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Abstract 
 

We introduce a “structure” of epic proportions – golden pyramid whose sacred geometry is “Fibonacci 
squared”. In terms of mathematical beauty, the golden pyramid will perhaps be found to be comparable to 
Pascal triangle. 

 
Keywords: Fibonacci sequences; golden pyramid; number genetics; Pascal triangle; pyramid symmetry; 

Teleois system; universal machine. 
 

1 Introduction 
 
The Pascal triangle, constructed by the French mathematician, physicist, and inventor Blaise Pascal (1623 – 
1662), also called the Chinese triangle or Mount Meru, is not unknown to many mathematicians and 
scientists, see e.g. [1] to [5].We present the Pascal triangle in Table 1.1. 
 
The Pascal triangle is known for its beautiful arithmetical properties, often studied alongside binomial 
expansions. It is also known that the Fibonacci sequence 
 
 �� = 1,2,3,5,8, …                  (1.1) 
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is obtainable from the Pascal triangle by taking diagonal sums. See [6] for yet another novel way of 
obtaining Fibonacci numbers from the Pascal triangle. In this paper we introduce a new numerical table, 
called golden pyramid, which has many mathematically interesting properties.  
 
The creation of “Fibonacci sequences” is based on the argument that the sequence (1.1) is just a special 
arrangement of natural numbers thus any natural numbers can be similarly arranged, therefore there exist an 
infinite number of Fibonacci sequences, i.e. sequences satisfying the relations  
 

 �
���� = �����(���) ;� ≥ 1

� = 
�� √�

�

�                                         (1.2)          

 
 ���� = ���� + ��, � ≥ 1                      (1.3) 

 
 

 
Table 1.1. Pascal/ Chinese triangle 

 
          1           
         1  1          
        1  2  1         
       1  3  3  1        
      1  4  6  4  1       
     1  5  10  10  5  1      
    1  6  15  20  15  6  1     
   1  7  21  35  35  21  7  1    
  1  8  28  56  70  56  28  8  1   
 1  9  36  84  126  126  84  36  9  1  
1  10  45  120  210  252  210  120  45  10  1 
 
 
When relation (1.2) is satisfied, relation (1.3) is satisfied by default. It becomes clear therefore that a 
Fibonacci sequence requires only one seed value called parent number. This seed value is recognized by a 
simple algorithm. Accept an integer z. Obtain zφ and round off to integer y. Compute y – z, call it x. Obtain 
xφ and round off to integer w. If w = z, then z is not a parent number. If w ≠ z, then z is a parent number. We 
can also compute z/φ and round off to integer y, obtain yφ and round off to integer w. If w = z, then z is not a 
parent number. If w ≠ z, then z is a parent number. Parent numbers are therefore 1,4,7,9,12,14,17,20, etc.  
 

2 Pyramid Construction 
 
Given a Fibonacci sequence 
 

Fn = f1,f2,f3,f4,f5,…                                     (2.1) 
 
it is possible to determine the “genealogy” of this sequence. Suppose f1 = x + 1 or y – 1. It is the business of 
number genetics, see [6], to determine which one of x or y is the mother cell of f1. If x is detected as the 
mother cell of f1, then f1 is the daughter cell of x. Let x = gn in some Fibonacci sequence Gn. This means 
(gn,gn+1,gn+2,gn+3,gn+4,…) + (1,2,3,5,8,…) = Fn. Similarly, if y is detected as the mother cell of f1, letting y = 
hn in a Fibonacci sequence Hn, it follows (hn,hn+1,hn+2,hn+3,hn+4,…) – (1,2,3,5,8,…) = Fn. Let’s take the 
Fibonacci sequence 
 

Fn = 7,11,18,29,47,…        (2.2) 
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We compute 2f1 – f2 = 2(7) – 11 = 3 = hn-2. This means hn = 3φ2 = 8. Therefore, 7 = 8 – 1. This simply means 
(8,13,21,34,55,…) – (1,2,3,5,8,…) = 7,11,18,29,47,… It is important to note that 7 ≠ 6 + 1 because 
(6,10,16,26,42,…) + (1,2,3,5,8,…) = 7,12,19,31,50,… which is not the sequence (2.2). Number genetics 
provides the framework of logic within which the golden section is studied.  
 
The rules governing pyramid construction are simple: 
 

a) Sequences are written vertically, beginning with (1.1) 
b) Fn with parent number f1 = c – 1 is placed to the left hand side of c, with f1 in the same level as c. 
c) Fn with parent number f1 = c + 1 is placed to the right hand side of c, with f1 in the same level as c. 

 
Following the above rules, Table 2.1  is produced. 
 

Table 2.1. The golden pyramid 
 

       1        
       2        
       3        
      4 5        
     7 6 8 9       
    12 11 10 13 15 14      
   20 19 18 16 21 24 23 17 22    
38 33 25 32 31 29 26 34 39 37 28 36 27 30 35 

 
Due to space restrictions Table 2.1 gives the first eight levels of the pyramid, otherwise the pyramid is 
constructed to infinity.  
 

3 Pyramid Analysis 
 
Table 3.1 contains information on the eight pyramid levels presented in Table 2.1. 
 

Table 3.1. Parameters for the first 8 pyramid levels 
 

level Number of elements (p) Sum of elements (q) 
1 
2 
3 
4 
5 
6 
7 
8 

1 
1 
1 
2 
4 
6 
9 
15 

1 
2 
3 
9 
30 
75 

180 
480 

 
Let P be the sequence of the number of elements in the pyramid levels. Beginning at third level, P is given 
by: 
 

P = 1,2,4,6,9,15,…       (3.1) 
 
Let Q be the sequence of the sum of elements in the pyramid levels. Beginning at third level, Q is given by: 
 

Q = 3,9,30,75,180,480,…       (3.2) 
 

We first analyse P. Note that p1 and p2 are f1 and f2 in (1.1); p3 and p4 are f1 and f2 in  
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4,6,10,16,26,…        (3.3) 
 
p5 and p6 are f1 and f2 in  
 

9,15,24,39,63,…        (3.4) 
 
The sequences (1.1), (3.3), and (3.4) that supply f1 and f2 to P are obtained from the sequence (1.1). Let’s 
have Gn = (1.1). 
 
We see that P is given by 
 

P = ��
�,����,��

�,����,��
�,����,…       (3.5) 

 
i.e. 
 

P = 12,1(2),22,2(3),32,3(5),52,5(8),82,8(13),… 
 
We see that P is comprised of the first and second terms of sequences of the kind 
 

a,b,a+b,a+2b,2a+3b,3a+5b,5a+8b,…      (3.6) 
 
therefore we can represent P as  
 

P = a1,b1,a2,b2,a3,b3,a4,b4,…       (3.7) 
 
An examination of  P  reveals that  
 

bn = an + bn-1; n ≥ 2        (3.8) 
 
For example, we see in (3.1) that 2 + 4 = 6; 6 + 9 = 15; etc. That the number of elements in pyramid levels (P) 
is governed by the sequence (1.1) is noteworthy. We now analyse Q. We have 
 
 P = 1,2,4,6,9,15,… 
 Q = 3,9,30,75,180,480,… 
 
This relationship holds: 
 

 qn = 
������

�
 ; n ≥ 1        (3.9) 

 
Using equation (3.9), Q is assembled to infinity and also using equation (3.5), P is assembled to infinity. 
Here we extend both P and Q: 
 
 P = 1,2,4,6,9,15,25,40,64,104,169,273,441,714,… 
 Q = 3,9,30,75,180,480,1300,3380,8736,22932,60333,… 
 
The pyramid in Table 2.1 contains every (natural) number ≥ 1. Let x be the smallest integer in any given 
level, and let y be the largest. This means that such particular level is composed of all integers in the range x 
to y. For example, we can see from Table 2.1 that the lowest integer in level 7 is 16 and the largest is 24, and 
all integers between 16 and 24 are in that level. There is a most interesting pattern. The sequences whose 
parent numbers are the squares of terms of the sequence (1.1) also supply their first four terms as the 
minimum or maximum values in the pyramid levels. For example, the sequence (1.1) itself supplies f1 to f4 
as maxima from level 1 to level 4; the sequence (3.3) supplies f1 to f4 as minima from level 4 to level 7; the 
sequence (3.4) supplies f1 to f4 as maxima in level 5 to level 8; the sequence 
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 25,40,65,105,170,…       (3.10) 
 

supplies f1 to f4 as minima in level 8 to level 11; etc. More clearly, let’s take Gn = (1.1). For odd n, gn
2 is a 

parent number of Fn such that f1,f2,f3, and f4 are maxima in consecutive pyramid levels while for even n, gn
2 

is a parent number of Fn such that f1,f2,f3, and f4 are minima in consecutive levels. Simply put, the pyramid is 
a “Fibonacci squared” structure. Let us create U = maximum – minimum value per level beginning at the 
first level. For levels 1 to 3 we have zero since maxima = minima; for level 4: min = 4, max = 5 thus u4 = 5 – 
4 = 1; for level 5: min = 6, max = 9; thus u5 = 9 – 6 = 3. Doing so, we assemble 
 

 U = 0,0,0,1,3,5,8,14,24,39,63,103,…      (3.11) 
 

The analysis of U is very interesting. It is assembled in phases. We first take Gn = (1.1). We extend it 
backward by two steps and we have ��

′ = 0,1,1,2,3,5,8,13,…  We see that f1 = ��
′�  (odd n) such that 

f3,f4,f5,f6+1 are consecutive elements of U. For instance take ��
′� = 1 = f1. This means f3,f4,f5,f6+1 = 3,5,8,14 

are consecutive elements of U, and we find them from u5 to u8. We take ��
′� = 32 = 9 = f1. This means 

f3,f4,f5,f6+1 = 24,39,63,103 = u9 to u12. The sequence U is very important for detecting which zero in the null 
sequence 
 

 0,0,0,0,0,0,0,0,…         (3.12) 
 

is the mother cell of the parent number 1. From the above procedure, it is clear u1 to u4 are f3,f4,f5,f6+1 where 
Fn is the null sequence.  Here, the parent number 1 is the daughter cell of the sixth zero in the null sequence. 
It might sound strange how we are here attempting to distinguish between zeros but this is important in 
further studies of the golden section. 
 

4 Other Pyramids 
 
The pyramid presented in Table 2.1 may be called the master pyramid since it contains every (natural) 
number ≥ 1. It should be noted that from any Fibonacci sequence we can create a pyramid. The pyramid in 
Table 2.1 is that of the sequence (1.1). For every Fn the same construction rules apply. It should be noted that 
the number of elements in the pyramid levels does not change and is therefore the same for every pyramid. 
For calculating the sum of elements in the levels of a pyramid of a given Fn, we below develop a universal 
machine. 
 
First consider the pyramid of the sequence (1.1). Beginning at the (i – 2)th level, i ≥ 0; the sum of elements in 
the levels is given by: 
 

 �′ = 0,0,0,1,2,3,9,30,75,180,480,…       (4.1) 
 
We also modify P such that it begins at level  i = 1. We have  
 

 � ′ = 1,1,1,2,4,6,9,15,25,40,64,104,…      (4.2)  
 
For any given Fn, we assemble �′′such that  
 

 ��
′′ = fn��

′ ; n ≥ 1         (4.3) 
 
Let R be the sum of elements in the pyramid levels of a given Fn. R is computed from: 
 

 R = �′′ – �′         (4.4) 
 

As said, equation (4.4) computes the sum of elements in the pyramid levels of any given Fibonacci sequence 
Fn. This also includes Fn = (1.1). So equation (4.4) is a universal machine. Note that this equation holds 
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when Fn is such that f1 = gn + 1; n ≥ 4 in another Fibonacci sequence Gn. When Fn is such that f1 = gn – 1;     
n ≥ 4, the machine 
 

 R = �′′ + �′         (4.5) 
 

is used. The universal machine therefore switches between two states (4.4) and (4.5) as dictated by number 
genetics. 
 
We give one worked example. 
 

Worked Example 4.1 
 
Problem 
Use universal machine to compute the sum of elements in the first ten levels of the pyramid of the 
Fibonacci sequence Fn = 7,11,18,29,47,…. 
 
Solution  
First accept � ′ = (4.2) as an argument.  Now assemble �′′ by computing 
 
 ��

′′ = f1��
′  = 7(1) = 7;  ��

′′= f2��
′  = 11(1) = 11; 

 ��
′′  = f3��

′  = 18(1) = 18;  ��
′′  = f4��

′  = 29(2) = 58; 
 ��

′′  = f5��
′ = 47(4) = 188;  ��

′′  = f6��
′  = 76(6) = 456; 

 ��
′′= f7��

′  = 123(9) = 1107;   ��
′′  = f8��

′ = 199(15) = 2985; 
 ��

′′= f9��
′′ = 322(25) = 8050; ���

′′  = f10���
′  = 521(40) = 20840; 

 
We therefore have 
 
 �′′= 7,11,18,58,188,456,1107,2985,8050,20840,… 
 
Now we have to decide whether to use machine (4.4) or (4.5). We do number genetics for Fn. We have 2f1 
– f2 = 2(7) – 11 = 3 = gn-2; thus gn = 8. It follows 7 = gn – 1; therefore universal machine (4.5) applies. It 
follows 
 
                  R = �′′ + �′       
 
     = (7,11,18,58,188,456,1107,2985,8050,20840,…) + (0,0,0,1,2,3,9,30,75,180,…) 
 
     = 7,11,18,59,190,459,1116,3015,8125,21020,… 
 
In Table 4.1 we construct the pyramid. 
 

Table 4.1. Pyramid of Fn = 7,11,18,29,47,… 
 

       7        
       11        
       18        
       29 30       
      46 47 49 48      
     75 74 76 79 78 77     
   127 122 121 120 123 128 126 125 124    
206 203 198 205 197 196 194 199 207 204 202 201 195 200 208 

 
Table 4.1 can be used to confirm the above calculations. 
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It must be noted that in any level, maximum value – minimum value is the same for every pyramid, i.e. 
maxima – minima is given by the sequence (3.11). As pointed out on the pyramid in Table 2.1, there are 
special sequences that supply their first four terms as maxima or minima in consecutive pyramid levels. We 
here introduce Ladder theory for pyramid analysis. 
 

5 Ladder Theory and Pyramid Analysis 
 
Given any Fibonacci sequence Fn, we create the ladder: 
 

 {f1,f2} →{h1,h2} → {j1,j2} →{l1,l2} →      (5.1) 
 
such that h2 – h1 = f2;  j2 – j1 = h2; etc. Take Fn = (2.2) for instance.  We have the ladder: 
 

 {7,11} → {17,28} → {46,74} → {119,193} →     (5.2) 
 
Now given the pyramid of Fn = (2.2), we wish to predict the sequences that supply their first four terms as 
maxima or minima to the pyramid. We first take the ladder (5.2). Since in the sequence (2.2) it can be shown 
that 7 = 8 – 1, this implies that letting the sequence (2.2) be rung i = 0 in the ladder (5.2), the rungs 0,2,4,6,8, 
etc. provide their first four terms as minima to the pyramid levels. Now we create another ladder such that 
rung i = 0 is the sequence whose k-value (k = f2 – f1) is the parent number of rung i = 0 in the ladder (5.2). 
We thus create the ladder: 
 

 {12,19} → {30,49} → {80,129} → {208,337} →     (5.3) 
 
in which the rungs 1,3,5,7, etc. provide their first four terms as maxima to the pyramid levels. The above 
procedure is followed for any pyramid of a given Fn. Number genetics plays a central role in this physics. 
More generally, let ��, ��

′ , and �� be Fibonacci sequences such that ��
′ − ��

′ = ��. If f1 = gn – 1, n ≥ 4, then in 
the ladder with Fn as rung i = 0, the sequences forming rungs i = 0,2,4,6, etc. provide their first four terms as 
minima to the levels of the pyramid of Fn, while maxima are provided by the first four terms of the 
sequences at rungs i = 1,3,5,7, etc. in the ladder with ��

′ as rung i = 0. If f1 = gn + 1, n ≥ 4, then in the ladder 
with Fn as rung i = 0, the sequences forming rungs i = 0,2,4,6,8, etc. provide their first four terms as maxima 
to the pyramid of Fn, while minima are provided by the first four terms of the sequences at rungs i = 1,3,5,7, 
etc. in the ladder with ��

′  as rung i = 0. 
 
Given any Fibonacci sequence Fn, we are now able to produce the ladders that control the geometry of the 
pyramid of Fn.  It now suffices to present a higher concept. Let Fn and ��

′  be as defined above, i.e.            
��

′ − ��
′ = ��. Let the ladder of Fn be ladder A and that of ��

′ be ladder B. Assemble a sequence �′ composed 
of the first four terms of the sequences forming the rungs i = 2,4,6,8, etc. in ladder A and a sequence �′ 
composed of the first four terms of the sequences forming the rungs i = 1,3,5,7, etc. in ladder B. Compute 
�′ − �′= � ′. Let the segment f3,f4,f5,f6,f7,… from Fn be represented by �′. When Fn is such that f1 = gn – 1;    
n ≥ 4 in another Fibonacci sequence Gn ; then  
 

 �′ −  � ′= �′         (5.4) 
 
where 
 

�′ = 2,4,6,10,18,30,48,78,128,…       (5.5) 
 
When Fn is such that f1 = gn + 1; n ≥ 4 in another Fibonacci sequence Gn ; then  
 

 � ′ −  �′ = �′         (5.6) 
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�′ is very important as it reveals important geometry. If we write it as  
 

�′ = 2(1,2,3,5,9,15,24,39,64,…)                    (5.7) 
 

we see the geometry more clearly. The first four terms of �′ are double the first four terms of the sequence 
1,2,3,5,8,…; the next batch of four terms in �′  are double the first four terms of the sequence 
9,15,24,39,63,…; the next batch of four terms are double the first four terms of the sequence 
64,104,168,272,…; etc. We call attention to the ladder: 
 

 {1,2} → {4,6} → {9,15} → {25,40} →      (5.8) 
 
We see that �′ is composed of double the first four terms of the sequences forming the rungs i = 0,2,4,6, etc. 
in the ladder (5.8). We therefore have a beautiful physics here. �′ simply indicates that the sequence (1.1) is 
the principle of the golden section. Also note that P = (3.1), the sequence of the number of elements per level 
for any pyramid, is composed of the first two terms of the sequences in the ladder (5.8). In other words, a 
screenshot of the ladder (5.8) in current format simply gives P, i.e. P = 1,2,4,6,9,15,25,40,… The reader may 
therefore find ladder theory an interesting concept. 
 

6 Pyramid Symmetry 
 
Let’s examine the sequence (4.2) which gives the number of elements per level beginning at the first level 
for any pyramid. We see that odd and even numbers are grouped separately, systematically in threes. A 
transition from odd to even or vice-versa occurs at Teleois positions, i.e. the levels 1,4,7,10,13,16, etc. This 
is the simple meaning of the Teleois: grouping into threes. It is noticeable that the pyramid has no permanent 
line of symmetry, i.e. the line of symmetry shifts after every three levels, i.e. at Teleois positions, alternating 
between 0 and 0.5. This is caused by unsymmetrical production of sequences at Teleois positions. The 
Teleois number system is also met on energy levels in Fibonacci sequences, see [6].“In the structure of the 
Pyramid of Gizeh, the Teleois is so dominant that we are forced to believe that it was intentionally used to 
symbolize and record knowledge of the past… But more amazing, these same records were built into the 
temples of Tiahuanaco 4497 years BEFORE the Pyramid.” – Landone [7]. Hardy et al. [8], cited by Sherbon 
[9] say “Understand the proportions of the atom and its electromagnetic frequencies and you can 
understand why the proportions of the Teleois were used.” Landone further states, “When one finds these 
Teleois proportions in the solar system, in the human skeleton, in every geometric design which has been 
considered beautiful in all ages, in intervals of the musical scales, in the structures of every building of great 
beauty, and in the designs found inside of snowflakes, it suggests that there is some basic proportional 
principle of creation.” 
 

7 Conclusion 
 
The golden pyramid is a very important structure not only because it puts to proof the mathematical and phi-
losophical reasoning employed in the assemblage of Fibonacci sequences, but it opens up new avenues of 
research. The immediate application of the golden pyramid is in communication. 
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