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Abstract

We study the strong consistency and asymptotic normality of the maximum likelihood estimator
(MLE) of a drift parameter in a stochastic volatility model when both the asset price process and
the stochastic volatility are driven by independent fractional Brownian motions. Long memory in
volatility is a stylized fact. We compute the nonlinear filter in the MLE using Kitagawa algorithm.

Keywords: Fractional Brownian motion; stochastic volatility model; maximum likelihood estimate;
strong consistency, asymptotic normality; nonlinear filtering; long-range dependence.

1 Introduction

In mathematical finance, it is well accepted that volatility of a stock price is a stochastic process, not
a constant. It is also known that volatility has long memory and clusters on high level (see [1]). One
way of modeling long memory is superposition of Ornstein-Uhlenbeck (supOU) processes as volatility
models. The class of supOU processes can capture extremal clusters and long range dependence.
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We consider volatility as a continuous model satisfying a stochastic differential equation driven by
a persistent fractional Brownian motion. Long memory in volatility a stylized fact in finance due
to volatility clustering and persistence. Empirical study shows that volatility has long memory
in the sense that the empirical autocorrelation function decreases slower than exponential. Hence
parameter estimation in stochastic volatility model with long memory is an important problem in
mathematical finance. But the difficulty arises from the fact that volatility is latent as it is not
observed in the market. Hence the parameters must be estimated from the corresponding stock
price observations. Parameter estimation in directly observed stochastic differential equations is
extensively studied in [2] and [3]. Models with fractional Brownian motion and fractional Levy
processes (see [4]) as diving terms have attracted recent attention.

The fractional Brownian motion (fBm, in short), which provides a suitable generalization of the
Brownian motion, is one of the simplest stochastic processes exhibiting long range-dependence. It
was introduced in [5] and later on studied in [6] and [7].

Consider a probability space (Ω,F ,P) on which all random variables and processes below are defined.
A normalized fractional Brownian motion (WH

t , t ≥ 0) with Hurst parameterH ∈ (0, 1) is a centered
Gaussian process with continuous sample paths whose covariance kernel is given by

E(WH
t WH

s ) =
1

2
(s2H + t2H − |t− s|2H), s, t ≥ 0.

The process is self similar (scale invariant) and it can be represented as a stochastic integral with
respect to standard Brownian motion. For H = 1

2
, the process is a standard Brownian motion. For

H ̸= 1
2
, the fBm is not a semimartingale and not a Markov process, but a Dirichlet process, see

for instance, [8]. The increments of the fBm are negatively correlated for H < 1
2
and positively

correlated for for H > 1
2

and in this case they display long-range dependence. The parameter
H which is also called the self similarity parameter, measures the intensity of the long range
dependence. The estimation of the parameter H based on observations of the fractional Brownian
motion has been studied, see, e.g., [9] and the references therein. However, we assume H to be
known.

Hence for H ̸= 1
2
, the classical theory of stochastic integration with respect to semimartingales is

not applicable to stochastic integration with respect to fBm. Now there exist several approaches to
stochastic integration with respect to fBm, see for instance, classical Riemann sum approach ([10],
[11], [12], [13]), Malliavin calculus approach ([14], [15], [16], [17], [18], [19]), Wick product approach
([20]), pathwise calculus ([21], [22]), Dirichlet calculus ([8]).

The problem of optimal filtering of a signal when the noise is driven by standard Brownian motion
was studied in [23]. Parameter estimation in such partially observed systems was studied in [24],
[25], [26], [27], [28] and [29].

The problem of optimal filtering of a signal when the noise is driven by fractional Brownian motion
was studied in [30], [12], [31], [32], [16], [33] and [34].

As far as estimation of unknown parameter in fractional system is concerned, maximum likelihood
estimator (MLE) of the constant drift parameter of a fractional Brownian motion was obtained
in [15] who developed stochastic analysis of the fBm in a Malliavin calculus framework. In [36],
Norros, Valkeila and Virtamo studied the properties of the MLE of the constant drift parameter
of fBm using martingale tools. They showed that the MLE is unbiased and normally distributed.
They also showed that the MLE is strongly consistent and proved a law of the iterated logarithm
as T → ∞. The problem was generalized in [31] to a stochastic differential equation driven by fBm
with drift and the diffusion coefficient being nonrandom functions and the unknown parameter in
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the drift coefficient. In [31], Le Breton obtained the best linear unbiased estimator (BLUE) of the
drift parameter which coincides with the MLE. He also obtained the least squares estimator (LSE)
and compared the relative efficiency of the LSE and the BLUE.

Nonlinear fractional diffusions have vast applications in finance, engineering and biology. Our aim
in this paper is to give an algorithm for the approximation of the nonlinear filter, computation of
the maximum likelihood estimation and then to study the asymptotic properties of the MLE of a
parameter appearing linearly in the drift coefficient of a nonlinear stochastic differential equation
driven by fBm when the signal process is a nonlinear diffusion process.

The paper is organized as follows: In Section 2, we prepare model, assumptions and preliminaries.
In Section 3, we give the main results of the paper on strong consistency and asymptotic normality
of the MLE. In section 4, we give a conclusion of the paper.

2 Model and Assumptions

On the filtered probability space (Ω,F , {Ft},P) satisfying the usual hypotheses, consider the stochastic
differential equations

dYt = θf
(
t, σ2

t

)
dt+ g(σ2

t ) dW
H
t ,

dσ2
t = a

(
t, σ2

t

)
dt+ b

(
t, σ2

t

)
dV H

t , t ∈ [0, T ],

Y0 = ξ, σ2
0 = η,

where WH and V H , H ∈ ( 1
2
, 1) are independent fractional Brownian motions such that the pair

(η, ξ) is independent of (V H ,WH).

The unknown parameter θ ∈ Θ which is an open subset in R needs to be estimated on the basis
of observation of the asset price process {Yt}. The functions f, g, a, b are known satisfying the
following properties:

We assume that the functions f : [0, T ]× R+ → R and g : R+ → R+ satisfy (A1):

(A1) (i) For any R > 0, there exists KR > 0 such that
|f(t, x)− f(t, y)| ≤ KR|x− y| for all t ∈ [0, T ] and for all |x|, |y| ≤ R.

(ii) There exist a function f0 ∈ Lp[0, T ], 1 ≤ p < ∞ and K > 0 such that
|f(t, x)| ≤ K|x|+ f0(t) for all (t, x) ∈ [0, T ]× R.

(iii) g is differentiable and there exists K > 0 such that
|g(x)− g(y)| ≤ K|x− y| for all x, y ∈ R.

(iv) For any R > 0, there exists MR > 0 such that the derivatives of g are local Hölder
continuous in x: there exists 0 < κ ≤ 1 such that

|g′(x)− g′(y)| ≤ MR|x− y|κ for all t ∈ [0, T ], |x|, |y| ≤ R.

We assume that the functions a : [0, T ]× R+ → R and b : [0, T ]× R+ → R+ satisfy (A2):

(A2) (i) For any R > 0, there exists KR > 0, such that
|a(t, x)− a(t, y)| ≤ KR|x− y| for all t ∈ [0, T ] and for all |x|, |y| ≤ R.

(ii) There exists a function a0 ∈ Lp[0, T ], 1 ≤ p < ∞ and K > 0 such that
|a(t, x)| ≤ K|x|+ a0(t) for all (t, x) ∈ [0, T ]× R.

(iii) b is differentiable in x, there exists K > 0 such that
|b(t, x)− b(t, y)| ≤ K|x− y| for all t ∈ [0, T ].

(iv) For any R > 0, there exists MR > 0 such that x derivatives of b are local Hölder continuous
in x: there exists 0 < κ ≤ 1 such that
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|bx(t, x)− bx(t, y)| ≤ MR|x− y|κ for all t ∈ [0, T ], |x|, |y| ≤ R.
(v) b is local Hölder continuous in time: there exists 0 < γ ≤ 1 and a constant K > 0 such that
|b(t, x)− b(s, x)|+ |bx(t, x)− bx(s, x)| ≤ K|t− s|γ for all t, s ∈ [0, T ], x ∈ R.

Under the conditions (A1) and (A2), it is known that there exists a unique solution of the SDEs
(see [35]).

3 Maximum Likelihood Estimation

Even if fBM are not martingales, there are simple integral transformations which change the fBm
to martingales. We shall use the following result of [33] in the sequel.

Theorem 3.1 Let h be a continuous function from [0, T ] to R. Define for 0 < t ≤ T , the function
kt
h = (kt

h(s), 0 < s < t) by

kt
h(s) := −ρ−1

H s
1
2
−H d

ds

∫ t

s

dω ω2H−1(ω − s)
1
2
−H d

dω

∫ ω

0

dz z
1
2
−H(ω − z)

1
2
−Hh(z)

where ρH = Γ2(3/2−H)Γ(2H + 1) sinπH. Then kt
h satisfies

H(2H − 1)

∫ t

0

kh(s)|s− r|2H−2ds = h(r); 0 < r < t.

Define for 0 ≤ t ≤ T , Nh
t :=

∫ t

0
kt
h(s)dW

H
s , ⟨Nh⟩t :=

∫ t

0
h(s)kt

h(s)ds. Then the process {Nh
t , 0 ≤

t ≤ T} is a Gaussian martingale with variance function {⟨Nh⟩t, 0 ≤ t ≤ T}. For h = 1, the function

kt
h is kt

∗(s) := τ−1
H (s(t − s))

1
2
−H where τH := 2HΓ(3/2 − H)Γ(H + 1

2
). Then the corresponding

Gaussian martingale is N∗
t =

∫ t

0
kt
∗(s)dW

H
s with variance function ⟨N∗⟩t =

∫ t

0
kt
∗(s)ds = λ−1

H t2−2H

where λH :=
2HΓ(3−2H)Γ(H+ 1

2
)

Γ(3/2−H)
.

This theorem was shown in [31]. They have shown that N∗ is a Gaussian martingale with variance
function ⟨N∗⟩. The process N is also a martingale.

The process Nh
t :=

∫ t

0
kt
h(s)dW

H
s can be understood in the following way.

Let

Mh
t :=

∫ t

0

kt
h(s)dV

H
s .

The process M = (Mh
t , t ≥ 0) is a Gaussian martingale (see [36]) the fundamental martingale whose

variance function is ⟨Mh⟩t. Moreover, the natural filtration of the martingale M coincides with the
natural filtration of the fBM VH . Similarly N = (Nt, t ≥ 0) stands for the fundamental martingale
of WH .

Consider the canonical space of the process (σ2, Y ). Let Ω = C([0, T ];R2) be the space of continuous
functions from [0, T ] into R2. Consider also the canonical process (σ2,W ∗) = ((σ2

t ,W
∗
t ), t ∈ [0, T ])

on Ω where (σ2
t ,W

∗
t )(x, y) = (xt, yt) for any (x, y) ∈ Ω.

The probability measure P̃ denotes the unique probability measure on Ω such that defining the
variable ξ by ξ = W ∗

0 and W̃ = (W̃t), t ∈ [0, T ] by W̃t = W ∗
t − W ∗

0 , t ∈ [0, T ], the pair (σ2, ξ) is

independent of W̃ and the process W̃ is a fBm with Hurst parameter H.

The canonical filtration on Ω is (Ft, t ∈ [0, T ]) where Ft = σ({(σ2
s ,W

∗
s ), 0 ≤ s ≤ t})

∨
N where N

denotes the set of null sets of (Ω, P̃).
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Define for all continuous functions x = (xt, t ∈ [0, T ]) the function h(θ, x) on [0, T ] by

h(θ, x)(t) :=
θf(t, x)

g(x)
, t ∈ [0, T ].

Consider, for any t ∈ [0, T ], the function kt
h(θ,x) = (kt

h(θ,x)(s), 0 < s < t) defined from Theorem 3.1
with h(θ, x) in place of h.

Define the processes N = (Nt, t ∈ [0, T ]) and ⟨N⟩ = (⟨N⟩t, t ∈ [0, T ]) from Theorem 3.1 by plugging

in the process h(θ, x) in place of h, i.e., Nt := N
h(θ,σ2)
t , ⟨N⟩t := ⟨Nh(θ,σ2)⟩t.

Notice that Nt and ⟨N⟩t depend only on the values of σ2(t) := (σ2
s , 0 ≤ s ≤ t).

Define the (Ft)-adapted processes ⟨N,N∗⟩ = (⟨N,N∗⟩t, t ∈ [0, T ]) and

q(θ, σ2) = (qt(θ, σ
2), t ∈ [0, T ])

by

⟨N,N∗⟩t := ⟨Nh(θ,σ2), N∗⟩t =
∫ t

0

kt
∗(s)h(θ, σ

2)(s)ds, t ∈ [0, T ])

and

qt(θ, σ
2) := q

h(θ,σ2)
t =

d⟨N,N∗⟩t
d⟨N∗⟩t

, t ∈ [0, T ].

Let q̃t(σ
2) := qt(θ,σ

2)
θ

. For 0 ≤ t ≤ T , define the processes

Ñt(θ, x) :=

∫ t

0

kt
h(θ,x)(s)dW̃

H
s , ⟨Ñ⟩t(θ, x) :=

∫ t

0

h(θ, x)(s)kt
h(s)ds.

Define

Λt(θ, x) := exp

{
Ñt(θ, x)−

1

2
⟨Ñ⟩t(θ, x)

}
, t ∈ [0, T ].

Define for any t ∈ [0, T ], Λt(θ) := Λt(θ, σ
2). Let P := ΛT (θ)P̃.

The stochastic integral

Ñt(θ, σ
2) =

∫ t

0

kt
h(θ,σ2)(s)dW̃

H
s

exits since σ2 is a fractional diffusion process and WH and V H , H ∈ ( 1
2
, 1) are independent

fractional Brownian motions (see [35]).

Since the stochastic integral

Ñt(θ, σ
2) =

∫ t

0

kt
h(θ,σ2)(s)dW̃

H
s

exits, hence
∫ t

0
kt
h(θ,σ2)(s)g

−1(σ2
s)dYs exists.

Let Yt := σ({Ys, 0 ≤ s ≤ t}), t ∈ [0, T ]. Define the optimal filter

πt(ϕ) := E[ϕ(σ2
t )|Yt], t ∈ [0, T ]

and the unnormalized filter
σt(ϕ) := Ẽ[ϕ(σ2

t )Λt|Yt], t ∈ [0, T ].

Then the Kallianpur-Striebel formula holds: for all t ∈ [0, T ], P̃ and P almost surely

πt(ϕ) =
σt(ϕ)

σt(1)
.
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Recall that Y is the observation process satisfying

dYt = θf
(
t, σ2

t

)
dt+ g(σ2

t ) dW
H
t .

Following [34], let us introduce the fundamental semimartingales associated with Y , namely Z and
Z∗ defined by

Zt :=

∫ t

0

kt
h(θ,σ2)(s)g

−1(σ2
s)dYs, t ∈ [0, T ]

and

Z∗
t :=

∫ t

0

kt
∗(s)g

−1(σ2
s)dYs, t ∈ [0, T ].

where Y is the observation process.

Thus Y can be represented as Yt =
∫ t

0
KH(t, s)dZs where

KH(t, s) = H(2H − 1)

∫ t

s

rH− 1
2 (r − s)H− 3

2 dr

for 0 ≤ s ≤ t and therefore the natural filtrations of Y and Z coincide. Following [34], the following
representation holds:

dZt = λH l(t)∗ζtd⟨N⟩t + dNt, Z0 = 0,

where ζ = (ζt, t ≥ 0) is the solution of the stochastic differential equation

dζt = θλHB(t)ζtd⟨M⟩t + r(t)dMt, ζ0 = 0,

with

l(t) =

(
t2H−1

1

)
, B(t) =

(
t2H−1 1
t4H−2 t2H−1

)
, r(t) =

(
1

t2H−1

)
.

The processes Z and Z∗ are semimartingales with the following decomposition:

Z∗
t =

∫ t

0

qs(θ, σ
2)d⟨N∗⟩s +N∗

t , t ∈ [0, T ],

and

Zt =

∫ t

0

q2s(θ, σ
2)d⟨N∗⟩s +

∫ t

0

qs(θ, σ
2)dN∗

s , t ∈ [0, T ],

Hence we get the integral representation of Z in terms of Z∗:

Zt =

∫ t

0

qs(θ, σ
2)dZ∗

s , t ∈ [0, T ].

The natural filtration of Z and σ2 coincide. Introduce the process ν = (νt, t ∈ [0, T ]) defined by

νt := Z∗
t −

∫ t

0

πs(q)d⟨N∗⟩s, t ∈ [0, T ]

which plays the role of innovation process in the usual situation where the noises are Brownian
motions.
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The conditional expectation πt(ζ) = Eθ(ζt|Ft) satisfies the equation

dπt(ζ) = (θλHB − λ2
Hγζζ ll

∗)πt(ζ)d⟨N⟩t + λHγζζ ldZt, π0(ζ) = 0.

Here
γζζ = Eθ(ζt − πt(ζ))

∗(ζt − πt(ζ))

is the covariance of the filtering error which is the unique solution of the Ricatti equation

dγζζ = (θλH(Bγζζ + γζζB
∗) + rr∗ − λ2

Hγζζ ll
∗γζζ)γζζd⟨N⟩t, γζζ = 0.

The above equation on πt(ζ) can be written as

dπt(ζ) = θλHBπt(ζ)d⟨N⟩t + λHγζζ ldνt

where the innovation process νt is defined by

dνt = dZt − λH l(t)∗πt(ζ)d⟨N⟩t, ν0 = 0.

Recall the notation πs(q) := E[qs(θ, σ2)|Ys], s ∈ [0, t]. The particular case of unnormalized filter is

Λ̃t(θ) := σt(1) = Ẽ[Λt|Yt], t ∈ [0, T ].

By Proposition 3 in [33], we have

Λ̃T (θ,Yt) = exp

{
θ

∫ T

0

πs(q̃)dZ
∗
s − θ2

2

∫ T

0

π2
s(q̃)d⟨N∗⟩s

}
.

Thus the maximum likelihood estimator (MLE) of θ is given by

θ̂T := argmax
θ∈Θ

Λ̃T (θ) =

∫ T

0
πs(q̃)dZ

∗
s∫ T

0
π2
s(q̃)d⟨N∗⟩s

.

In a linear state-space system, it is well known that Kalman filter is an algorithm for the exact
computation of the conditional p.d.f. of the signal given the observation (and the initial conditions).
Except for some very specific cases, such as the fractional Cox-Ingersoll-Ross (fCIR) models which
has noncetral chi-square transition density, exact computation of the likelihood function is not
possible in nonlinear models. Since we have a nonlinear state-space type model, we seek numerical
or simulated methods. One such computational algorithm is Kitagawa’s algorithm to compute the
conditional p.d.f. recursively.

In [37], Kitagawa suggested a linear spline technique for approximating the nonlinear filter. The
basic idea is to use the relevant probability density functions for each period by piecewise linear
functions. The accuracy of density approximation depends on the number of nodes used for the
piecewise linear approximation and the number of nodes is limited by the computational demands.
We use the Kitagawa algorithm to compute the MLE. We approximate the filter

πs(q̃) = E[q̃s(θ, σ2
s)|Ys]
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using Kitagawa algorithm given below.

The prediction-update algorithm proceeds as follows:

Prediction step:

Recall that for s ∈ [0, T ], Ys := σ({Yv, 0 ≤ v ≤ s}). The prediction step determines the conditional
probability density function of the state given the observation.

Let p̃(σ2
s |σ2

u) be the conditional density of σ2
s given σ2

u where u < s. Then

E[q̃s(θ, σ2
s)|Yu] =

∫ ∞

−∞
p̃(σ2

s |σ2
u)E[q̃s(θ, σ2

u)|Yu]dσ
2
u

Update step:

If observation becomes available at the forecast time, the update step combines this additional
information with the estimate from the prediction step.

Suppose that a new observation Ys becomes available. This additional information can be used
to produce an updated estimate of the predicted state. This new estimate is summarized by the
conditional density function p̃(σ2

s |Ys).

Let r(Ys|σ2
s) be the conditional density of Ys given σ2

s .

By Bayes theorem, for u < s,

E[q̃s(θ, σ2
s)|Ys] =

r(Ys|σ2
s)E[q̃s(θ, σ2

s)|Yu]∫
r(Ys|σ2

s)E[q̃s(θ, σ2
s)|Yu]dσ2

s

.

The update and the prediction step yield the general filtering solution.

Next we prove the strong consistency, law of the iterated logarithm and asymptotic normality of
the MLE with a random normalization.

Theorem 3.2 Under the conditions (A1)-(A2), θ̂T → θ a.s. as T → ∞, i.e., θ̂T is a strongly
consistent estimator of θ. Moreover,

lim sup
T→∞

A
1/2
T |θ̂T − θ|

(2 log logAT )1/2
= 1 a.s.

where AT :=
∫ T

0
π2
s(q̃)d⟨N∗⟩s.

Proof. Note that
dZ∗

t = πt(q)d⟨N∗⟩t + dνt.

From Lemma 3 in [33], we have ν is a continuous Gaussian (Yt,P) martingale such that ⟨ν⟩ = ⟨N∗⟩.

Hence

θ̂T =

∫ T

0
πs(q̃)dZ

∗
s∫ T

0
π2
s(q̃)d⟨N∗⟩s

= θ +

∫ T

0
πs(q̃)dνs∫ T

0
π2
s(q̃)d⟨N∗⟩s

.

Now by the strong law of large numbers for continuous martingales (see [38] or Theorem 2.6.10 in
[39]), the second term in r.h.s. converges to zero a.s. as T → ∞. Hence strong consistency follows.
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Since the deviation θ̂T − θ is obtained from a stochastic integral with respect to a continuous
martingale, the law of the iterated logarithm follows from Corollary 1.1.12 in [38].

Theorem 3.3 Under the conditions (A1)-(A2),

A
1/2
T (θ̂T − θ)

D→ N (0, 1) as T → ∞.

Proof. Note that

A
1/2
T (θ̂T − θ) =

∫ T

0
πs(q̃)dνs√∫ T

0
π2
s(q̃)d⟨N∗⟩s

.

By the central limit theorem for stochastic integrals with respect to Gaussian martingales (see [39]),
the r.h.s. above converges in distribution to N (0, 1) as T → ∞.

4 Conclusion

Fractional stochastic volatility model proposed in the paper is important in practice as it volatility
time varying and random and it captures the long memory property. The challenge lies in the
fact that volatility is not observed in the market. In order to do option price for such models
the parameters of the volatility model must be estimated from the asset price data. We gave an
algorithm for the drift estimator of the volatility model using computational maximum likelihood
approach using Kitagawa algorithm and nonlinear filtering theory. We obtained strong consistency
and asymptotic normality of the maximum likelihood estimator when the process is observed in a
large time interval.
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