g . (3.1)
It is easy to check that
T T
ST - Xl = BTSB -2V B+ Y Vil
t=1 i=1
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where S = diag(X; X1,..., X7 X7) and V = [X{ Y1;...; X/ Y7].

Let di = ZZ:1 Wk, D1 = diag(dilp,...,dr1Ip), and Dy = W ® I, (where ® denotes the kronecker
product of two matrices). Define D = 2D, — 2D5. Then we have

T

> wikllBr = Bell5 = B'DB.

t k=1
Let @ = S 4+ AsD. The function in (3.1) that needs to be minimized takes the quadratic form

T
BT (Q+XI)B—-2V'B+ > _|Vi5.

i=1
It can be solved by a linear system:
B=(Q+XI)"'V.

Noticing that @ = S + AsD, where S is a block diagonal matrix, D = 2(D; — D2) with D; a
diagonal matrix and Dy a sparse matrix, we see that @) is a sparse matrix. Therefore, this linear
system can be solved quickly by using the conjugate gradient method.

3.2 Spatial lasso

Analogously, the spatial LASSO algorithm takes the form

T T T
Bsy, = argmin DY = XeBell3 + M D l1Bells +As D winllBe — Bill (3:2)
t=1 t=1

t k=1

By ignoring the constant term that does not affect the solution, we need to minimize the ¢; penalized
quadratic function:
BTQB -2V B+ \|B|:. (3.3)

One of the most popular methods for solving (3.3) is in the class of iterative shrinkage-thresholding
algorithms (ISTA). In 2009, a Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) with the
computational simplicity of ISTA but a significantly better global rate of convergence was proposed
in [33]. To this end, we first define a soft thresholding operator on RPT

Z»;—)qa, if zi > M
(prozx,a(2)); = < 0, if |z:] < M
Zi + )\10(, if z; < — M«

with some a € (0, m) Then the spatial LASSO can be solved by using the following iterating
steps based on FISTA [33]:

e By =proxxa (gr — a(Qgr — V));
1+4/1+4a2

® Apt1 = —— 5

® gri1 =B+ (%=2) (B, — B* 1),

Ap+1

after given suitable initial values of B, a, and g.
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3.3 Spatial EN
Spatial EN solves the problem

T T T T
Bspn = arg min Zl 1Y — XeBellz + M Z 1Bell1 + Az Z 1Be13 + As Z wik|Be — Bllz p (34)
t=

t=1 t=1 t,k=1
By ignoring the constant, we need to minimize
B (Q+ AD)B —2V "B+ A\1||B|x.

The solution to this problem can be obtained by the same procedure as spatial LASSO, except we
need to replace @ with Q + A21l.

4 Simulation and Application to fMRI Data Analysis

In this section we illustrate the power of spatial MTL algorithms by simulation and their application
to real fMRI data sets. The performance is compared with the single task learning (STL) method
and the regularized MTL algorithm proposed in [18]. All the parameters used in this section are
selected by cross validation. For spatial MTL algorithm, there are two or three parameters. An
extensive but computationally expensive way to cross validate the parameter is using grid search.
To speed up the computation, we adopt a simpler way. We first select the non-spatial parameter
(e.g. A2 for spatial ridge or A1 for spatial LASSO) and fix it. Then the spatial parameter A is
selected. Both steps are done by cross validation.

4.1 Simulation data

We first verify the effectiveness of spatial MTL algorithms on simulated data. In this case, since
we know the true model, it is easy to compare the performance of different algorithms.

The data are generated as follows. We have designed a 10 x 10 grid to mimic 100 voxels in a slice of
the brain. For each grid, there is an associated input variable and an associated response variable.
The array of all input variables mimics the design matrix and the response values mimic the fMRI
times series. The response of each grid is computed by the average of input variables associated
to the grid itself and its left, right, upper, and lower neighbor grids (if they exist). This gives us
100 tasks in the 100 dimensional input space. For the simulation data, we applied 4-neighborhood
structure as shown in Fig. 1.

We generate n = 100 samples and run spatial MTL algorithms. This process is repeated 20 times
and the learning performance is measured by the mean squared error between the estimated model
and true model. We compare our algorithms with the STL learning algorithms and the regularized
MTL algorithm proposed in [18]. The MSE and the standard deviation (SD) of these algorithms
are reported in Table 4.1. It is clear that the MTL is superior to STL. The tasks are related but do
not share a common component. The regularized MTL method in [18] is suboptimal. The spatial
regularization helps to improve the performance significantly. Since the true model is rather sparse
and there is no grouping effect, spatial LASSO performs the best.

4.2 Real data

Neuroscientists have shown that attention to visual motion can increase the activation of certain
cortical areas. Decreased or increased activation of specific brain area would lead to the notion that
attention is associated with neuronal activity. This study helps understand the brain functional
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Table 4.1. Mean squared error on simulated data

STL Algorithm MSE (SD) MTL Algorithm MSE (SD)
Ridge 0.1592 (0.0152) || Spatial Ridge 0.0489 (0.0014)
LASSO 0.1029 (0.0055) || Spatial LASSO 0.0426 (0.0009)
EN 0.0498 (0.0010) || Spatial EN 0.0445 (0.0009)
RMTL in [18]  0.0742 (0.0010)

connectivity. In this paper we applied the spatial MTL algorithms to the Attention to Visual
motion fMRI data set, which is available on the SPM web site: http://www.fil.ion.ucl.ac.uk/
spm/data/attention/. This dataset was collected by Christian Biichel [34] for a study of finding
the brain functional connectivity with visual attention. There are four conditions: F, ‘fixation’, A,
‘attention’, N, ‘no attention’, and S, ‘stationary’ condition. During the ‘no attention’ and ‘attention’
conditions, two hundred and fifty white dots were moving radially from a fixation point towards
the border of the screen [34]. During the ‘fixation’ condition, only the fixation mark was visible.
The brain is split into 46 slices, with each slice containing 53x63 voxels. For each voxel, data is
collected at 360 time points. Thus, the dimension of the whole fMRI dataset is 53 x 63 x 46 X
360. We obtained the fMRI data for 2 slices of the brain.

For the real fMRI data analysis, we do not know the true model. We adopt the cross validation error
to evaluate the performance of different algorithms. Cross validation error is an unbiased estimator
of the mean squared prediction error. Small cross validation error usually leads to small prediction
error and thus is a relatively reliable metric with which to compare regression algorithms.

In this real data set, there are 4 contiguous blocked image sets: (0016-0105), (0116-0205), (0316-
0405), (0416-0505). Each block has 90 time points, so there are 360 data points in the time series.
It is natural to use 4 fold cross validation, considering the special property of the fMRI data.
Both 4-neighborhood and 8-neighborhood structures are shown in Fig. 1. Though no significant
difference was noticed between these two structures for the cross validation error result in this real
data analysis, it’s possible to have a better contrast in other applications. The time complexity
increase for 8-neighborhood is minimal because only the sparsity of Dy is slightly increased. All
results for real data given here are based on 8-neighborhood structure.

Applying the single task learning and multiple task learning algorithms to the two slices of fMRI
data, the cross validation errors are compared in Table 4.2. On one hand we see spatial MTL
algorithms slightly improve the result. This indicates that the spatial information does help in the
multiple task learning process. On the other hand, we see the improvement is very small. A possible
explanation is that, since the design matrix in this study is very simple, the signal is very clear
and easy to detect. At the same time, because the noise level is high, the prediction error cannot
decrease significantly even if the spatial regularization helps to improve the model estimation.

In this paper, we have run 2 slices of the whole brain: slicel6, and slice 20. Fig. 2 (a) and Fig. 3
(a) show the functional EPI image for slice 16 and slice 20. Fig. 2 (b)-(g) shows the active area
of the brain (slice 16) under attention condition by using the estimated B learned from both STL
and MTL algorithms. Fig. 3 (b)-(g) shows the active area of the brain (slice 20) under attention
condition correspondingly. The activity of voxels is indicated by the B values in the regression
model — the larger and more positive the values, the more active the voxels are. With the naked
eye, it is hard to see the difference between the six algorithms. But the numerical values of the
B coefficients do have some small differences. Since the spatial MTL algorithms provides slightly
better cross validation error, it is reasonable to assume the active area detection by spatial MTL
algorithms is more accurate.
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(a) Anatomy Slice 16

Single Ridge

(b) Single Ridge

Single Lasso

(d) Single Lasso

Single EN

(f) Single EN

Spatial Ridge

(c) Spatial Ridge

Spatial Lasso

(e) Spatial Lasso

Spatial EN

(g) Spatial EN

Fig. 2. Attention activation of slice 16



Yang et al.; BIMCS, 14(4), 1-13, 2016; Article no.BJMCS.23829

(a) Anatomy Slice 20

Single Ridge

(b) Single Ridge

Single Lasso

(d) Single Lasso

Single EN

(f) Single EN

Spatial Ridge

(c) Spatial Ridge

Spatial Lasso

(e) Spatial Lasso

Spatial EN

(g) Spatial EN

Fig. 3. Attention activation of slice 20
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Table 4.2. The cross validation error of regression algorithms on the fMRI data

Algorithm Slice 16 | Slice 20
Ridge 43.5825 | 33.9385
STL LASSO 43.2791 | 33.7631
EN 43.3004 | 33.7600

Spatial Ridge 43.1141 | 33.8207
Spatial LASSO | 43.0957 | 33.7068
Spatial EN 43.1211 | 33.7066
RMTL in [18] | 43.2320 | 33.9384

MTL

5 Conclusion

Motivated by the fMRI data analysis where spatial information is available between voxels, we
proposed a class of spatial multiple task learning algorithms for regression. In these methods, we
assume the spatially adjacent regression tasks are close. This leads to a natural spatial regularization
approach to code the spatial information by using a user-defined neighborhood system. The spatial
regularization multiple task learning is shown to be effective in simulated data and real data analysis.

The spatial regularization approach is not necessarily limited to the fMRI data analysis. Instead,
it may potentially be useful in many fields where spatial information is available, for instance,
in environment data from multiple geographical sites. For multiple task learning where no spatial
information is available, if soft clustering structure or neighborhood systems could be defined, spatial
regularization formulation may also be used, although the regularization term does not code spatial
information in this situation. Thus, it would be interesting to further investigate the application
domains of spatial regularization in future research. In fMRI data analysis, the real challenges
are related to the direction and application of the study. In this paper, we only developed an
MTL approach for analyzing brain activity with visual attention based on 2-dimensional spatial
information. MTL scheme(s) using 3-dimensional spacial information and tasks associated with
more general regions of interest (ROIs) of the study could be considered.
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