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Abstract

Wave–particle interactions are believed to be one of the most important kinetic processes regulating the heating
and acceleration of solar wind plasma. One possible explanation for the observed preferential heating of alpha
(He+2) ions relies on a process similar to a second-order Fermi acceleration mechanism. In this model, heavy ions
are able to resonate with multiple counter-propagating ion-cyclotron waves, while protons can encounter only
single resonances, resulting in the subsequent preferential energization of minor ions. In this work, we address and
test this idea by calculating the number of plasma particles that are resonating with ion-cyclotron waves
propagating parallel and antiparallel to an ambient magnetic field B0 in a proton/alpha plasma with cold electrons.
Resonances are calculated through the proper kinetic multispecies dispersion relation of Alfvén waves. We show
that 100% of the alpha population can resonate with counter-propagating waves below a threshold

b bD < + +aU v U ap A p
b

0 0∣ ∣ ( ) in the differential streaming between protons and He+2 ions, where
U0=−0.532, a=1.211, β0=0.0275, and b=0.348 for isotropic ions. This threshold seems to match with
constraints of the observed ΔUαp in the solar wind for low values of the plasma beta (βp). Finally, it is also shown
that this process is limited by the growth of plasma kinetic instabilities, a constraint that could explain alpha-to-
proton temperature ratio observations in the solar wind at 1 au.

Unified Astronomy Thesaurus concepts: Solar wind (1534); Alfven waves (23); Plasma physics (2089)

1. Introduction

The mechanisms that heat the magnetically open corona and
accelerate the fast solar wind plasma are still not well
understood. Minor ions such as alpha particles (He+2) flow
away from the Sun faster than protons (Marsch et al. 1982;
Feldman et al. 1996; Neugebauer et al. 1996; Steinberg et al.
1996; Marsch 2006), and are also preferentially heated to
temperatures near mass proportionality (Kasper et al.
2008, 2013). Wave–particle interaction in plasmas is arguably
one of the most important kinetic processes regulating the
plasma dynamics via diffusion, heating, and acceleration in the
solar wind (Seough et al. 2013; Wicks et al. 2016). The fact
that most of the solar wind plasma has very low collisionality
(Kasper et al. 2008; Bale et al. 2009; Verscharen et al. 2019)
means that wave–particle interactions play an important role in
the processes leading to plasma heating. Moreover, it has been
shown that there is a strong correlation between kinetic
instabilities driven by unstable particle velocity distribution
functions (VDFs) and energy turbulent cascade rates in the
solar wind at 1 au (Osman et al. 2012, 2013; Bruno &
Carbone 2013).

In this context two recent models have been proposed for the
preferential heating of alpha particles. Chandran et al. (2010)
studied the stochastic interaction between ions and oblique
low-frequency magnetic field fluctuations at their gyroradius
scale. Stochastic heating occurs when an ion’s orbit becomes
chaotic due to obliquely propagating large-amplitude low-
frequency fluctuations at the ion gyroscale, with amplitudes
that in general decrease with scale size. Chandran et al. (2010)
found that if Alfvénic turbulence is operating, alpha particles
will be heated more effectively than protons because the
associated fluctuations and gyroradius are larger at the alpha-
gyroradius scale for similar temperatures. Also, they argued
that imbalanced turbulent fluctuations, i.e., fewer waves

propagating away from the Sun than toward it in the plasma
frame, increase the likelihood of stochastic perpendicular
heating.
Another possible mechanism for the heating of ions has been

described by Isenberg (2001). In this proposal, protons are
heated by cyclotron resonance while heavier ions can be heated
by a second-order Fermi process due to multiple resonances
with counter-propagating ion-cyclotron waves. In this model,
resonating ions populate shells in velocity-space, and ions
resonating simultaneously with forward and backward-propa-
gating waves will be scattered rapidly by the resonant
interaction. This mechanism allows ions to be transported
between resonant shells, resulting in transverse heating of ions
with respect to the magnetic field (Isenberg 2001; Isenberg &
Vasquez 2007).
Recently, Kasper et al. (2013) showed evidence for strong

transverse alpha particles heating in the solar wind for small
differential streaming between alphas and protons, ΔUαp. They
also suggested that this preferential heating is constrained by
values of ΔUαp below which test alpha particles can resonate
with counter-propagating waves following the cold dispersion
relation for Alfvén waves in an electron–proton plasma,
w w= - Wv k 1A p , where ω, k, vA, and Ωp are the frequency,
wavenumber, Alfvén speed, and proton-gyrofrequency, respec-
tively. They found two possible velocity thresholds for this
model: (a) D <aU v 0.168p A∣ ∣ where the core of the alphas
VDF experiences significant heating toward T⊥α/T⊥p;7 by
multiple resonances, where T⊥s correspond to s=alphas and
s=protons perpendicular temperatures; and (b)
D > +a aU v u v0.168p A A∣ ∣  where the alpha particles become
nonresonant, with uPα the alpha’s parallel thermal speed.
Beyond these thresholds preferential strong heating is limited
and the average T⊥α/T⊥p ratio is observed to drop below 4.
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It is worth noting that alpha particles are not necessarily test
constituents of the solar wind. The fraction of alpha particles
with respect to protons has been observed to be between 0.02
and 0.08 during high-speed streams (Steinberg et al. 1996). So,
alphas represent almost 20% of the solar wind mass density,
and their presence splits the Alfvén-cyclotron branch around
the alpha gyrofrequency into a lower and an upper branch
(Gomberoff & Cuperman 1982; Isenberg 1984; Viñas et al.
2014). This gap can be closed if thermal effects (Isenberg 1984)
or nonzero values of ΔUαp (Gomberoff & Elgueta 1991) are
considered, allowing the alphas to resonate with both branches
continuously (Moya et al. 2013).

In this Letter, following the theoretical approach of Isenberg
& Vasquez (2007) and Kasper et al. (2013), the number of
plasma particles resonating simultaneously with counter-
propagating electromagnetic waves is studied. Here, however,
we use the proper kinetic dispersion relation of electromagnetic
waves propagating along a background magnetic field in a
plasma composed of a dense bi-Maxwellian proton core, a
tenuous bi-Maxwellian alpha beam, and cold electrons.
Through these calculations we show that there exists a
threshold in ΔUαp, below which 100% of the total alpha
population can resonate with multiple waves, and that such
process is limited by plasma kinetic instabilities arising at high
values of the plasma beta. Finally, in the conclusions we
discuss the implications of our results for the understanding of
solar wind observations.

2. Theoretical Model: Resonances in a Kinetic Plasma

We consider a magnetized plasma composed of protons
(s= p), alpha particles (s=α), and cold electrons (s= e). The
kinetic dispersion relation of left-handed circularly polarized
electromagnetic waves propagating along the background
magnetic field B0 is given by

åw w x x x= + + +- -c k A A Z , 1
s

ps s s s s s
2 2 2 2 [ ( ) ( )] ( )

where ω is the complex wave frequency, k is the wavenumber
along B0, and c is the speed of light. The summation is

performed over all species s; w p= q n m4ps s s s
2 is the plasma

frequency; As=Rs−1, where Rs=T⊥s/TPs is the temper-
ature anisotropy; T⊥s and TPs are the temperatures perpend-
icular and parallel with respect to B0, respectively;
ξs=(ω−kUs)/kuPs and ξs

−=(ω−kUs−Ωs)/kuPs are reso-
nance factors (Gary & Tokar 1985); Us is the bulk speed;

=u k T m2s B s s  is the parallel thermal speed; and
Ωs=qsB0/msc is the gyrofrequency. Z(ξ) is the plasma
dispersion function (Fried & Conte 1961). We also define the
parallel b = u vs s A

2 2
 and the Alfvén

speed p= åv B n m4A s s s0 .
For the solar wind at 1 au, the alpha-to-proton density ratio is

nα/np≈0.05, and the Alfvén speed is vA/c≈2×10−4. For
low frequencies, we can safely approximate Z(ξe

−)≈−1/ξe
−

for cold electrons. The density ne and bulk speed Ue of
electrons are calculated by imposing charge neutrality
(å =q n 0s s s ) and zero current (å =q n U 0s s s s ). All results
are shown in the center-of-mass reference
frame (å =m n U 0s s s s ).

Figure 1 shows three branches of ω(k) that solve the
dispersion relation Equation (1) for βp=βα=0.01,

Rp=Rα=1, and ΔUαp/vA={0.0, 0.3}, where
ΔUαp=Uα−Up. The addition of alpha particles splits the
Alfvén-cyclotron branch into the alpha-cyclotron (solid black
line) and proton-cyclotron (dashed black line) branches. Gray
lines are the forward and backward magnetosonic modes.
In the cold plasma limit the alpha- and proton-cyclotron

branches approach asymptotically to ω=Ωα=Ωp/2 and
ω=Ωp, respectively, for vAk/Ωp?1. However, when kinetic
effects are taken into account, the alpha-cyclotron branch bends
at Wv k 2.5A p∣ ∣  for βα=βp=0.01 (as shown in
Figure 1(a)). For βs=0.001, this bending occurs at
vAk/Ωp;5. Thus the alpha-cyclotron branch is no longer
asymptotic to ω=Ωα even for small values of βs. The proton-
cyclotron branch does not seem to be affected by kinetic effects
until βs;0.05. Still, for large βs, this branch seems to be
asymptotic to some frequency between Ωα and Ωp.
For all values of βs, Rs, and ΔUαp, the proton-cyclotron

branch crosses k=0 at a cutoff frequency
w = W + + > Wa a an n n n1 4 2 4c p p p( ) ( ) . If ΔUαp=0, a
frequency gap between Ωα and ωc is created, implying that
alphas can at most be resonantly accelerated up to the proton
velocity (Gomberoff & Cuperman 1982). However, this gap
can disappear if thermal effects (Isenberg 1984) or ΔUαp¹0
(Gomberoff & Elgueta 1991; Moya et al. 2013) are considered.
Figure 1(b) shows that the frequencies ω(k) are not

symmetrical with respect to k=0 for ΔUαp¹0, such that
the gap has disappeared, and the conditions for preferential

Figure 1. Solutions of the dispersion relation Equation (1) for βp=βα=0.01,
Rp=Rα=1, and (a) ΔUαp/vA=0.0 and (b) ΔUαp/vA=0.3. Solid black,
dashed black, and gray curves are the alpha-cyclotron, proton-cyclotron, and
magnetosonic branches, respectively. Colored areas represent ranges of
velocity vPα given by Equation (2), for which an alpha particle resonates with
no waves (blue area) or one wave (orange area), and with co-propagating
(green area) or counter-propagating waves (white area).
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resonant acceleration are recovered (Isenberg & Vasquez 2007).
The dispersion relation Equation (1) also supports an infinite
set of sound-like heavily damped modes (Astudillo 1996;
Navarro et al. 2014), which we ignore here as we expect that
they will not contribute to the heating of particles.

A particle of species s moving with velocity vPs along B0 will
be in cyclotron resonance if its gyrofrequency matches the
Doppler-shifted frequency of the parallel-propagating electro-
magnetic wave, or

w - = Wk kv . 2s s( ) ( )

The resonance criterion Equation (2) is a straight line in
Figure 1 intersecting ω(0)=Ωs with slope vPs. A particle will
resonate if this line crosses the dispersion curve ω(k) given by
Equation (1). Considering all k values up to vAkmax/Ωp=±80,
Figure 1 shows that, for alpha particles, there are velocities vPα
in which Equation (2) does not cross the dispersion curve (blue
areas) or crosses it only once (orange areas). Outside these
areas, alpha particles will be able to resonate with multiple
waves. In Figure 1 we distinguish between multiple resonances
with co-propagating waves only (green areas) and with
counter-propagating waves (white areas). Multiple resonances
will scatter the particles so that they accelerate in the direction
perpendicular to the wave propagation, in a process similar to a
second-order Fermi mechanism (Isenberg & Vasquez 2007).
This effect will be efficient whenever the resonant waves are
counter-propagating, where the phase-speed difference is on
the order of twice the Alfvén speed.

Figure 2 shows the portion of the proton and alpha VDFs
that can resonate with zero (blue area), one (orange), co-
propagating (green), or counter-propagating waves (white)
whose frequencies are given by the modes shown in Figure 1.
Figure 2(a) shows that, for ΔUαp=0, only the particles on the
tails of the proton VDF are able to experience multiple
resonances by either co-propagating or counter-propagating
modes of Figure 1(a). This occurs only when fast protons can

resonate with magnetosonic waves. Most of the proton VDF
(85.84%) can experience only single resonances, thus proton
energization in this case is limited. On the contrary, 76.89% of
the alphas can resonate with counter-propagating waves in this
case (see Figure 2(b)). Since multiple resonance is almost not
available to protons for low beta and ΔUαp=0, and since
most of the alpha population can resonate with counter-
propagating waves, then heating by a second-order Fermi
mechanism is preferential and more efficient on alphas than on
protons.
For ΔUαp=0.3, the portion of protons resonating with co-

propagating or counter-propagating waves is reduced to 6.50%
and limited to the negative speed tail (compare Figures 2(a) and
(c)). Figure 2(d) shows that the portion of the alpha VDF
undergoing multiple resonances has decreased to 47.14%, and
corresponds to particles with velocities vPα>Uα and to
particles in the negative speed tail. If heating by multiple
resonances happens, then the alpha’s VDF should develop a
strong thermal anisotropy in the half vPα>Uα part of the
distribution, a feature that has been observed in hybrid
simulations (Hellinger & Trávníček 2006).
It is important to mention that a different value of Rs, βs, or

ΔUαp will change the properties of the solutions ω(k) of the
dispersion relation Equation (1). For high values of βs>1, the
alpha- and proton-cyclotron branches are highly damped for
vAk/Ωp>1 and not necessarily asymptotic to ω=Ωs. For Rs
¹1, the plasma may develop a magnetosonic (Gary et al.
2000) or ion-cyclotron (Gary et al. 2003) instability; and for
ΔUαp¹0, proton/alpha beam instabilities may arise (Araneda
et al. 2002; Hellinger & Trávníček 2006; Verscharen et al.
2013).
Ignoring damping effects, in Figure 3 we show the portion of

the proton and alpha VDFs that can resonate with counter-
propagating waves (white areas in Figure 2), for different
values of βp=βα (equal parallel thermal speeds), and relative
drift ΔUαp/vA. In this figure, we consider isotropic VDFs,
Rp=Rα=1. We have restricted the calculation to differential
streams far from the kinetic instabilities, which are computed
numerically through the dispersion relation Equation (1) by
setting (Im ω/Ωp)max=10−4 as the instability thresholds.
In Figure 3(a), we observe that less than 10% of the proton

VDF resonates with counter-propagating waves for most values
of βp and ΔUαp. This means that heating by a second-order
Fermi mechanism is likely not operating on protons in any
observable case, but single cyclotron resonant heating can be
expected. Kasper et al. (2013) use this argument to support the
observed solar wind Rp>1 values for

bD > +aU v 0.168p A p∣ ∣ and βp<1. Kasper et al. (2013)
have also reported that observations with T⊥α/T⊥p≈7 are
constrained by the threshold D <aU v 0.168p A∣ ∣ (shown in
Figure 3(b) with white dotted lines). Our analysis shows that
inside these lines more than half of the alpha population is
susceptible to strong resonant heating by counter-propagating
waves.
The suggestion proposed by Kasper et al. (2013) may apply

only for βp0.2 where a cold plasma model is a relatively
good approximation to the kinetic plasma dispersion relation
Equation (1) (Cuperman et al. 1975; Cuperman & Gomber-
off 1977; Gomberoff & Vega 1989). For βp>0.2 kinetic
effects are predominant and the thresholds for strong multiple
resonances to occur are modified toward higher values of
D aU p∣ ∣. In Figure 3(b), the purple area indicates that all alpha

Figure 2. Portions of the Maxwellian VDF of (a) protons and (b) alphas
resonating with modes of Figure 1(a) D =aU 0p[ ]. Panels (c) and (d) show the
same but for parameters in Figure 1(b) D =aU v 0.3p A[ ]. Distributions are
plotted in each species frame and normalized with respect to their thermal
speeds. Color labels represent the VDF portions that are nonresonant (blue),
resonant with a single wave (orange), and resonant with multiple co-
propagating (green) or multiple counter-propagating waves (white).
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particles (100% of the VDF) are resonating with counter-
propagating waves. This area is constrained by the long-dashed
curve, which is simply a contour line in which 68% of the alpha
VDF experiences multiple resonances. This boundary can be
fitted by a power-law function of the form

b b
D

= + +
U

v
U a , 3

A
p

b
0 0

* ( ) ( )

where U0=−0.532, a=1.211, β0=0.0275, and b=0.348.
For D > DaU Up *∣ ∣ , alphas with velocities vPα>ΔUαp, i.e.,

less than half the VDF, are susceptible to multiple resonances.
For comparison purposes, we have included in Figure 3(b) the
threshold D = +a aU v u v0.168p A A∣ ∣  derived by Kasper et al.
(2013) with a dotted black line. So, Equation (3) represents a
generalization of the limit suggested by Kasper et al. (2013). It
is interesting to note that these thresholds are similar to the
upper bound limits of the differential streamingΔUαp observed
in the solar wind for low βα (Bourouaine et al. 2013),
suggesting that multiple resonances could also be related to the
acceleration of the alpha particles with respect to the protons.

The white areas in Figure 3 correspond to values of βp and
ΔUαp for which the plasma develops kinetic instabilities with
(Im ω/Ωp)max>10−4. Kasper et al. (2013) noticed a drop in
the average value of T⊥α/T⊥p≈7 toward 4 for βp>2. This
probably occurs because the plasma is regulating itself due to

instabilities and, as pointed out by Bourouaine et al. (2013), the
observed ΔUαp is probably constrained for high βα by kinetic
instabilities as the ones shown in Figure 3.
Qualitatively speaking, the thresholds of multiple resonances

for values of Rα¹1 or Rp¹1 are not much different from
Figure 3. A fit of Equation (3) for Rp=0.9 and Rα=1.1
results in U0=−0.693, a=1.411, β0=0.0491, and
b=0.322, whose boundaries almost completely overlap on
top of the one calculated for Rp=Rα=1 in Figure 3. Thus, in
Figure 3 we only show the isotropic case. Yet, the instability
thresholds can change considerably. Figure 4 shows the
instability thresholds with growth rate γ/Ωp=10−4 as a
function of βp=βα and ΔUαp/vA>0. In Figure 4(a), Rα=1
is kept constant. We see that the instability thresholds shift to
higher values of βp and higher values ofΔUαp/vA as the proton
anisotropy lowers from Rp=1.40 to Rp≈1.15. This descrip-
tion is reversed for lower values of Rp1.15. A similar
behavior is seen when Rp=1 is kept constant but Rα varies, as
shown in Figure 4(b).
These instabilities are triggered by the combined effects of

temperature anisotropy and relative drift (Wicks et al. 2016).
Thus, for Rp=Rα=1, whenever D ¹aU 0p there is an
effective anisotropy Reff<1 that drives the proton/alpha beam

Figure 3. Portion Ps (see the color scale) of the total VDF of (a) protons and (b)
alpha particles undergoing multiple resonances with counter-propagating
waves, as a function of parallel βp and drift ΔUαp, considering βα=βp and
Rp=Rα=1. Color bars in (a)and(b) are different. Dotted lines correspond
to the D =aU v 0.168p A∣ ∣ and bD = +aU v 0.168p A p∣ ∣ thresholds suggested
by Kasper et al. (2013). Dashed lines are contour lines, where Ps=0.68 (one
standard deviation of VDF). White areas correspond to regions where an
instability Im ω>0 develops. Solid lines are the contours for (Im ω/
Ωp)max={10−4, 10−3}. Figure 4. Contours of the maximum growth rate (Im ω/Ωp)max=10−4 as a

function of βp=βα and ΔUαp/vA>0 for (a) fixed Rα=1.0 and varying Rp;
and (b) vice versa. Plots for ΔUαp/vA<0 can be obtained by mirroring these
figures with respect to the βp axis.
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instability. The effective anisotropy grows toward Reff=1 if
either Rp>1 or Rα>1 for D ¹aU 0p . After a critical value
(e.g., Rp;1.15), then Reff>1, suggesting that a different
instability may develop. This may explain the apparent reversal
in the trends for the instability thresholds for Rp¹1 or ¹aR 1.

Although the density of alpha particles is much lower than
protons, the instability thresholds are more sensitive to
variations of Rα compared to Rp. It is worth mentioning that
the dominant instability occurs for forward propagating waves
in the alpha-cyclotron branch (solid black line with k>0 in
Figure 1) both for Rp0.90 in Figure 4(a) and for Rα0.95
in Figure 4(b). Otherwise, the dominant instability is for
backward-propagating waves in the alpha-cyclotron branch
(solid black line with k<0 in Figure 1).

3. Summary and Conclusions

We have calculated the percentage of plasma particles that
resonate with counter-propagating cyclotron waves moving
along an ambient magnetic field B0, in a proton/alpha plasma
with cold electrons. The VDF of protons and alphas were
considered as Bi-Maxwellian with relative drift along B0.
Resonance percentages were calculated with the resonance
condition ω(k)−kvPs=Ωs, where ω(k) are the frequencies of
the three main solutions (modes) of the exact kinetic dispersion
relation, Equation (1). In this fully kinetic approach, we show
that less than 10% of protons can resonate with multiple waves
for most values of βp andΔUαp (see Figure 3(a)). For βp>10,
the portion of resonant protons raises to 50% but the plasma
may develop a kinetic instability in this region. Thus, we
conclude that protons are unable to experience perpendicular
heating by a second-order Fermi mechanism in most
observable cases.

Our results also show that a large percentage, close to 100%,
of the alpha population can resonate with counter-propagating
waves below a threshold ΔU*=U0+a(βp+β0)

b. Since this
process is not available to protons, heating by this mechanism
is preferential to alpha particles (in general to heavier ions).
Below this threshold, solar wind measurements show that
alphas exceed mass-proportion temperatures with respect to
protons (Kasper et al. 2013), suggesting that resonance with
counter-propagating waves may play a role in the perpendicular
heating of alpha particles. Above this threshold and for low
values of βp, the portion of the alpha population capable of
experiencing second-order Fermi heating drops below 50%,
suggesting that alpha particles may not be strongly heated in
the perpendicular direction with respect to B0. Thus, for all the
cases outside this threshold (e.g., anisotropic distributions in
Figure 3 of Kasper et al. 2013) the relevant heating mechanism
could be nonresonant, such as the stochastic heating studied by
Chandran et al. (2010). However, surprisingly, values of
ΔUαp>ΔU* seem to be forbidden in the solar wind
(Bourouaine et al. 2013), raising the question of whether
resonances are required to maintain the alphas at drifts below
the threshold ΔU*.

For high values of βp the plasma develops a kinetic
instability in the alpha-cyclotron branch. The threshold of this
instability limits the possible values ofΔUαp (Bourouaine et al.
2013). However, Kasper et al. (2013) noticed a drop in

T⊥α/T⊥p→4 above the instability threshold. It can be argued
that the plasma is regulating itself to lower the instability so
that temperatures evolve toward mass proportionality.

Finally, we also show that even for a small density ratio
nα/np=0.05, the instability thresholds for ΔUαp are more
sensitive to variations in the anisotropy of alpha particles
compared to the proton anisotropy. Thus, alpha particles cannot
be treated as test constituents of the solar wind plasma.
Nevertheless, many open questions, such as the quantification
of the presence of counter-propagating ion-cyclotron waves
(Osman et al. 2013), still remain. New measurements from
Parker Solar Probe or Solar Orbiter, as well as the use of
quasilinear (Seough et al. 2013; Moya et al. 2014) or particle
simulations (Araneda et al. 2009; Maneva et al. 2015) are
necessary to further characterize the dominant physical
processes, such as wave–wave interactions, or nonlinear
effects, that regulate the observed state of the solar wind
plasma.
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