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1 Introduction

In this paper intuitionistic set theory INC#

∞# based on infinitary intuitionistic logic with restricted
modus ponens rule is considered [1]. External induction principle in nonstandard intuitionistic
arithmetic were derived. Non trivial application in number theory is considered. The Goldbach-
Euler theorem is obtained without any references to Catalan conjecture.

2 Axiom of Nonregularity and Axiom of Hyperinfinity

2.1 Axiom of nonregularity

Remind that a non-empty set u is called regular iff
∀x[x ̸= ∅ → (∃y ∈ x)(x ∩ y = ∅)]. (2.1)

Let’s investigate what it says: suppose there were a non-empty x such that (∀y ∈ x)(x ∩ y ̸= ∅).
For any z1 ∈ x we would be able to get z2 ∈ z1∩x. Since z2 ∈ x we would be able to get z3 ∈ z2∩x.
The process continues forever: ... ∈ zn+1 ∈ zn... ∈ z4 ∈ z3 ∈ z2 ∈ z1 ∈ x.Thus we wish to rule out
such an infinite regress.

2.2 Axiom of hyper infinity

Definition 2.1.(i) A non-empty transitive non regular set u is a well formed non regular
set iff:
(i) there is unique countable sequence {un}∞n=1 such that

... ∈ un+1 ∈ un... ∈ u4 ∈ u3 ∈ u2 ∈ u1 ∈ u, (2.2)
(ii) for any n ∈ N and any un+1 ∈ un :

un = u+
n+1, (2.3)

where a+ = a ∪ {a} .
(ii) we define a function a+[k]inductively by a+[k+1] =

(
a+[k]

)+
Definition 2.2. Let u and w are well formed non regular sets. We write w ≺ u iff for any
n ∈ N w ∈ un. (2.4)
Definition 2.3. We say that an well formed non regular set u is infinite (or hyperfinite)
hypernatural nuber iff:
(I) For any member w ∈ u one and only one of the following conditions are
satified:
(i) w ∈ N or
(ii) w = un for some n ∈ N or
(iii) w ≺ u.
(II) Let ≺u be a set ≺u = {z|z ≺ u} ,then by relation (· ≺ ·) a set ≺u is densely ordered
with no first element.
(III) N ⊂ u.
Axiom of hyper infinity
There exists unique set N# such that:
(i) N ⊂ N#

(ii) if u is infinite (hypernatural) number then u ∈ N#\N
(iii) if u is infinite (hypernatural) number then there exists infinite (hypernatural) number v

such that v ≺ u
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(iv) if u is infinite hypernatural number then there exists infinite (hypernatural) number w

such that u ≺ w

(v) set N#\N is patially ordered by relation (· ≺ ·) with no first and no last element.

In this paper we introduced a set N#\N of the infinite numbers axiomatically without any references
to non-standard model of arithmetic via canonical ultraproduct approach, see [2]-[5].

3 Infinitary Logic

3.1 Classical infinitary logic

By a vocabulary, we mean a set L of constant symbols, and relation and operation symbols with
finitely many argument places. As usual,by an L-structure M , we mean a universe set M with
an interpretation for each symbol of L. In cases where the vocabulary L is clear, we may just say
structure. For a given vocabulary L and infinite cardinals µ ≤ 3ba, L3baµ is the infinitary logic
with 3ba variables, conjunctions and disjunctions over sets of formulas of size less than 3ba, and
existential and universal quantifiers over sets of variables of size less than µ. All logics that we
consider also have equality, and are closed under negation. The equality symbol is always available,
but is not counted as an element of the vocabulary L.

During last sentury canonical infinitary logic many developed, see for example [6]-[10].

3.2 Why we need infinitary logic

It well known that some classes of mathematical structures, such as algebraically closed fields
of a given characteristic, are characterized by a set of axioms in Lωω. Other classes cannot be
characterized in this way, but can be axiomatized by a single sentence of L3c913c9.

Remark 3.1. In the practice of the contemporary model theory, and in more general mathematics
as well, it often becomes necessary to consider structures satisfying certain collections of sentences
rather than just single sentences. This consideration leads to the familiar notion of a theory in a
logic. For example, in ordinary finitary logic, L3c93c9, if 3c6n is a sentence which expresses that there
are at least n elements, then the theory {3c6n|n ∈ 3c9} would express that there are infinitely many
elements. Similarly, in the theory of groups, if 3c6n is the sentence ∀x[xn ̸= 1], then {3c8n : n ∈ 3c9}
expresses that a group is torsion free.

Remark 3.2. Suppose we want to express the idea that a set is finite, or that a group is torsion.
A simple compactness argument would immediately reveal that neither of these notions can be
expressed by a theory in L3c93c9. What we need to express in each case is that a certain theory is
not satisfied, that is, that at least one of the sentences is false. While theories are able to simulate
infinite conjunctions, there is no apparent way to simulate infinite disjunctions–which is just what
is needed in this case.

Example 3.1. The Abelian torsion groups are the models of a sentence obtained by taking
the conjunction of the usual axioms for Abelian groups (a finite set) and the following infinite
disjunction:

∀x

n∈Nx+ x+ ...+ x︸ ︷︷ ︸
n

= 0

 . (3.1)
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Example 3.2. The Archimedean ordered fields are the models of a sentence obtained by taking
the conjunction of the usual axioms for ordered fields and the following infinite disjunction:

∀x

n∈N1 + 1 + ...+ 1︸ ︷︷ ︸
n

> x

 . (3.2)

Example 4.3. Let L be a countable vocabulary. Let T be an elementary first order theory, and let
393(x) be a set of finitary formulas in a fixed tuple of variables x. The models of T that omit 393
are the models of the single L3c913c9 sentence obtained by taking the conjunction of the sentences
of T and the following infinite disjunction:

∀x [γ∈Γ¬γ (x)] . (3.3)

Example 4.4. The non Archimedean ordered fields are the models of a sentence obtained by
taking the conjunction of the usual axioms for non Archimedean ordered fields i.e., the following
infinite conjunction:

∃x

 ∧
n∈N

1 + 1 + ...+ 1︸ ︷︷ ︸
n

< x

 . (3.4)

4 Hyper Infinitary Logics

4.1 Bivalent Hyper Infinitary first-order logic 2L#
∞# with restricted

rules of conclusion

Hyper infinitary language L#

∞# are defined according to the length of hyper infinitary conjunctions/

disjunctions as well as quantification it allows. In that way, assuming a supply of κ < ℵ#
0 =

card
(
N#
)
variables to be interpreted as ranging over a nonempty domain, one includes in the

inductive definition of formulas an infinitary clause for conjunctions and disjunctions, namely,
whenever the hypernturals indexed hypersequence {Aδ}δ∈N# of formulas has length less than κ,
one can form the hyperfinite conjunction/disjunction of them to produce a formula. Analogously,
whenever an hypernaturals indexed sequence of variables has length less than λ, one can introduce
one of the quantifiers ∀ or ∃ together with the sequence of variables in front of a formula to produce
a new formula. One also stipulates that the length of any well-formed formula is less than ℵ#

0 itself.

The syntax of bivalent hyperinfinitary first-order logics L#

∞# consists of a (ordered) set of sorts
and a set of function and relation symbols, these latter together with the corresponding type,
which is a subset with less than ℵ#

0 = card
(
N#
)
many sorts. Therefore, we assume that our

signature may contain relation and function symbols on γ < ℵ#
0 many variables, and we suppose

there is a supply of κ < ℵ#
0 many fresh variables of each sort. Terms and atomic formulas are

defined as usual, and general formulas are defined inductively according to the following rules:If
ϕ, ψ, {ϕα : α < γ} (for each γ < κ) are formulas of Lκ,κ, the following are also formulas:

∧
α<γ ϕα,∨

α<γ ϕα, ϕ→ ψ, ∀α<γxαϕ (also written ∀xγϕ if xγ = {xα : α < γ}), ∃α<γxαϕ (also written ∃xγϕ
if xγ = {xα : α < γ}).
The axioms of hyperinfinitary first-order logic 2L#

∞# consist of the following schemata:

I. Logical axiom

1. A→ [B → A]

2. [A→ [B → C] → [[A→ B] → [A→ C]]]

3. [¬B → ¬A] → [A→ B]

4. [
∧

i<α[A→ Ai]] → [A→
∧

i<αAi], α ∈ N#

5. [
∧

i<αAi] → Aj , α ∈ N#

6. [∀x[A→ B] → [A→ ∀xB]]

provided no variable in x occurs free inA;
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7. ∀xA→ Sf (A)

where Sf (A) is a substitution based on a function f from x to the terms of the language;

II.Restricted rules of conclusion.

R#1.RMP (Restricted Modus Ponens).

From A and A→ B, conclude B iff A /∈ ∆1and (A→ B) /∈ ∆2,where ∆1,∆2 $wff

We abbraviate by A,A→ B ⊢RMP B.

R#2.MT (Restricted Modus Tollens)

P → Q,¬Q ⊢RMT ¬P iff P /∈ ∆′
1and (P → Q) /∈ ∆′

2,where ∆′
1,∆

′
2 $wff .

III.Equality axioms:

(a) t = t

(b) [
∧

i<α ti = t′i] → [ϕ(t0, ..., tξ, ...) = ϕ(t′0, ..., t
′
ξ, ...)]

(c)
[∧

i<α ti = t′i
]
→ [P (t0, ..., tξ, ...) → P (t′0, ..., t

′
ξ, ...)]

for each α ∈ N#, where t, ti are terms and ϕ is a function symbol of arity α and P a

relation symbol of arity α ∈ N#.

IV.Distributivity axiom:∧
i<γ

∨
j<γ ψij →

∨
f∈γγ

∧
i<γ ψif(i) (4.1)

V.Dependent choice axiom:∧
α<γ ∀β<αxβ∃xαψα → ∃α<γxα

∧
α<γ ψα (4.2)

provided the sets xα are pairwise disjoint and no variable in xα is free in ψβ for β < α ∈ N#.

4.2 Why we need hyper infinitary logic

Definition 4.1.A set S ⊂ N# is a hyper inductive if the following statement holds∧
α∈N#

(
α ∈ S =⇒ α+ ∈ S

)
. (4.3)

Obviously a set N# is a hyper inductive. As we see later there is just one hyper inductive

subset of N# ,namely N# itself.

In this paper we apply the following hyper inductive definitions of the sets

∃ S∀β

[
β ∈ S ⇐⇒

∧
0≤α<β

(
α ∈ S =⇒ α+ ∈ S

)]
, (4.4)

see cection 7. Note that a statement
∧

0≤α<β

(
α ∈ S =⇒ α+ ∈ S

)
(4.5)

cannot be expressed in finitary set theoretical language. See also section 11,

subsect 11.1.

5 Intuitionistic Hyper Infinitary logic IL#
∞# with Restric-

ted Rules of Conclusion

We will denote the class of hypernaturals by N#, the class of binary sequences of hypernatural

length by 2<N#

, and the class of sets of hypernatural numbers by Σ(N#).

We fix a class of variables xi for each i ∈ N#. Given an α ∈ N#, a context of length α is a
sequence x = ⟨xij | j < α⟩ of variables. In this paper we will use boldface letters, x,y, z, . . . , to
denote contexts and light-face letters, xi, yi, zi, . . . , to denote the i-th variable symbol of x,y, and
z, respectively.
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We will denote the length of a context x by l(x). The formulas of the hyperinfinitary language
#

∞# of set theory INC#

∞# are defined to be the smallest class of formulas closed under the following
rules:

1.⊥ is a formula,
2.xi ∈ xj is a formula for any variables xi and xj ,
3.xi = xj is a formula for any variables xi and xj ,
4. if ϕ and ψ are formulas, then ϕ→ ψ are formulas,
5. if ϕα is a formula for every α : α ≤ β ∈ N#, then

1.
∨

α≤β ϕα is a gyperfinite formula, (5.1)

6.if ϕα is a formula for every α : α ≤ β ∈ N#, then∧
α≤β ϕαis a gyperfinite formula, (5.2)

7. if x is a context of length α, then ∃αxϕ is a formula, and,
8. if x is a context of length α, then ∀αxϕ is a formula.

By this definition, our language allows set-sized disjunctions and conjunctions as well as quantification
over set-many variables at once. However, note that infinite alternating sequences of existential and
universal quantifiers are excluded by this definition.

Remark 5.1.Whenever it is clear from the context, we will omit the superscripts from the quantifiers
and write ∃ and ∀ instead of ∃α and ∀α, respectively. In many situations it will be useful to identify
a variable x with the context x = ⟨x⟩ whose unique element is x such that we can write, for
example, “∃xϕ” for “∃xϕ” and “∀xϕ” for “∀xϕ”. A variable xi is called a free variable of a formula
ϕ whenever xi appears in ϕ but not in any quantification of ϕ. As usual, a formula without free
variables is called a sentence. We say that x is a context of the formula ϕ if all free variables
of ϕ are among those in x. As usual, we will write ϕ(x) in case that ϕ is a formula and x is a
context of φ. Similarly, given two contexts x and y with xj ̸= yj′ for all j < ℓ(x) and j′ < ℓ(y),
we will write φ(x,y) in case that the sequence obtained by concatenating x and y is a context for φ.

Remark 5.2. We extend the classical abbreviations as follows: Given a formula ϕ and an
hypernatural α ∈ N# we introduce the bounded quantifiers as abbreviations, namely,

∀αx ∈ y ϕ for ∀αx(x ∈ y → ϕ), (5.3)
and

∃αx ∈ y ϕ for ∃αx(x ∈ y ∧ ϕ). (5.4)
Notation 5.1. A sequent ϕ ⊢x,α ψ is however equivalent to the formula ∀αx(ϕ→ ψ).
The system of axioms and rules for hyperinfinitary intuitionistic first-order logic
consists of the following schemata:
I. Logical axiom
1. A→ [B → A]
2. [A→ [B → C] → [[A→ B] → [A→ C]]]
3. [
∧

i<α[A→ Ai]] → [A→
∧

i<αAi], α ∈ N#

4. [
∧

i<αAi] → Aj , α ∈ N#

5. [∀x[A→ B] → [A→ ∀xB]]
provided no variable in x occurs free inA.

7. ∀xA→ Sf (A)
where Sf (A) is a substitution based on a function f from x to the terms of the language;
II.Restricted rules of conclusion.
R#1.RMP (Restricted Modus Ponens).
From A and A→ B, conclude B iff A /∈ ∆1and (A→ B) /∈ ∆2,where ∆1,∆2 $wff

We abbraviate by A,A→ B ⊢RMP B.
R#2.MT (Restricted Modus Tollens)
P → Q,¬Q ⊢RMT ¬P iff P /∈ ∆′

1and (P → Q) /∈ ∆′
2,where ∆′

1,∆
′
2 $wff .

75



Foukzon; JAMCS, 36(8): 70-119, 2021; Article no.JAMCS.73147

III.Weak distributivity axiom:

ϕ ∧
∨

i<γ ψi ⊢x

∨
i<γ ϕ ∧ ψi (5.5)

for each γ ∈ N#.
IV.Frobenius axiom:

ϕ ∧ ∃yψ ⊢x ∃y(ϕ ∧ ψ) (5.6)
where no variable in y is in the context x.

V.Structural rules:
(a) Identity axiom:

φ ⊢x,α φ (5.7)
(b) Substitution rule:

φ ⊢x,α φ

φ[s/x] ⊢y φ[s/x]
(5.8)

where y is a string of variables including all variables occurring in the string of terms s.
(c) Restricted cut rule:

φ ⊢x,α φ,φ ⊢x,α φ

φ ⊢x,α φ
(5.9)

iff 3c6 /∈ ∆1and (3c8 ⊢x,α 3b8) /∈ ∆2.

IV.Equality axioms:
(a) φ ⊢x x = x (5.10)
(b) (x = y) ∧ φ[x/w] ⊢z φ[y/w] (5.11)
where x,y are contexts of the same length and type and z is any context containing x,y
and the free variables of 3c6.
V.Conjunction axioms and rules:

(a)
∧
i<γ

φi ⊢x,α φj (5.12)

for each γ ∈ N# and j < γ

(b)
{ϕ ⊢x,α ψi}i<γ

ϕ ⊢x,α

∧
i<γ

ψi
(5.13)

for each 3b3 ∈ N#.

VI.Disjunction axioms and rules:
(a)

ϕj ⊢x,α

∨
i<γ ϕi (5.14)

for each γ ∈ N#

(b)
{ϕi ⊢x,α θ}i<γ∨

i<γ ϕi ⊢x,α θ
(5.15)

for each γ ∈ N#.

VII. Implication rule:
ϕ ∧ ψ ⊢x,α θ

ϕ ⊢x,α ψ =⇒ θ
(5.16)

IX.Existential rule:
ϕ ⊢xy ψ

∃y (ϕ ⊢x ψ)
(5.17)
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where no variable in y is free in ψ.

X.Universal rule:
φ ⊢xy ψ

ϕ ⊢x ∀yψ (5.18)

where no variable in y is free in 3c6.

6 Set Theory in Hyper Infinitary Set Theoretical Langua-
ges

6.1 Intuitionistic set theory INC#
∞# in hyper infinitary set theoretical

language

Axioms and basic definitions:

Intuitionistic set theory INC#

∞# is formulated as a system of axioms in the same first order language

as its classical counterpart, only based on intuitionistic logic IL#

∞# with restricted modus ponens

rule [1]. The language of set theory is a first-order language L#

∞# with equality =, which includes
a binary symbol ∈. We write x ̸= y for ¬ (x = y) and x /∈ y for ¬(x ∈ y). Individual variables
x, y, z, ...of L#

∞# will be understood as ranging over classical sets. The unique existential quantifier
∃! is introduced by writing, for any formula φ(x),∃!xφ(x) as an abbreviation of the formula
∃x[φ(x) & ∀y(φ(y) =⇒ x = y)].L#

∞# will also allow the formation of terms of the form
{x|φ(x)}, for any formula φ containing the free variable x. Such terms are called nonclassical sets;
we shall use upper case letters A,B, ... for such sets. For each nonclassical set A = {x|φ(x)} and
A = {x|φ(x,A)}the formulas

∀x [x ∈ A ⇐⇒ φ (x)] (6.1)

andmoregeneral formulas

∀x [x ∈ A ⇐⇒ φ (x,A)] (6.2)

is called the defining axioms for the nonclassical set A.

Remark 6.1.Remind that in intuitionistic logic IL#

∞# with restricted modus ponens rule

the statement α ∧ (α =⇒ β) does not always guarantee that

α, α =⇒ β ⊢RMP β (6.3)

since for some α and β possible

α, α =⇒ β 0RMP β (6.4)

even if the statement α ∧ (α =⇒ β) holds [1].

Abbreviation 6.1.We often write for the sake of brevity instead (6.3) by

α =⇒ sβ (6.5)

and we often write instead (6.4) by

α =⇒ wβ. (6.6)

Remark 6.2.Let A be an nonclassical set.Note that in set theory INC#

∞#the following

true formula

∃A∀x [x ∈ A ⇐⇒ φ (x,A)] (6.7)
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does not always guarantee that

x ∈ A, x ∈ A =⇒ φ (x,A) ⊢RMP φ (x,A) (6.8)
even if x ∈ A holds and (or)

φ (x,A) , φ (x,A) =⇒ x ∈ A ⊢RMP x ∈ A; (6.9)
even φ (x,A) holds, since for nonclassical set A for some y possible

y ∈ A, y ∈ A =⇒ φ (y,A) 0RMP φ (y,A) (6.10)
and (or)

φ (y,A) , φ (y,A) =⇒ y ∈ A 0RMP y ∈ A. (6.11)
Remark 6.3.Note that in this paper the formulas

∃a∀x [x ∈ a ⇐⇒ φ (x) ∧ x ∈ u] (6.12)
and more general formulas

∃a∀x [x ∈ a ⇐⇒ φ (x, a)] (6.13)
is considered as the defining axioms for the classical set a.
Remark 6.4.Let a be an classical set. Note that in INC#

∞# : (i) the following true formula

∃a∀x [x ∈ a ⇐⇒ φ (x, a) ∧ x ∈ u] (6.14)
always guarantee that

x ∈ a, x ∈ a =⇒ φ (x, a) ⊢RMP φ (x) (6.15)
if x ∈ a holds and

φ (x) , φ (x) =⇒ x ∈ a ⊢RMP x ∈ a; (6.16)
if φ (x) holds;
Remark 6.4.In order to emphasize this fact mentioned above in Remark 6.1-6.3,
we rewrite the defining axioms in general case for the nonclassical sets in the following
form

∃A∀x {[x ∈ A ⇐⇒ sφ (x,A)] ∨ [x ∈ A ⇐⇒ wφ (x,A)]} (6.17)
and similarly we rewrite the defining axioms in general case for the classical sets in the
following form

∀x [x ∈ a ⇐⇒ sφ (x, a) ∧ (x ∈ u)] . (6.18)
Abbreviation 6.2.We write instead (6.17) by

∀x {[x ∈ A ⇐⇒ s,wφ (x,A)]} (6.19)
Definition 6.1. (1) Let A be a nonclassical set defined by formula (6.1) or by formula
(6.2).Assum that: (i) for some y statement φ (y) and statement φ (y) =⇒ y ∈ A holds and
(ii) φ (y) , φ (y) =⇒ y ∈ A 0RMP y ∈ A, y ∈ A, y ∈ A =⇒ φ (y) 0RMP φ (y) .
Then we say that y is a weak member of non-classical set A and abbreviate y ∈w A.
Abbreviation 6.3. Let A be a nonclassical set defined by formula (6.1) or by formula
(6.2). We abbreviate x ∈s,w A if the following statement x ∈s A ∨ x ∈w A holds, i.e.

x ∈ A↔def (x ∈s A ∨ x ∈w A) . (6.20)
Definition 6.2.(1) Two nonclassical sets A,B are defined to be equal and we write
A = B if ∀x [x ∈s,w A ⇐⇒ sx ∈s,w B] . (2) A is a subset of B, and we often write A ⊂s,v B, if

∀x [x ∈s,w A =⇒ sx ∈s,w B] .(3) We also writeCl.Set(A) for the formula ∃u∀x [x ∈ A ⇐⇒ x ∈ u].
(4) We also write NCl.Set(A) for the formulas

∀x [x ∈s,v A ⇐⇒ s,vφ (x)] and ∀x [x ∈s,v A ⇐⇒ s,vφ (x,A)] .
Remark 6.5.Cl.Set(A)) asserts that the set A is a classical set. For any classical set u,
it follows from the defining axiom for the classical set {x|x ∈ u ∧ φ (x)} that
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Cl.Set({x|x ∈ u ∧ φ (x)}).
We shall identify {x|x ∈ u} with u, so that sets may be considered as (special sorts of)
nonclassical sets and we may introduce assertions such as u ⊂ A, u j A, u = A, etc.
Remark 6.6.If A is a nonclassical set, we write ∃x ∈ A φ (x,A) for ∃x [x ∈ A ∧ φ (x,A)]
and ∀x ∈ Aφ (x,A) for ∀x [x ∈ A =⇒ φ (x,A)] .
We define now the following sets:
1.{u1, u2, ..., un} = {x|x = u1 ∨ x = u2 ∨ ... ∨ x = un} .2. {A1, A2, ..., An} =

= {x|x = A1 ∨ x = A2 ∨ ... ∨ x = An} .3.∪A = {x|∃y [y ∈ A ∧ x ∈ y]} .
4.∩A = {x|∀y [y ∈ A =⇒ x ∈ y]} .5.A ∪B = {x|x ∈ A ∨ x ∈ B} .
5.A ∩B = {x|x ∈ A ∧ x ∈ B} .6.A−B = {x|x ∈ A ∧ x /∈ B} .7.u+ = u ∪ {u} .
8.P (A) = {x|x ⊆ A}.9.{x ∈ A|φ (x,A)} = {x|x ∈ A ∧ φ (x,A)} .10.V = {x| : x = x} .
11.∅ = {x|x ̸= x} .
The system INC#

∞# of set theory is based on the following axioms:
Extensionality1: ∀u∀v [∀x (x ∈ u ⇐⇒ x ∈ v) =⇒ u = v]
Extensionality2: ∀A∀B [∀x (x ∈ A ⇐⇒ s,wx ∈ B) =⇒ A = B]
Universal Set: NCl.Set (V)
Empty Set: Cl.Set (∅)
Pairing1: ∀u∀v Cl.Set({u, v})
Pairing2: ∀A∀B NCl.Set({A,B})
Union1: ∀u Cl.Set(∪u)
Union2: ∀A NCl.Set(∪A)
Powerset1: ∀u Cl.Set(P (u))
Powerset2: ∀A NCl.Set(P (A))
Infinity ∃a

[
∅ ∈ a ∧ ∀x ∈ a

(
x+ ∈ a

)]
Separation1∀u1∀u2, ...∀un∀a∃Cl.Set ({x ∈s a|φ (x, u1, u2, ..., un)})
Separation2∀u1∀u2, ...∀unNCl.Set ({x ∈s,w A|φ (x,A;u1, u2, ..., un)})
Comprehension1∀u1∀u2, ...∀un∃A∀x [x ∈ A ⇐⇒ s,wφ (x;u1, u2, ..., un)]
Comprehension 2 ∀u1∀u2, ...∀un∃A∀x [x ∈ A ⇐⇒ s,wφ (x,A;u1, u2, ..., un)]
Comprehension 3 ∀u1∀u2, ...∀un∃a∀x [x ∈ a ⇐⇒ sφ (x, a;u1, u2, ..., un)]
Hyperinfinity: see subsection 2.1.
Remark 6.7.Note that the axiom of hyper infinity follows from the schemata
Comprehension 3.
Definition 6.3. The ordered pair of two sets u, v is defined as usual by

⟨u, v⟩ = {{u} , {u, v}} . (6.21)
Definition 6.4. We define the Cartesian product of two nonclassical sets A and B
as usual by

A×s,w B = {⟨x, y⟩ |x ∈s,w A ∧ y ∈s,w B} (6.22)
Definition 6.5. A binary relation between two nonclassical sets A,B is a subset R ⊆s,w

A×s,w B. We also write aRs,wb for < a, b >∈s,w R. The doman dom(R) and the
range ran(R) of R are defined by

dom(R) = {x|∃y (xRs,wy)} , ran(R) = {y : ∃x (xRs,wy)} . (6.23)
Definition 6.6.A relation Fs,w is a function, or map, written Fun(Fs,w), if for each a ∈s,w

dom(F ) there is a unique b for which aFs,wb. This unique b is written F (a) or Fa.
We write Fs,w : A → B for the assertion that Fs,w s a function with dom(Fs,w) = A and

ran(Fs,w) = B.In this case we write a 7→ Fs,w(a) for Fs,wa.
Definition 6.7.The identity map 1A on A is the map A → A given by a 7→ a. If X ⊆s,w A,

the
map x 7→ x : X → A is called the insertion map of X into A.
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Definition 6.8.If Fs,w : A→ B and X ⊆s,w A, the restriction Fs,w|X of Fs,w to X is the map
X → A given by x 7→ Fs,w(x). If Y ⊆s,w B, the inverse image of Y under Fs,w is the set

F−1
s,w[Y ] = {x ∈s,w A : Fs,w(x) ∈s,w Y } . (6.24)

Given two functions Fs,w : A→ B,Gs,w : B → C, we define the composite function
Gs,w ◦ Fs,w : A→ C to be the function a 7→ Gs,w(Fs,w(a)). If Fs,w : A→ A, we write F 2

s,w

for Fs,w ◦ Fs,w, F
3
s,w for Fs,w ◦ Fs,w ◦ Fs,w etc.

Definition 6.9.A function Fs,w : A→ B is said to be monic if for all
x, y ∈s,w A,Fs,w(x) = Fs,w(y) implies x = y, epi if for any b ∈s,w B there is a ∈s,w A for which

b = Fs,w(a), and bijective, or a bijection, if it is both monic and epi. It is easily shown that
Fs,w is bijective if and only if Fs,w has an inverse, that is, a map Gs,w : B → A such that

Fs,w ◦Gs,w = 1B and Gs,w ◦ Fs,w = 1A.
Definition 6.10.Two sets X and Y are said to be equipollent, and we write X ≈s,w Y, if
there is a bijection between them.
Definition 6.11.Suppose we are given two sets I, A and an epi map Fs,w : I → A. Then
A = {Fs,w(i)|i ∈ I} and so, if, for each i ∈s,w I, we write ai for Fs,w(i), then A can be
presented in the form of an indexed set {ai : i ∈s,w I}. If A is presented as an indexed
set of sets {Xi|i ∈s,w I}, then we write

∪
i∈I Xi and

∩
i∈I Xi for ∪A and ∩A, respectively.

Definition 6.12.The projection maps π1 : A×s,w B → A and π2 : A×s,w B → B are
defined to be the maps ¡a, b¿ 7→ a and ¡a, b¿ 7→ b respectively.
Definition 6.13.For sets A,B, the exponential BA is defined to be the set of all functions
from A to B.

6.2 Set theory NC#
∞# in bivalent hyper infinitary set theoretical

language

Set theory NC#

∞# is formulated as a system of axioms in the same first order language as its classical

counterpart, only based on bivalent hyper infinitary logic 2L#

∞# with restricted modus ponens rule

[1]. The language of set theory is a first-order hyper infinitary language L#

∞# with equality =,
which includes a binary symbol ∈. We write x ̸= y for ¬ (x = y) and x /∈ y for ¬(x ∈ y).
Individual variables x, y, z, ...of L#

∞# will be understood as ranging over classical sets. The unique
existential quantifier ∃! is introduced by writing, for any formula φ(x),∃!xφ(x) as an abbreviation
of the formula ∃x[φ(x) & ∀y(φ(y) =⇒ x = y)].L#

∞# will also allow the formation of terms of the
form {x|φ(x)}, for any formula φ containing the free variable x. Such terms are called non-classical
sets; we shall use upper case letters A,B, ... for such sets. For each non-classical set A = {x|φ(x)}
the formulas ∀x [x ∈ A ⇐⇒ φ (x)] and ∀x [x ∈ A ⇐⇒ φ (x,A)] is called the defining axioms for
the non-classical set A.

Remark 6.8.Remind that in intuitionistic logic IL#

∞# with restricted modus ponens rule

the statement α∧(α =⇒ β) does not always guarantee that α, α =⇒ β ⊢RMP β (6.25)
since for some α and β possible
α, α =⇒ β 0RMP β (6.26)

even if the statement α ∧ (α =⇒ β) holds [1].
The system NC#

∞# of set theory is based on the following axioms:
Extensionality1: ∀u∀v [∀x (x ∈ u ⇐⇒ x ∈ v) =⇒ u = v]
Extensionality2: ∀A∀B [∀x (x ∈ A ⇐⇒ s,wx ∈ B) =⇒ A = B]
Universal Set: NCl.Set (V)
Empty Set: Cl.Set (∅)
Pairing1: ∀u∀v Cl.Set({u, v})
Pairing2: ∀A∀B NCl.Set({A,B})
Union1: ∀u Cl.Set(∪u)
Union2: ∀A NCl.Set(∪A)
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Powerset1: ∀u Cl.Set(P (u))

Powerset2: ∀A NCl.Set(P (A))

Infinity ∃a
[
∅ ∈ a ∧ ∀x ∈ a

(
x+ ∈ a

)]
Separation1∀u1∀u2, ...∀un∀a∃Cl.Set ({x ∈s a|φ (x, u1, u2, ..., un)})
Separation2∀u1∀u2, ...∀unNCl.Set ({x ∈s,w A|φ (x,A;u1, u2, ..., un)})
Comprehension1∀u1∀u2, ...∀un∃A∀x [x ∈ A ⇐⇒ s,wφ (x;u1, u2, ..., un)]

Comprehension 2 ∀u1∀u2, ...∀un∃A∀x [x ∈ A ⇐⇒ s,wφ (x,A;u1, u2, ..., un)]

Comprehension 3 ∀u1∀u2, ...∀un∃a∀x [x ∈ a ⇐⇒ sφ (x, a;u1, u2, ..., un)]

Hyperinfinity: see subsection 2.1.

Remark 6.7.Note that the axiom of hyper infinity follows from the schemata

Comprehension 3.

7 External Induction Principle and Hyper Inductive
Definitions

7.1 External induction principle in nonstandard intuitionistic
arithmetic

Axiom of infite ω-induction

(i) ∀S (S ⊂ N)
{[ ∧

n∈ω

(
n ∈ S =⇒ n+ ∈ S

)]
=⇒ S = N

}
. (7.1)

(ii) Let F (x) be a wff of the set theory INC#

∞# , then[ ∧
n∈ω

(
F (n) =⇒ F

(
n+
))]

=⇒ ∀n (n ∈ ω)F (n) . (7.2)

Definition 7.1.Let β be a hypernatural such that β ∈ N#\N. Let [0, β] ⊂ N#be a set

such that ∀x [x ∈ [0, β] ⇐⇒ 0 ≤ x ≤ β] and [0, β) = [0, β] \ {β} .
Definition 7.2.(i) Let F (x) be a wff of INC#with unique free variable x.We will say that

a wff F (x) is restricted on a set SF such that SF $ N# iff the following conditions are

satisfied ∀α
(
α ∈ N#

)
[F (α) =⇒ α ∈ SF ] (7.3)

and

∀α
(
α ∈ N#

) [
¬F (α) =⇒ α ∈ N#\SF

]
. (7.4)

Definition 7.3. Let F (x) be a wff of INC#

∞#with unique free variable x.We will say that a

wff F (x) is unrestricted on variable x if wff F (x) is not restricted on any set S such that

S $ N#.This definition meant∧
α∈N#

(
F (α) 0 α /∈ N#

)
. (7.5)

Axiom of hyperfinite induction 1

∀β
(
β ∈ N#\N

)
∀S (S ⊆ [0, β]) ↘{

∀α (α ∈ [0, β])

[ ∧
0≤α<β

(
α ∈ S =⇒ α+ ∈ S

)]
=⇒ S = [0, β]

}
.

(7.7)

Axiom of hyper infinite induction 1

∀S
(
S ⊂ N#

){
∀β
(
β ∈ N#

) [ ∧
0≤α<β

(
α ∈ S =⇒ α+ ∈ S

)]
=⇒ S = N#

}
. (7.8)

Remark 7.1.Note that from comprechesion shemata 2 (see subsection 6.1) follows
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that ∀β∃S (S ⊂ [0, β]) ∀β̄
(
β̄ ∈ [0, β]

) [
β̄ ∈ S ⇐⇒

∧
0≤α<β̄

(
α ∈ S =⇒ α+ ∈ S

)]
(7.9)

Therefore for any β̄ ∈ [0, β] from (7.9) it follows that∧
0≤α<β

(
α ∈ S =⇒ α+ ∈ S

)
⊢ β ∈ S. (7.10)

Thus axiom of hyperfinite induction 1,i.e., (7.6) holds, since from (7.10) it follows that
∀β
[
β ∈ [0, β] =⇒ β ∈ S

]
.

Remark 7.2.Note that from comprechesion shemata 2 (see subsection 6.1) it follows
that

∃S
(
S ⊂ N#

)
∀β
(
β ∈ N#

) [
β ∈ S ⇐⇒

∧
0≤α<β

(
α ∈ S =⇒ α+ ∈ S

)]
. (7.11)

Therefore for any β ∈ N# from (7.11) it follows that∧
0≤α<β

(
α ∈ S =⇒ α+ ∈ S

)
⊢ β ∈ S (7.12)

Thus axiom of hyper infinite induction 1, i.e., (7.8) holds, since it follows from (7.12)
that ∀β

[
β ∈ N# =⇒ β ∈ S

]
.

Axiom of hyperfinite induction 2
Let F (x) be a wff of the set theory INC#

∞# restricted on a set [0, β] then[
∀β
(
β ∈ N#\N

) [ ∧
0≤α<β

(
F (α) =⇒ F

(
α+
))]]

=⇒ ∀α (α ∈ [0, β])F (α) (7.11)

Axiom of hyper infinite induction 2
Let F (x) be unrestricted wff of the set theory INC#

∞# then[
∀β
(
β ∈ N#

) [ ∧
0≤α<β

(
F (α) =⇒ F

(
α+
))]]

=⇒ ∀β
(
β ∈ N#

)
F (β) . (7.12)

Remark 7.3.Note that from comprechesion shemata 2 (see subsection 6.1) follows

that ∀β∃S (S ⊂ [0, β]) ∀β
(
β ∈ [0, β]

) [
β ∈ S ⇐⇒

∧
0≤α<β

(
F (α) =⇒ F

(
α+
))]

(7.13)

Therefore for any β ∈ [0, β] from (7.13) it follows that∧
0≤α<β

(
F (α) =⇒ F

(
α+
))

⊢ β ∈ S (7.14)

Thus axiom of hyperfinite induction 2,i.e., (7.13) holds, since it follows from (7.16)
that ∀β

[
β ∈ [0, β] =⇒ β ∈ S

]
.

Remark 7.4.Note that from comprechesion shemata 2 (see subsection 6.1) follows
that

∃S
(
S ⊂ N#

)
∀β
(
β ∈ N#

) [
β ∈ S ⇐⇒

∧
0≤α<β

(
F (α) =⇒ F

(
α+
))]

. (7.15)

Therefore for any β ∈ N# from (7.15) it follows that∧
0≤α<β

(
F (α) =⇒ F

(
α+
))

⊢ β ∈ S. (7.16)

Thus axiom of hyper infinite induction 2,i.e., (7.12) holds, since From (7.16) it follows
that ∀β

[
β ∈ N# =⇒ β ∈ S

]
.

Axiom of hyperfinite induction 3
Let F (x) be a wff of the set theory INC#

∞# restricted on inductive set Wind such that
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N ⊆Wind $ N# then

∀W

[(
N ⊆Wind $ N#

)
∧

[ ∧
α∈Wind

(
F (α) =⇒ F

(
α+
))]]

=⇒ ∀α (α ∈Wind)F (α) (7.17)

Proposition 7.1. (a) For any natural or hypernatural number k ∈ N#,
⊢0≤m≤k (x = m) ⇐⇒ x ≤ k. (7.18)

(a′) For any hypernatural number 43a and any wff B
⊢0≤m≤k B (m) ⇐⇒ ∀x (x ≤ k =⇒ B (x)) (7.19)

(b) For any hypernatural number k ∈ N# such that k > 0,
⊢ 1≤m≤k (x = m− 1) ⇐⇒ x < k. (7.20)

(b′) For any hypernatural number k ∈ N# such that k > 0 and any wff B (x) ,
⊢0≤m≤k−1 B (m) ⇐⇒ ∀x (x < k =⇒ B (x)) . (7.21)

(c) ⊢ (∀x (x < y =⇒ B (x))) ∧ (∀x (x ≥ y =⇒ E (x))) =⇒ ∀x (B (x) ∨ E (x)) .
Proof. (a) We prove 0≤m≤k (x = m) ⇐⇒ x ≤ k by hyperfinite induction in the
metalanguage on k. The case for k = 0,⊢ x = 0 ⇐⇒ x ≤ 0, is obvious from the definitions.
Assume as inductive hypothesis that

0≤m≤k (x = m) ⇐⇒ x ≤ k. (7.22)
Now assume that

[0≤m≤k (x = m)] ∨ (x = k + 1) . (7.25)
But ⊢ x = k + 1 =⇒ x ≤ k + 1 and, by the inductive hypothesis,

0≤m≤k (x = m) . (7.26)
Also ⊢ x ≤ k =⇒ x < k + 1. Thus, x ≤ k + 1. So,

⊢0≤m≤k+1 (x = m) =⇒ x ≤ k + 1. (7.27)
Conversely, assume x ≤ k + 1. Then x = k + 1 ∨ x < k + 1. If x = k + 1, then

0≤m≤k+1 (x = m) . (7.28)
If x < k + 1, then we have x ≤ k. By the inductive hypothesis,

0≤m≤k (x = m) (7.29)
and,therefore,

0≤m≤k+1 (x = m) . (7.30)
Thus in either case,

0≤m≤k+1 (x = m) . (7.31)
This proves

⊢ x ≤ k + 1 =⇒ 0≤m≤k+1 (x = m) (7.32)
From the inductive hypothesis, we have derived

0≤m≤k+1 (x = m) ⇐⇒ x ≤ k + 1 (7.33)

and this completes the proof. Note that this proof has been given in an informal manner that
we shall generally use from now on. In particular, the deduction theorem, the replacement theorem,
and various rules and tautologies will be applied without being explicitly mentioned. Parts (a′),
(b), and (b′) follow easily from part (a). Part (c) follows almost immediately from the statement
t ̸= r =⇒ (t < r) ∨ (r < t), using obvious tautologies. There are several stronger forms of the
hyperinfinite induction principles that we can prove at this point.

Theorem 7.1.(Complete hyperinfinite induction) Let B (x) be anrestricted wff of the set
theory INC#

∞# then

∀x
(
x ∈ N#

)
[∀z (z < x =⇒ B (z)) =⇒ B (x)] =⇒ ∀x

(
x ∈ N#

)
B (x) (7.34)
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In ordinary languageI consider a property B (x) such that, for any x, if B (x) holds for all
hypernatural numbers less than x, then B (x) holds for x also. Then B (x) holds for all
hypernatural numbers x ∈ N#.
Proof.Let E (x) be a wff ∀z (z ≤ x =⇒ B (z)) .
(i) 1.Assume that ∀x

(
x ∈ N#

)
[∀z (z < x =⇒ B (z)) =⇒ B (x)] ,then

2.[∀z (z < 0 =⇒ B (z)) =⇒ B (0)] it follows from 1.
3. z ≮ 0,then
4. ∀z (z < 0 =⇒ B (z)) it follows from 1,
5. B (0) it follows from 2,4 by MP
6. ∀z (z ≤ 0 =⇒ B (z)) i.e.,E (0) holds it follows from Proposition7.1(a′)
7.∀x

(
x ∈ N#

)
[∀z (z < x =⇒ B (z)) =⇒ B (x)] ⊢ E (0) it follows from 1,6 by MP

(ii) 1.Assume that: ∀x
(
x ∈ N#

)
[∀z (z < x =⇒ B (z)) =⇒ B (x)] .

2.Assume that: E (x) ≡ ∀z (z ≤ x =⇒ B (z)) ,then
3.∀z

(
z < x+ =⇒ B (z)

)
it follows from 2 since z ≤ x =⇒ z < x+.

4.∀x
(
x ∈ N#

) [
∀z
(
z < x+ =⇒ B (z)

)
=⇒ B

(
x+
)]

it follows from 1 by
rule A4:if t is free for x in B(x), then ∀xB(x) ⊢ B(t).

5. B
(
x+
)
it follows from 3,4 by unrestricted MP rule.

6. z ≤ x+ =⇒ z < x+ ∨ z = x+ it follows from definitions.
7. z < x+ =⇒ B (z) it follows from 3 by rule A4.
8. z = x+ =⇒ B (z) it follows from 5.
9. E

(
x+
)
≡ ∀z

(
z ≤ x+ =⇒ B (z)

)
it follows from 6,7,8,rule Gen.

10.∀x
(
x ∈ N#

)
[∀z (z < x =⇒ B (z)) =⇒ B (x)] ⊢ ∀x

(
x ∈ N#

) [
E (x) =⇒ E

(
x+
)]

it follows from 1,9 by deduction theorem,rule Gen.
Now by (i), (ii) and the induction axiom, we obtain D ⊢ ∀x

(
x ∈ N#

)
E (x) that is

D ⊢ ∀x
(
x ∈ N#

)
[∀z (z < x =⇒ B (z))], whereD ≡ ∀x

(
x ∈ N#

)
[∀z (z < x =⇒ B (z)) =⇒ B (x)].

Hence, by rule A4 twice, D ⊢ x ≤ x =⇒ B (x). But ⊢ x ≤ x. So,D ⊢ B (x), and,
by Gen and the deduction theorem, D ⊢ ∀x

(
x ∈ N#

)
B (x) .

Theorem 7.2.(Complete hyperfinite induction) Let B (x) be wff of the set theory
INC#

∞# strongly restricted on inductive set Wind such that N ⊆Wind $ N# then

∀x (x ∈Wind) [∀z (z < x =⇒ B (z)) =⇒ B (x)] =⇒ ∀x (x ∈Wind)B (x) (7.35)
Proof. Similarly as Theorem 7.1.
Remark 7.5.Remind that the following statement holds in standard bivalent
arithmetic [11]:Least-number principle (LNP)

∃xB (x) =⇒ ∃y [B (y) ∧ ∀z (z < y =⇒ ¬B (z))] . (7.36)
In ordinary language:if a property expressed by wff B (x) holds for some natural number n,
then there is a least number satisfying B (x).Obviously LNP (7.23) is not holds in
nonstandard arithmetic, since there is no a least number in a set N#\N.
Theorem 7.3.(Weak least-number principle) Let B (x) be a wff of the set theory
INC#

∞# such that a wff ¬B (x) restricted on inductive set Wind such that N ⊆Wind $ N#

and W {
ind = N#\Wind then

∃x
(
x ∈W {

ind

)
B (x) =⇒

¬∃y
(
y ∈W {

ind

)
[B (y) ∧ ∀z (z < y =⇒ ¬B (z))] =⇒ ∀y (y ∈Wind) [¬B (y)]

(7.37)

Proof.We assume now that
1.¬∃y

(
y ∈W {

ind

)
[B (y) ∧ ∀z (z < y =⇒ ¬B (z))]

2.∀y
(
y ∈W {

ind

)
¬ [B (y) ∧ ∀z (z < y =⇒ ¬B (z))] it follows from 1.

3.∀y
(
y ∈W {

ind

)
[∀z (z < y =⇒ ¬B (z)) =⇒ ¬B (y)]it follows from 2 by tautology.

4.∀y (y ∈Wind) [¬B (y)] it follows from 3 by Theorem 7.2 with wff ¬B (y) instead wff B (y)
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5.¬∃y
(
y ∈W {

ind

)
[B (y) ∧ ∀z (z < y =⇒ ¬B (z))] =⇒ ∀y (y ∈Wind) [¬B (y)] it follows from

1,4.
Remark 7.6.Note that: (i) the statement

(I) : ∃y (y ∈Wind) [¬¬B (y)] =⇒ ¬¬∃y
(
y ∈W {

ind

)
[B (y) ∧ ∀z (z < y =⇒ ¬B (z))]

is unprovable in INC#

∞# from the statement

(II) : ¬∃y
(
y ∈W {

ind

)
[B (y) ∧ ∀z (z < y =⇒ ¬B (z))] =⇒ ∀y (y ∈Wind) [¬B (y)]

(II) : ¬∃y
(
y ∈W {

ind

)
[B (y) ∧ ∀z (z < y =⇒ ¬B (z))] =⇒ ¬∃y (y ∈Wind) [¬¬B (y)]

since the law of contraposition is not holds in intuitionistic hyperinfinitary logic L#

∞# ;

(ii) similarly it unprovable in NC#

∞# by the restricted modus ponens rule.

Example 7.1. We set now Wind = N and B (y) ⇐⇒ y ∈ N#
∞.The statement (I) reads

(I∗) : ∃y (y ∈ N)
[
y /∈ N#

∞
]
=⇒ ∃y

(
y ∈ N#

∞
) [
B (y) ∧ ∀z

(
z < y =⇒ z /∈ N#

∞
)]

and the statement (II) reads

(II∗) : ¬∃y
(
y ∈ N#

∞
) [(

y ∈ N#
∞
)
∧ ∀z

(
z < y =⇒ z /∈ N#

∞
)]

=⇒ ∀y (y ∈ N)
[
¬
(
y /∈ N#

∞
)]
.

Note that the statement I∗is unprovable in INC#

∞# from the statement II∗since the law

of contraposition is not holds in intuitionistic hyperinfinitary logic L#

∞# ;

7.2 Hyper inductive definitions in general

A function f : N# → A whose domain is the set N# is colled an hyper infinite sequence and denoted
by {fn}n∈N# or by {f (n)}n∈N#The set of all hyperinfinite sequences whose terms belong to A

is clearly AN#

; the set of all hyperfinite sequences of n ∈ N#\N terms in A is An. The set of
all hyperfinite sequences with terms in A can be defined as{

R ⊂ N# ×A : (R is a function) ∧n∈N# (D1 (R) = n)
}
, (7.38)

where D1 (R) is domain of R.This definition implies the existence of the set of all hyperfinite
sequences with terms in A.The simplest case is the inductive definition of a hyperinfinite sequence
{φ (n)}n∈N# (with terms belonging to a certain set Z) satisfying the following conditions:

(a) φ(0) = z, φ(n+) = e(φ(n), n), (7.39)

where z ∈ Z and e is a function mapping Z × N# into Z.
More generally, we consider a mapping f of the cartesian product Z× N# ×A into Z and seek

a function φ ∈ Z N# ×A satisfying the conditions :
(b) φ(0, a) = g(a), φ(n+, a) = f(φ(n, a), n, a), (7.40)

where g ∈ ZA. This is a definition by induction with parameter a ranging over the set A.
Schemes (a) and (b) correspond to induction “from n to n+ = n + 1”,i.e. φ(n+) or φ(n+, a)
depends upon φ(n) or φ(n, a) respectively. More generally, φ(n+) may depend upon all

values φ(m) where m ≤ n (i.e. m ∈ n+). In the case of induction with parameter, φ(n+, a)
may depend upon all values φ(m,a), where m ≤ n; or even upon all values φ(m,a), where

m ≤ n+ and b ∈ A. In this way we obtain the following schemes of definitions by hyper infinite
induction:

(c) φ(0) = z, φ(n+) = h(φ|n+, n),
(d) φ(0, a) = g(a), φ(n+, a) = H(φ|

(
n+ ×A

)
, n, a). In the scheme (c), z ∈ Z and

h ∈ ZC×N#

, where C is the set of hyperfinite sequences whose terms belong to Z; in the scheme

(d), g ∈ ZA and H ∈ ZT×N# ×A, where T is the set of functions whose domains are included in
N# ×A and whose values belong to Z.

It is clear that the scheme (d) is the most general of all the schemes considered above.
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By coise of functions one obtains from (d) any of the schemes (a)-(d). For example, taking the

function defined by H(c, n, a) = f(c(n, a), n, a) for a ∈ A,n ∈ N#, c ∈ Z N# ×A as H in
(d), one obtain (b). We shall now show that, conversely, the scheme (d) can be obtained from

(a). Let g and H be functions belonging to ZA and ZT×N# ×A respectively, and let φ be a function
satisfying (d). We shall show that the sequence Ψ = {Ψn}n∈N# with Ψn = φ|

(
n+, A

)
can be

defined by (a).Obviously, Ψn ∈ T for every n ∈ N#. The first term of the sequence Ψ is equal to
φ|
(
0+, A

)
, i.e. to the set: z∗ = {⟨⟨0, a⟩ , g (a)⟩ |a ∈ A} .The relation between Ψn, and Ψn+ is given

by the formula:Ψn+ = Ψn ∪ φ|
({
n+
}
×A

)
, where the second component is{⟨⟨

n+, a
⟩
, φ(n+, a)

⟩
|a ∈ A

}
=
{⟨
n+, a

⟩
,H (Ψn, n, a) |a ∈ A

}
. (7.41)

Thus we see that the sequence Ψ can be defined by (a) if we substitute T for Z, z∗ for z and
let e(c, n) = c ∪

{⟨
n+, a

⟩
,H(c, n, a)|a ∈ A

}
for c ∈ T.

Now we shall prove the existence and uniqueness of the function satisfying (a). This theorem
shows that we are entitled to use definitions by induction of the type (a). According to the remark
made above, this will imply the existence of functions satisfying the formulas (b), (c), and (d).
Since the uniqueness of such functions can be proved in the same manner as for (a), we shall use in
the sequel definitions by induction of any of the types (a)-(d).

Theorem 7.4. If Z is any set z ∈ Z and e ∈ ZZ×N#

, then there exists exactly one
hyper infinite sequence φ satisfying formulas (a).
Proof. Uniqueness. Suppose that {φ1 (n)}n∈N# and {φ2 (n)}n∈N# satisfy (a) and let

K =
{
n|n ∈ N# ∧ φ1 (n) = φ2 (n)

}
(7.42)

Then (a) implies that K is hyperinductive. Hence N# j K and therefore φ1 (n) ≡ φ2 (n) .
Existence. Let Φ(z, n, t) be the formula e(z, n) = t and let Ψ(w, z, Fn) be the following
formula:

(Fn is a function) ∧ (D1(F ) = n+) ∧ (F (0) = z) ∧m∈n Φ(Fn(m),m, Fn(m
+)). (7.43)

In other words, F is a function defined on the set of numbers ≤ n ∈ N# such that
F (0) = z and F (m+) = e(F (m),m) for all m < n ∈ N#.
Remark 7.7.We assume now that predicate Ψ(w, z, Fn) is unrestricted on variable n ∈ N#,see

Definition 7.3.
We prove by induction that there exists exactly one function Fn such that Ψ (n, z, Fn).
The proof of uniqueness of this function is similar to that given in the first part of
Theorem 7.4. The existence of Fn can be proved as follows: for n = 0 it suffices to
take {⟨0, z⟩} as Fn; if n ∈ N# and Fn satisfies Ψ (n, z, Fn), then Fn+= Fn∪

{⟨
n+, e(Fn(n), n)

⟩}
satisfies the condition Ψ(n+, z, Fn+).
Now, we take as φ the set of pairs ⟨n, s⟩ such that n ∈ N#, s ∈ Z and

∃F [Ψ (n, z, F ) ∧ (s = F (n))] . (7.44)
Since F is the unique function satisfying Ψ (n, z, F ), it follows that φ is a function. For n = 0

we have φ(0) = F0(0) = z; if n ∈ N#, then φ
(
n+
)
= Fn+

(
n+
)
= e(Fn (n) , n) by the definition of

Fn; hence we obtain φ
(
n+
)
= e(φ(0), n). Theorem 7.4 is thus proved.

We frequently define not one but several functions (with the same range Z) by a simultaneous
induction:

φ(0) = z, ψ (0) = t,
φ
(
n+
)
= f (φ (n) , ψ (n) , n) , ψ

(
n+
)
= g (φ (n) , ψ (n) , n)

where z, t ∈ Z and f, g ∈ ZZ×Z×N#

.
This kind of definition can be reduced to the previous one. It suffices to notice that the
hypersequence ϑn = ⟨φ (n) , ψ (n)⟩ satisfies the formulas:ϑ0 = ⟨z, t⟩ , ϑn+ = e (ϑn, n) ,where
we set

e(u, n) = ⟨f(K(u), L(u), n), g(K(u), F (w), n)⟩ , (7.45)
and K,L denote functions such that
K (⟨x, y⟩) and L (⟨x, y⟩) = y respectively. Thus the function ϑ is defined by induction by
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means of (a). We now define φ and ψ by φ (n) = K (ϑn) , ψ (n) = L (ϑn) .
Remark 7.8.We assume now that predicate Ψ(w, z, Fn) is restricted on variable n ∈ N#,on

a set [0, β] ,see Definition 7.2, then there exists exactly one hyperfinite
sequence φ satisfying formulas (a).
The theorem 7.4 on hyper inductive definitions can be generalized to the case of
operations. We shall discuss only one special case. Let Φ (z, n, t) be a formula such
that

∀z∀n
(
n ∈ N#

)
∀t1∀t2 [Φ (z, n, t1) ∧ Φ(z, n, t2) =⇒ t1 = t2] . (7.46)

Theorem 7.5. For any set S there exists exactly one hyperinfinite sequence φn, n ∈ N#

such that φ0 = S and

∀n
(
n ∈ N#

)
Φ(φn, n, φn+) . (7.47)

Proof. Uniqueness can be proved as in Theorem 7.4 above.
To prove the existence of φn, let us consider the following formula Ψ (n, S, F ):

(F is a function)(D1 (F ) = n+) ∧ (F (0) = S) ∧ ∀m (m ∈ n)Φ(F (m),m, F (m′)), (7.48)
where D1 (F ) is domain of F.
As in the proof of Theorem 7.4, it can be shown that there exists exactly one function
Fn such that Ψ(n, S, Fn). To proceed further we must make certain that there exists a
set containing all the elements of the form Fn(n) where n ∈ N#. (In the case considered
in Theorem 7.4 this set is Z for the domain of the last variable of the formula 424 which
we used in the proof of Theorem 7.4 was limited to the set Z.) In the case under
consideration, the existence of the required set Z follows from the axiom of replacement.
In fact, the uniqueness of Fn implies that the formula

∃Fn [Ψ(n, S, Fn) ∧ (y = Fn (n))] (7.49)
satisfies the assumption of axiom of replacement. Hence by means of axiom of
replacement the image of N# obtained by this formula exists. This image is the required
set Z containing all the elements Fn(n).
The remainder of the proof is analogous to that of Theorem 7.4.
Example 7.1. Let Φ(S, t) be the formula t = P(S). Thus for any set S there exists
exactly one hyper infinite sequence {φn}n∈N# such that φ0 = S and φn+ = P(φn) for every

number n ∈ N#.

8 Useful Examples of the Hyper Inductive Definitions

1.Addition operation of hypernatural numbers
The function + (m,n) , m+ n : N# × N# → N# is defined by
m+ 0 = m,m+ n+ = (m+ n)+ .
This definition is obtained from (b) by seting Z = A = N#, g (a) = a, f (p, n, a) = p+.
This function satisfies all properties of addition such as: for all m,n, k ∈ N#

(i) m+ 0 = m (ii) m+ n = n+m (iii) m+ (n+ k) = (m+ n) + k.
2.Multiplicattion operation of gypernatural numbers
The function × (m,n) , m× n : N# × N# → N# is defined by
m× 1 = 1,m× n+ = m× n+m.
(i) m× 1 = 1 (ii) m× n = n×m (iii) m× (n× k) = (m× n)× k.
4.Distributivity with respect to multiplication over addition.
m× (n+ k) = m× n+m× k.
5. Let Z = A = XX , g (a) = IX , f (u, n, a) = u ◦ a in (b). Then (b) takes on the following form
φ (0, a) = IX , φ

(
n+, a

)
= φ (n, a) ◦ a. (8.1)
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The function φ (n, a) is denoted by an and is colled n-th iteration of the function a :

a0 (x) = x, an
+

(x) = an (a (x)) , x ∈ X, a ∈ XX , n ∈ N#. (8.2)

6.Let A =
(
N#
)N#

, g (a) = a0, f (u, n, a) = u+ an+ .Then (b) takes on the following form
φ (0, a) = a0, φ

(
n+, a

)
= φ (n, a) + an+ (8.3)

The function is defined by the Eqs.(8.3) is denoted by

n∑
i=0

ai (8.4)

7.Let A =
(
N#
)N#

, g (a) = a0, f (u, n, a) = u× an+ .Then (b) takes on the following form
φ (0, a) = a0, φ

(
n+, a

)
= φ (n, a)× an+ (8.5)

The function is defined by the Eqs.(8.5) is denoted by

n∏
i=0

ai (8.6)

8. Similarly we define maxi≤n (ai) ,mini≤n (ai) , n ∈ N#.
Theorem 8.1. The following equalities holds for any n, k1, l1 ∈ N# :
(1) using distributivity

b×
n∑

i=0

ai =
n∑

i=0

b× ai (8.7)

(2) using commutativity and associativity

n∑
i=0

ai ±
n∑

i=0

bi =
n∑

i=0

(ai ± bi) (8.8)

(3) splitting a sum, using associativity

n∑
i=0

ai =
j∑

i=0

ai +
n∑

i=j+1

ai (8.9)

(4) using commutativity and associativity, again

k1∑
i=k0

l1∑
j=l0

aij =
l1∑

j=l0

k1∑
i=k0

aij (8.10)

(5) using distributivity(
n∑

i=0

ai

)
×

(
n∑

j=0

bj

)
=

n∑
i=0

n∑
j=0

ai × bj (8.11)

(6)

(
n∏

i=0

ai

)
×
(

n∏
i=0

bi

)
=

n∏
i=0

ai × bi (8.12)

(7)

(
n∏

i=0

ai

)m

=
n∏

i=0

ami (8.13)

Proof. Imediately from Theorem 7.4 and hyperinfinite induction principle.
Definition 8.1.A non-empty non regular sequence {un}n∈Z is a blok corresponding to

gyperfinite number u = u0 ∈ N#\N iff there is gyperfinite number u such that ... ∈
u−(n+1) ∈ u−n... ∈ u−4 ∈ u−3 ∈ u−2 ∈ u−1 ∈ u and the following conditions are satisfied
... ∈ u−(n+1) ∈ u−n... ∈ u−4 ∈ u−3 ∈ u−2 ∈ u−1 ∈ u ∈ u1 ∈ u2 ∈ ... ∈ un ∈ un+1 ∈ ... (8.14)

where for any n ∈ N : u−(n+1) ∈ u−n, where u−n = u+
−(n+1).

Thus beginning with an infinite integer u ∈ N#\N we obtain a block (8.20) of infinite integers.
However, given a “block,” there is another block consisting of even larger infinite integers. For
example, there is the integer u+u, where u+ k < u+u for each k ∈ N. And v = u+u is itself part
of the block:
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... < v − 3 < v − 2 < v − 1 < v < v + 1 < v − 2 < ... (8.15)
Of course, v < v + u < v + v, and so forth. There are even infinite integers u × u and uu, and
so forth.Proceeding in the opposite direction, if u ∈ N#\N, either u or u + 1 is of the form v + v.
Here v must be infinite. So there is no first block, since v < u. In fact, the ordering of the blocks is
dense. For let the block containing v precede the one containing u, that is,

v − 2 < v − 1 < v < v + 1 < ... < ... < u− 2 < u− 1 < u < u+ 1 < ... (8.16)
Either u+ v or u+ v + 1 can be written z + z where v + k < z < u− l for all k, l ∈ N.
To conclude our consideration: N# consists of N as an initial segment followed by an ordered set
of blocks. These blocks are densely ordered with no first or last element. Each block is itself
order-isomorphic to the integers

−3,−2,−1, 0, 1, 2, 3, (8.17)

Although N#\N is a nonempty subset of N#, as we have just seen it has no least element and
likewise for any block.

9 Analisys on Nonarchimedian Field Q#

9.1 Basic properties of the hyperrationals Q#

Now that we have the hypernatural numbers, defining hyperintegers and hyperrational numbers is
well within reach.

Definition 9.1. Let Z′ = N# × N#. We can define an equivalence relation ≈ on Z′

by (a, b) ≈ (c, d) if and only if a+ d = b+ c. Then we denote the set of all hyperintegers
by Z# = Z′/ ≈ (The set of all equivalence classes of Z′ modulo ≈).
Definition 9.2. Let Q′ = Z# × (Z# − {0}) = {(a, b) ∈ Z# × Z#|b ̸= 0}. We can define an
equivalence relation ≈ on Q′ by (a, b) ≈ (c, d) if and only if a× d = b× c.Then we denote
the set of all hyperrational numbers by Q# = Q′/ ≈ (The set of all equivalence classes of
Q′modulo ≈).
Definition 9.3. A linearly ordered set (P,<) is called dense if for any a, b ∈ P such that
a < b, there exists z ∈ P such that a < z < b.
Lemma 9.1. (Q#, <) is dense.
Proof. Let x = (a, b), y = (c, d) ∈ Q# be such that x < y.Consider z = (ad+ bc, 2bd) ∈ Q#.
It is easily shown that x < z < y.
Remark 9.1.Consider the ring B of all limited (i.e. finite) elements in Q#. Then B has a
unique maximal ideal I≈, the infinitesimal numbers. The quotient ring B/I≈ gives the field
R of the classical real numbers.

1.Let A =
(
Q#
)Q#

, g (a) = a0, f (u, n, a) = u+ an+ .Then (b) takes on the following form
φ (0, a) = a0, φ

(
n+, a

)
= φ (n, a) + an+ (9.1)

The function is defined by the Eqs.(9.1) is denoted by

n∑
i=0

ai. (9.2)

2.Let A =
(
Q#
)Q#

, g (a) = a0, f (u, n, a) = u× an+ .Then (b) takes on the following form
φ (0, a) = a0, φ

(
n+, a

)
= φ (n, a)× an+ (9.3)

The function is defined by the Eqs.(9.3) is denoted by.
n∏

i=0

ai. (9.3)

9.2 Countable summation from hyperfinite sum

Definition 9.1. Let {an}n∈N be Q#-valued countable sequence. Let {an}mk be any

hyperfinite sequence with m ∈ N#\N and such that an = 0 if n ∈ N#\N.Then we define
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summation of the countable sequence {an}n∈N by the following hyperfinite sum

m∑
n=k

an ∈ Q# (9.4)

and denote such sum by the symbol

ω∑
n=k

an. (9.5)

Remark 9.2. Let {an}n∈N be Q-valued countable sequence. Note that: (i) for canonical

summation we always apply standard notation
∞∑

n=k

an. (9.6)

(ii) the countable sum (ω-sum ) (9.5) in contrast with (9.6) abviously always exists

even if a series (9.6) diverges absolutely i.e.,
∞∑

n=k

|an| = ∞.

Example 9.1. The ω-sum
ω∑

n=1

1

n
∈ Q# exists by Theorem 8.1, however

∞∑
n=1

1

n
= ∞.

Theorem 9.3. Let
ω∑

n=k

an = A and
ω∑

n=k

bn = B,whereA,B,C ∈ Q#.Then
ω∑

n=k

C × an = C ×
ω∑

n=k

an (9.6)

and
ω∑

n=k

(an ± bn) = A±B. (9.7)

Proof. It follows from Theorem 8.2.

Example 9.2. Consider the countable sum

Sω (r) =
ω∑

n=0

rn,−1 < r < 1. (9.5)

It follows from (9.5)

Sω (r) = 1 +
ω∑

n=1

rn = 1 + r
ω∑

n=0

rn = 1 + rSω (r) (9.6)

Thus Sω (r) =
1

1− r
. (9.7)

Remark 9.3. Note that

Sω (r) =
ω∑

n=0

rn =
∞∑

n=0

rn (9.8)

since as we know

S∞ (r) = limn→∞
n∑

n=0

rn =
∞∑

n=0

rn =
1

1− r
. (9.9)

Definition 9.2.An element x ∈ Q# is called finite if |x| < r for some r ∈ Q, r > 0.

Abbreviation 9.1.For x ∈ Q# we abbreviate x ∈ Q#
fin if x is finite.

Remark 9.4. Let x ∈ Q# be finite. Let D1, be the set of r ∈ Q such that r < x and D2

the set of r′ ∈ Q such that x < r′. The pair (D1, D2) forms a Dedekind cut in Rd, hence

determines a unique r0 ∈ Rd. A simple argument shows that |x− r0| is infinitesimal,

i.e., |x− r0| ≈ 0.

Definition 9.3.This unique r0 is called the standard part of x and is denoted by ◦x .

Theorem 9.4. If x ∈ Rd, then
◦x = x; if x, y ∈ Q# are both finite, then

◦(x+ y) = ◦(x) + ◦(y) ,◦ (x− y) = ◦(x) − ◦(y) . (9.10)

Definition 9.4.Let {ai}∞i=0 be countable Q#
fin-valued sequence. We say that a sequence

{ai}∞i=0 converges to standard limit a ∈ Rd and abbreviate a = st-limi→∞ ai if for every
ϵ > 0, ϵ ̸≈ 0 there is an integer N ∈ N such that |ai − a| < ϵ if i ≥ N.

Theorem 9.5. Let {ai}ni=0 , n ∈ N#\N be a hyperfinite Q#
fin-valued sequence such that:
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(i) ◦ai = ai for any i ≤ n and (ii) for any m ≤ n : Ext-
m∑
i=0

|ai| < µ ∈ Q#
fin, then

◦
(
Ext-

n∑
i=0

ai

)
= Ext-

n∑
i=0

ai . (9.11)

Proof. From Eq.(9.10) by the condition (ii) and hyper infinite induction we get

◦
(
Ext-

n∑
i=0

ai

)
= Ext-

n∑
i=0

◦ai . (9.12)

From Eq.(9.12) by the condition (i) we obtain Eq.(9.11).

Theorem 9.6. Let {ai}i∈N be a countable Q-valued sequence, i.e. ◦ai = ai ∈ Q for any

i ≤ n and
∞∑
i=0

|ai| <∞, thus there exists st-limm→∞
m∑
i=0

ai, then

◦
(
Ext-

ω∑
i=0

ai

)
≡ Ext-

ω∑
i=0

ai =
∞∑
i=0

ai. (9.13)

Proof. It follows directly from Theorem 9.5 for the case if for any i ∈ N#\N : ai ≡ 0.

Theorem 9.7. Let {bi}∞i=0 , be a countable Q-valued sequence such that

limm→∞
∑m

i=0 |bi| exists.Then
∞∑
i=0

bi ≡ Ext-
ω∑

i=0

bi. (9.14)

Proof. It follows directly from Theorem 9.6 and Eq.(9.13).

10 Euler’s proof of the Goldbach-Euler Theorem
Revisited

Theorem 10.1. (Goldbach-Euler theorem 1738)[12]-[13]. This infinite series, continued to infinity,
1

3
+

1

7
+

1

8
+

1

15
+

1

24
+

1

26
+

1

31
+

1

35
+ ... (10.1)

the denominators of which are all numbers which are one less than powers of degree two or
higher of whole numbers, that is, terms which can be expressed with the formula (mn − 1)−1, where
m and n are integers greater than one, then the sum of this series is = 1.

10.1 How Euler did it

Euler’s proof begins with an 18th century step that treats any infinite sum as a real

number which may be infinite large. Such steps became unpopular among rigorous mathematicians
about a hundred years later.

Euler takes Σ to be the sum of the harmonic series

Σ =∞
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+

1

9
+ .... (10.2)

Next, Euler subtracts from Eq.(10.2) the geometric series

1 =∞
n=1

1

2n
=

1

2
+

1

4
+

1

8
+

1

16
+

1

32
+ ... (10.3)

leaving

Σ− 1 = 1 +
1

3
+

1

5
+

1

6
+

1

7
+

1

9
+

1

10
+ ... (10.4)

Subtract from Eq.(10.4) geometric series

1

2
=

1

3
+

1

9
+

1

27
+

1

81
+

1

243
+ ... (10.5)

91



Foukzon; JAMCS, 36(8): 70-119, 2021; Article no.JAMCS.73147

leaving

Σ− 1− 1

2
= 1 +

1

5
+

1

6
+

1

7
+

1

10
+

1

11
+ ... (10.6)

Subtract from Eq.(10.6) geometric series

1

4
=

1

5
+

1

25
+

1

125
+ ... (10.7)

leaving

Σ− 1− 1

2
− 1

4
= 1 +

1

6
+

1

7
+

1

10
+ ... (10.8)

Remark 10.1.Note that Euler had to skip subtracting the geometric series

1

3
=

1

4
+

1

16
+

1

64
+

1

256
+ ... (10.9)

because the series of powers of 1/4 on the right is already a subseries of the series of powers of 1/2,
so those terms have already been subtracted. This happens because 3 is one less than a power, 4.It
happens again every time we reach a term one less than a power. He will have to skip 7,because
that is one less than the cube 8,and 8 because it is one less than the square 9, 15 because it is one
less than the square 16, etc. Continuing formally in this way to infinity, we see that all of the
terms on the right except the term 1 can be eliminated, leaving

Σ− 1− 1

2
− 1

4
− 1

5
− 1

6
− 1

9
− ... = 1. (10.10)

Thus

Σ− 1−
[
1

2
+

1

4
+

1

5
+

1

6
+

1

9
+

1

10
+ ...

]
= 1 (10.11)

so

Σ− 1 = 1 +
1

2
+

1

4
+

1

5
+

1

6
+

1

9
+

1

10
+ ... (10.12)

Remark 10.2.Note that it gets just a little bit tricky. Since Σ is sum of the harmonic series,
Euler believes that the 1 on the left must equal the terms of the harmonic series that are missing
on the right. Those missing terms are exactly the ones with denominators one less than powers, so
finally Euler concludes that

1 =
1

3
+

1

7
+

1

8
+

1

15
+

1

24
+

1

26
+

1

31
+

1

35
+ ... (10.13)

where the terms on the right have denominators one less than powers.

10.2 Proof of the Goldbach-Euler theorem using canonical analysis

We reproduce the proof here for the sake of completeness.

Lemma 1. For any positive integers n and k with 2 ≤ n < k

1/n− 1 = 1/(n− 1)n+ 1/n(n+ 1)+···+1/(k − 1)k + 1/k

Lemma 2. For any positive integers n and k with n ≥ 2

1/n− 1 = 1/n+ 1/n2+···+1/nk + 1/nk(n− 1)

We let denote the n-th harmonic number by Hn :

Hn = 1 + 1/2 + 1/3 + ...+ 1/n, (10.14)

but we now think of n as either a finite natural number or an infinite nonstandard natural
number. Let k2 be defined by 2k2 ≤ n < 2k2+1. The existence and uniqueness of k2 is clear either
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if we think of n as a finite natural number or as a nonstandard natural number: remember the
transfer principle. Using Lemma 2, we can write

1 = 1/2 + 1/22 + 123+···+1/2k2 + 1/2k2 ·1, and subtracting this
series from (9.14), we obtain

Hn − 1 = 1 + 1/3 + 1/5 + 1/6 + 1/7 + 1/9 + ···+ 1/n− 1/2k2 ·1. (10.15)

Hence, all powers of two, including two itself, disappear from the denominators, leaving the rest of
integers up to n.If from (10.15) we subtract

1/2 = 1/3 + 132 + 1/33 + ···+ 1/3k3 + 1/3k3 ·2, (10.16)

again obtained from Lemma 2 with k3 defined by 3k3 ≤ n < 3k3+1, the result will be

Hn − 1− 1/2 = 1 + 1/5 + 1/6 + 1/7 + 1/10 + ···+ 1/n− [1/2k2 ·1 + 1/3k3 ·2]. (10.17)

Proceeding similarly we end up by deleting all the terms that remain,arriving finally at

Hn − 1− 1/2− 1/4− 1/5− 1/6− 1/7− 1/10− ··· − 1/n =

= 1− [1/2k2 ·1 + 1/3k3 ·2 + ···+ 1/n·(n− 1)].
(10.18)

Notice that k2 ≥ k3 ≥···.In fact,when m >
√
n we get km = 1.This last expression has been

obtained assuming that n is a nonpower. If n is a power, then 1/n will have disappeared at
some stage of this process,and the last fraction to beremoved from(10.17) will be 1/(n− 1), whose
denominator is a nonpower unless n = 9. (This is Catalan’s conjecture that 8 and 9 are the only
consecutive powers that exist. The conjecture was recently proved by Mihǎilescu [14]. In fact,
it does not matter here whether there are more consecutive powers or not.) The corresponding
expression will thus be

Hn − 1− 1/2− 1/4− 1/5− 1/6− 1/7− 1/10− ··· − 1/n− 1

= 1− [1/2k2 ·1 + 1/3k3 ·2 + ···+ 1/(n− 1)·(n− 2)].
(10.19)

Consequently, if we subtract (10.18) from (10.14) we obtain

1− [1/2k2 ·1 + 1/3k3 ·2 + ···+ 1/n·(n− 1)] =
1/3 + 1/7 + 1/8 + 1/15 + 1/24 + 1/26 + ···+ 1/n− 1

(10.20)

or, correspondingly subtracting (10.19) from (10.14),

1− [12k2·1 + 13k3·2 + ···+ 1/(n− 1)(n− 2)] =
1/3 + 1/7 + 1/8 + 1/15 + 1/24 + 1/26 + ···+ 1/n,

(10.21)

sums that containin their denominators,increased by one,all the power so fthe integers up to n.
We must now take care of the “remainder,” that is, the expression between parentheses above or
on the right-hand side of (10.17) (respectively, (10.19)).

Since for each m ≥ 2 we know by the definition of km that n < mkm+1 ≤ m2km , it follows

that
√
n < mkm and

1/
[
mkm ·(m− 1)

]
≤ 1/

√
n (m− 1) . (10.22)

This implies that

1/2k2 ·1 + 1/3k3 ·2 + ···+ 1/n·(n− 1) ≤ Hn−1/
√
n (10.23)

or, if n is a power,

1/2k2 ·1 + 1/3k3 ·2 + ···+ 1/(n− 1)·(n− 2) ≤ Hn−2/
√
n− 1. (10.24)

If we have chosen to regard n as a finite integer then we can pass to the limit and use Euler’s
asymptotic value for Hn : limn→∞Hn−1/

√
n = limn→∞ [log(n− 1) + 3b3] /

√
n = 0. The proof is

now complete.
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10.3 Euler proof revisited using elementary analysis on nonarchi-
median field Q#

We replace Eq.(10.2) by

Σω =ω
n=1

1

n
,
[
1 +

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+

1

9
+ ....

]#
, (10.25)

where we write symbolically for convenience[
1 + 1

2
+ 1

3
+ 1

4
+ 1

5
+ 1

6
+ 1

7
+ 1

8
+ 1

9
+ ....

]#
instead ω-sum

∑ω
n=1

1
n
.

Remark 10.3.Remind that ω-sum
∑ω

n=1
1
n
is defined as hyperfinite sum

∑m
n=1 an,

where an = n−1if n ∈ Q and an = 0 if n ∈ Q#\Q.
Remark 10.4.Note that Σω ∈ Q#\Q.
Subtract from Eq.(10.25) the ω-sum

1 =ω
n=1

1

2n
=

[
1

2
+

1

4
+

1

8
+

1

16
+

1

32
+ ...

]#
(10.26)

using Theorem 9.3 we obtain

Σω − 1 =

[
1 +

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+

1

9
+ ....

]#
−

−
[
1

2
+

1

4
+

1

8
+

1

16
+

1

32
+ ...

]#
=[

1 +
1

3
+

1

5
+

1

6
+

1

7
+

1

9
+

1

10
+ ...

]#
.

(10.27)

Subtract from Eq.(10.27) the ω-sum

1

2
=ω

n=1
1

3n
=

[
1

3
+

1

9
+

1

27
+

1

81
+

1

243
+ ...

]#
(10.28)

using Theorem 9.3 we obtain

Σω − 1− 1

2
=

[
1 +

1

3
+

1

5
+

1

6
+

1

7
+

1

9
+

1

10
+ ...

]#
−

−
[
1

3
+

1

9
+

1

27
+

1

81
+

1

243
+ ...

]#
=

=

[
1 +

1

5
+

1

6
+

1

7
+

1

10
+

1

11
+ ...

]#
.

(10.29)

Subtract from Eq.(10.29) the ω-sum

1

4
=

[
1

5
+

1

25
+

1

125
+ ...

]#
(10.30)

using Theorem 9.3 we obtain

Σω − 1− 1

2
− 1

4
=

[
1 +

1

6
+

1

7
+

1

10
+ ...

]#
(10.31)

Remark 10.5.Note that in calculation above we had skip subtracting the ω-sum
(see Remark 9.1)

1

3
=

[
1

4
+

1

16
+

1

64
+

1

256
+ ...

]#
(10.32)

because the series of powers of 1/4 on the right is already a subseries of the ω-sum (10.28)
of powers of 1/2, so those terms have already been subtracted. This happens because 3 is one
less than a power, 4.It happens again every time we reach a term one less than a power. He will
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have to skip 7,because that is one less than the cube 8,and 8 because it is one less than the square
9, 15 because it is one less than the square 16, etc. Continuing in this way to gyperfinite number
m ∈ Q#\Q by using gyperfinite induction principle, we see that all of the terms on the right except
the term 1 can be eliminated. Thus by Theorem 9.3 and Remark 10.5 we obtain

Σω − 1−
[
1

2
+

1

4
+

1

5
+

1

6
+

1

9
+

1

10
+ ...

]#
=

Σω −
[
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+

1

9
+ ....

]#
=

= Σω −ω
n=2

1

n
= 1.

(10.33)

From Eq.(10.33) we obtain

Σω − 1−
[
1

2
+

1

4
+

1

5
+

1

6
+

1

9
+

1

10
+ ...

]#
= 1. (10.34)

Finally we get

1 =

[
1

3
+

1

7
+

1

8
+

1

15
+

1

24
+

1

26
+

1

31
+

1

35
+ ...

]#
, (10.35)

where the terms on the right have denominators one less than powers. From Eq.(10.32) by
Theorem 9.7 we obtain

1 =
1

3
+

1

7
+

1

8
+

1

15
+

1

24
+

1

26
+

1

31
+

1

35
+ ..., (10.36)

where the terms on the right have denominators one less than powers. Note that Eq.(10.36)
now is obtained without any references to Catalan conjecture [13,14].

11 External Induction Principle and Hyper Inductive
Definitions in Nonstandard Analysis

11.1 Internal induction principle in Robinson nonstandard analysis

Remind that in Robinson nonstandard analysis [2]-[5] each member of ∗P (N) is colled to be an
internal subset of ∗N ;any other subset of ∗N is colled an external subset of ∗N .

The importance of internal sets versus external sets rests on the theorem which says that each
statement which is true for N is true for ∗N if and only if its quantifiers are restricted on internal
subset of ∗N .Thus the induction postulate reads

∀S [S ∈ ∗P (N) ] {1 ∈ S ∧ ∀x [x ∈ S =⇒ x+ 1 ∈ S] =⇒ S = ∗N} . (11.1)
Remind that a set S is inductive if 1 ∈ S ∧ ∀x [x ∈ S =⇒ x+ 1 ∈ S] . The induction postulate
(11.1) is not holds for inductive set S which is not internal. For example the induction postulate
(11.1) is not holds for inductive set S = N since N ̸= ∗N .

We emphasize that in contrast with ZFC in set theory INC#

∞# notion of internal subset of
∗N is not important since the induction postulate (11.1) holds for any hyper inductive set S which
is not initially defined as internal.

Definition 11.1.A set S ⊂ ∗N is a hyper inductive if the following statement holds∧
α∈ ∗N

(
α ∈ S =⇒ α+ ∈ S

)
. (11.2)

Obviously a set ∗N is a hyper inductive. As we see later there is just one hyper inductive
subset of ∗N ,namely ∗N itself.
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11.2 External induction principle in nonstandard analysis based on
set theory INC#

∞#

Definition 11.2.Let β be a hypernatural such that β ∈ ∗N \N. Let [0, β] ⊂ ∗Nbe a set
such that ∀x [x ∈ [0, β] ⇐⇒ 0 ≤ x ≤ β] and [0, β) = [0, β] \ {β} .
Definition 11.3.(i) Let F (x) be a wff of INC#with unique free variable x.We will say that
a wff F (x) is restricted on a set SF such that SF $ ∗N iff the following conditions are
satisfied

∀α (α ∈ ∗N ) [F (α) =⇒ α ∈ SF ] (11.3)
and

∀α (α ∈ ∗N ) [¬F (α) =⇒ α ∈ ∗N \SF ] . (11.4)

Definition 11.4. Let F (x) be a wff of INC#

∞#with unique free variable x.We will say that a
wff F (x) is unrestricted on variable x if wff F (x) is not restricted on any set S such that

S $ ∗N .This definition meant∧
α∈N#

(
F (α) 0 α /∈ N#

)
. (11.5)

Axiom of hyperfinite induction 1

∀β (β ∈ ∗N \N) ∀S (S ⊆ [0, β]) ↘{
∀α (α ∈ [0, β])

[ ∧
0≤α<β

(
α ∈ S =⇒ α+ ∈ S

)]
=⇒ S = [0, β]

}
.

(11.6)

Axiom of hyper infinite induction 1

∀S (S ⊂ ∗N )

{
∀β (β ∈ ∗N )

[ ∧
0≤α<β

(
α ∈ S =⇒ α+ ∈ S

)]
=⇒ S = ∗N

}
. (11.6)

Remark 11.1.Note that from comprechesion shemata 2 (see subsection 6.1) follows
that

∀β∃S (S ⊂ [0, β]) ∀β̄
(
β̄ ∈ [0, β]

) [
β̄ ∈ S ⇐⇒

∧
0≤α<β̄

(
α ∈ S =⇒ α+ ∈ S

)]
. (11.7)

Therefore for any β̄ ∈ [0, β] from (11.7) it follows that∧
0≤α<β

(
α ∈ S =⇒ α+ ∈ S

)
⊢ β ∈ S. (11.8)

Thus axiom of hyperfinite induction 1,i.e., (11.5) holds, since from (11.8) it follows that
∀β
[
β ∈ [0, β] =⇒ β ∈ S

]
.

Remark 11.2.Note that from comprechesion shemata 2 (see subsection 6.1) follows
that

∃S (S ⊂ ∗N ) ∀β (β ∈ ∗N )

[
β ∈ S ⇐⇒

∧
0≤α<β

(
α ∈ S =⇒ α+ ∈ S

)]
. (11.9)

Therefore for any β ∈ ∗N from (11.9) it follows that∧
0≤α<β

(
α ∈ S =⇒ α+ ∈ S

)
⊢ β ∈ S (11.10)

Thus axiom of hyperinfinite induction 1, i.e., (7.6) holds, since it follows from (7.10)
that ∀β [β ∈ ∗N =⇒ β ∈ S] .
Axiom of hyperfinite induction 2
Let F (x) be a wff of the set theory INC#

∞# restricted on a set [0, β] then
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[
∀β (β ∈ ∗N \N)

[ ∧
0≤α<β

(
F (α) =⇒ F

(
α+
))]]

=⇒ ∀α (α ∈ [0, β])F (α) . (11.11)

Axiom of hyper infinite induction 2
Let F (x) be unrestricted wff of the set theory INC#

∞# then[
∀β (β ∈ ∗N )

[ ∧
0≤α<β

(
F (α) =⇒ F

(
α+
))]]

=⇒ ∀β (β ∈ ∗N )F (β) . (11.12)

Remark 11.3.Note that from comprechesion shemata 2 (see subsection 6.1) follows
that

∀β∃S (S ⊂ [0, β]) ∀β
(
β ∈ [0, β]

) [
β ∈ S ⇐⇒

∧
0≤α<β

(
F (α) =⇒ F

(
α+
))]

. (11.13)

Therefore for any β ∈ [0, β] from (11.13) it follows that∧
0≤α<β

(
F (α) =⇒ F

(
α+
))

⊢ β ∈ S (11.14)

Thus axiom of hyperfinite induction 2,i.e., (11.12) holds, since it follows from (11.14)
that ∀β

[
β ∈ [0, β] =⇒ β ∈ S

]
.

12 Hyper Inductive Definitions Corresponding to
Robinson Hyperreals ∗R

12.1 Hyper inductive definitions corresponding to Robinson
hyperreals ∗R in general.

A function f : ∗N → A whose domain is the set ∗N is colled an hyper infinite sequence and denoted
by {fn}n∈ ∗N or by {f (n)}n∈ ∗NThe set of all hyper infinite sequences whose terms belong to A is

clearly A
∗N ; the set of all hyperfinite sequences of n ∈ ∗N\N terms in A is An. The set of all

hyperfinite sequences with terms in A can be defined as
{R ⊂ ∗N ×A : (R is a function) ∧n∈ ∗N (D1 (R) = n)} , (12.1)

where D1 (R) is domain of R.This definition implies the existence of the set of all hyperfinite
sequences with terms in A.The simplest case is the hyper inductive definition of a hyperinfinite
sequence {φ (n)}n∈ ∗N (with terms belonging to a certain set Z) satisfying the following conditions:

(a) φ(0) = z, φ(n+) = e(φ(n), n), (12.2)
where z ∈ Z and e is a function mapping Z × ∗N into Z.
More generally, we consider a mapping f of the cartesian product Z × ∗N ×A into Z and seek

a function φ ∈ Z
∗N×A satisfying the conditions :

(b) φ(0, a) = g(a), φ(n+, a) = f(φ(n, a), n, a), (12.3)

where g ∈ ZA. This is a definition by induction with parameter a ranging over the set A.
Schemes (a) and (b) correspond to induction “from n to n+ = n + 1”,i.e. φ(n+) or φ(n+, a)
depends upon φ(n) or φ(n, a) respectively. More generally, φ(n+) may depend upon all

values φ(m) where m ≤ n (i.e. m ∈ n+). In the case of induction with parameter, φ(n+, a)
may depend upon all values φ(m,a), where m ≤ n; or even upon all values φ(m,a), where

m ≤ n+ and b ∈ A. In this way we obtain the following schemes of definitions by induction:
(c) φ(0) = z, φ(n+) = h(φ|n+, n),
(d) φ(0, a) = g(a), φ(n+, a) = H(φ|

(
n+ ×A

)
, n, a).
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In the scheme (c), z ∈ Z and h ∈ ZC× ∗N , where C is the set of hyperfinite sequences whose
terms belong to Z; in the scheme (d), g ∈ ZA and H ∈ ZT× ∗N×A, where T is the set of functions
whose domains are included in ∗N ×A and whose values belong to Z.

It is clear that the scheme (d) is the most general of all the schemes considered above.
By coise of functions one obtains from (d) any of the schemes (a)-(d). For example, taking the

function defined by H(c, n, a) = f(c(n, a), n, a) for a ∈ A,n ∈ ∗N , c ∈ Z
∗N×A as H in

(d), one obtain (b). We shall now show that, conversely, the scheme (d) can be obtained from
(a). Let g and H be functions belonging to ZA and ZT× ∗N×A respectively, and let φ be a function
satisfying (d). We shall show that the sequence Ψ = {Ψn}n∈ ∗N with Ψn = φ|

(
n+, A

)
can be

defined by (a).Obviously, Ψn ∈ T for every n ∈ N#. The first term of the sequence Ψ is equal to
φ|
(
0+, A

)
, i.e. to the set: z∗ = {⟨⟨0, a⟩ , g (a)⟩ |a ∈ A} .The relation between Ψn, and Ψn+ is given

by the formula:Ψn+ = Ψn ∪ φ|
({
n+
}
×A

)
, where the second component is{⟨⟨

n+, a
⟩
, φ(n+, a)

⟩
|a ∈ A

}
=
{⟨
n+, a

⟩
, , H (Ψn, n, a) |a ∈ A

}
. (12.4)

Thus we see that the sequence Ψ can be defined by (a) if we substitute T for Z, z∗ for z and
let e(c, n) = c ∪

{⟨
n+, a

⟩
,H(c, n, a)|a ∈ A

}
for c ∈ T.

Now we shall prove the existence and uniqueness of the function satisfying (a). This theorem
shows that we are entitled to use definitions by induction of the type (a). According to the remark
made above, this will imply the existence of functions satisfying the formulas (b), (c), and (d).
Since the uniqueness of such functions can be proved in the same manner as for (a), we shall use in
the sequel definitions by induction of any of the types (a)-(d).

Theorem 12.1. If Z is any set z ∈ Z and e ∈ ZZ× ∗N , then there exists exactly one
hyper infinite sequence φ satisfying formulas (a).
Proof. Uniqueness. Suppose that {φ1 (n)}n∈ ∗N and {φ2 (n)}n∈ ∗N satisfy (a) and let

K = {n|n ∈ ∗N ∧ φ1 (n) = φ2 (n)} (12.5)
Then (a) implies that K is hyperinductive. Hence ∗N j K and therefore φ1 (n) ≡ φ2 (n) .
Existence. Let Φ(z, n, t) be the formula e(z, n) = t and let Ψ(w, z, F ) be the following
formula:

(F is a function) ∧ (D1(F ) = n+) ∧ (F (0) = z) ∧m∈n (F (m),m, F (m+)). (12.6)
In other words, F is a function defined on the set of numbers ≤ n ∈ ∗N such that
F (0) = z and F (m+) = e(F (m),m) for all m < n ∈ ∗N .
Remark 11.4.We assume now that predicate Ψ(w, z, Fn) is unrestricted on variable n,
see Definition 11.4.
We prove by hyper infinite induction that there exists exactly one function Fn such that

Ψ (n, z, Fn). The proof of uniqueness of this function is similar to that given in the first part
of Theorem 12.1. The existence of Fn can be proved as follows: for n = 0 it suffices to take {⟨0, z⟩}
as Fn; if n ∈ ∗N and Fn satisfies Ψ (n, z, Fn), then Fn+= Fn ∪

{⟨
n+, e(Fn(n), n)

⟩}
satisfies the

condition Ψ(n+, z, Fn+).
Now, we take as φ the set of pairs ⟨n, s⟩ such that n ∈ ∗N , s ∈ Z and

∃F [Ψ (n, z, F ) ∧ (s = F (n))] . (12.7)
Since F is the unique function satisfying Ψ (n, z, F ), it follows that φ is a function. For n = 0

we have φ(0) = F0(0) = z; if n ∈ ∗N , then φ
(
n+
)
= Fn+

(
n+
)
= e(Fn (n) , n) by the definition of

Fn; hence we obtain φ
(
n+
)
= e(φ(0), n). Theorem 12.1 is thus proved.

We frequently define not one but several functions (with the same range Z) by a simultaneous
induction:

φ(0) = z, ψ (0) = t,
φ
(
n+
)
= f (φ (n) , ψ (n) , n) , ψ

(
n+
)
= g (φ (n) , ψ (n) , n)

where z, t ∈ Z and f, g ∈ ZZ×Z× ∗N .
This kind of definition can be reduced to the previous one. It suffices to notice that the

hypersequence ϑn = ⟨φ (n) , ψ (n)⟩ satisfies the formulas:ϑ0 = ⟨z, t⟩ , ϑn+ = e (ϑn, n) ,where we set
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e(u, n) = ⟨f(K(u), L(u), n), g(K(u), F (w), n)⟩ , (12.8)

andK,L denote functions such thatK (⟨x, y⟩) and L (⟨x, y⟩) = y respectively. Thus the function
ϑ is defined by induction by means of (a). We now define φ and ψ by φ (n) = K (ϑn) , ψ (n) =
L (ϑn) .

12.2 Summation of the hyperfinite external ∗R-valued sequences

1.Addition operation of Robinson hypernatural numbers.

The function + (m,n) , m+ n : ∗N × ∗N → ∗N is defined hyper inductively by

m+ 0 = m,m+ n+ = (m+ n)+ .

This definition is obtained from conditions (12.3) by seting Z = A = ∗N , g (a) = a, f (p, n, a) =
p+, p+ = p+ 1

This function satisfies all properties of addition such as: for all m,n, k ∈ ∗N
(i) m+ 0 = m (ii) m+ n = n+m (iii) m+ (n+ k) = (m+ n) + k.

2.Multiplicattion operation of Robinson hypernatural numbers.

The function × (m,n) , m× n : ∗N × ∗N → ∗N is defined by

m× 1 = 1,m× n+ = m× n+m.

(i) m× 1 = 1 (ii) m× n = n×m (iii) m× (n× k) = (m× n)× k.

4.Distributivity with respect to multiplication over addition.

m× (n+ k) = m× n+m× k.

5. Let Z = A = XX , g (a) = IX , f (u, n, a) = u ◦ a in (b). Then (12.3) takes on the following

form

φ (0, a) = IX , φ
(
n+, a

)
= φ (n, a) ◦ a. (12.9)

The external function φ (n, a) is denoted by an and is colled n-th iteration of the function a

a0 (x) = x, an
+

(x) = an (a (x)) , x ∈ X, a ∈ XX , n ∈ ∗N . (12.10)

6.Let A = ( ∗N )N
∗
, g (a) = a0, f (u, n, a) = u+ an+ .Then (12.3) takes on the following form

φ (0, a) = a0, φ
(
n+, a

)
= φ (n, a) + an+ (12.11)

The external function is defined by the Eqs.(12.11) is denoted by

Ext-
n∑

i=0

ai (12.12)

7.Let A = ( ∗N )N
∗
, g (a) = a0, f (u, n, a) = u× an+ .Then (12.3) takes on the following form

φ (0, a) = a0, φ
(
n+, a

)
= φ (n, a)× an+ (12.13)

The external function is defined by the Eqs.(12.13) is denoted by

Ext-
n∏

i=0

ai (12.14)

8. Similarly we define maxi≤n (ai) ,mini≤n (ai) , n ∈ N∗.

Theorem 12.2. For any hyperfinite ∗N-valued sequences {ai}ni=1 , {bi}
n
i=1 , {ci}

n
i=1 , n ∈ N#

the following equalities holds for any n, k1, l1 ∈ N∗ :

(1) distributivity

b×
(
Ext-

n∑
i=0

ai

)
= Ext-

n∑
i=0

b× ai (12.15)

(2) Ext-
n∑

i=0

ai ± Ext-
n∑

i=0

bi = Ext-
n∑

i=0

(ai ± bi) (12.16)

(3) splitting a sum

Ext-
n∑

i=0

ai = Ext-
j∑

i=0

ai + Ext-
n∑

i=j+1

ai (12.17)
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(4) Ext-
k1∑

i=k0

(
Ext-

l1∑
j=l0

aij

)
= Ext-

l1∑
j=l0

(
Ext-

k1∑
i=k0

aij

)
(12.18)

(5)

(
Ext-

n∑
i=0

ai

)
×

(
Ext-

n∑
j=0

bj

)
= Ext-

n∑
i=0

(
Ext-

n∑
j=0

ai × bj

)
(12.19)

(6)

(
Ext-

n∏
i=0

ai

)
×
(
Ext-

n∏
i=0

bi

)
= Ext-

n∏
i=0

ai × bi (12.20)

(7)

(
Ext-

n∏
i=0

ai

)m

= Ext-
n∏

i=0

ami (12.21)

Proof. Imediately from Theorem 11.1 and hyperinfinite induction principle.

9.Let A = ( ∗Q )N
∗
, g (a) = a0, f (u, n, a) = u+ an+ .Then (12.3) takes on the following

form

φ (0, a) = a0, φ
(
n+, a

)
= φ (n, a) + an+ (12.22)

The external function is defined by the Eqs.(12.22) is denoted by

Ext-
n∑

i=0

ai (12.23)

10.Let A = ( ∗Q )N
∗
, g (a) = a0, f (u, n, a) = u× an+ .Then (12.3) takes on the following

form

φ (0, a) = a0, φ
(
n+, a

)
= φ (n, a)× an+ (12.24)

The external function is defined by the Eqs.(12.24) is denoted by

Ext-
n∏

i=0

ai (12.25)

11. Similarly we define maxi≤n (ai) ,mini≤n (ai) , n ∈ N∗.

Theorem 12.3. For any ∗Q-valued hyperfinite sequences {ai}ni=1 , {bi}
n
i=1 , {ci}

n
i=1 , n ∈ N∗

the following equalities holds for any n, k1, l1 ∈ N∗ :

(1) distributivity b×
(
Ext-

n∑
i=0

ai

)
= Ext-

n∑
i=0

b× ai (12.26)

(2)

Ext-
n∑

i=0

ai ± Ext-
n∑

i=0

bi = Ext-
n∑

i=0

(ai ± bi) (12.27)

(3) splitting a sum

Ext-
n∑

i=0

ai = Ext-
j∑

i=0

ai + Ext-
n∑

i=j+1

ai (12.28)

(4) Ext-
k1∑

i=k0

(
Ext-

l1∑
j=l0

aij

)
= Ext-

l1∑
j=l0

(
Ext-

k1∑
i=k0

aij

)
(12.29)

(5)

(
Ext-

n∑
i=0

ai

)
×

(
Ext-

n∑
j=0

bj

)
= Ext-

n∑
i=0

(
Ext-

n∑
j=0

ai × bj

)
(12.30)

(6)(
Ext-

n∏
i=0

ai

)
×
(
Ext-

n∏
i=0

bi

)
= Ext-

n∏
i=0

ai × bi (12.31)

(7)

(
Ext-

n∏
i=0

ai

)m

= Ext-
n∏

i=0

ami (12.32)

Proof. Imediately from Theorem 12.1 and hyperinfinite induction principle.
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12.Let A = ( ∗R )N
∗
, g (a) = a0, f (u, n, a) = u+ an+ .Then (12.3) takes on the following

form

φ (0, a) = a0, φ
(
n+, a

)
= φ (n, a) + an+ (12.33)

The external function is defined by the Eqs.(12.33) is denoted by

Ext-
n∑

i=0

ai (12.34)

13.Let A = ( ∗R )N
∗
, g (a) = a0, f (u, n, a) = u× an+ .Then (7.40) takes on the following

form

φ (0, a) = a0, φ
(
n+, a

)
= φ (n, a)× an+ (12.35)

The external function is defined by the Eqs.(12.35) is denoted by

Ext-
n∏

i=0

ai (12.36)

14. Similarly we define maxi≤n (ai) ,mini≤n (ai) , n ∈ N∗.

Theorem 12.4. For any ∗R-valued hyperfinite sequences {ai}ni=1 , {bi}
n
i=1 , {ci}

n
i=1 , n ∈ N∗

the following equalities holds for any n, k1, l1 ∈ N∗ :

(1) distributivity b×
(
Ext-

n∑
i=0

ai

)
= Ext-

n∑
i=0

b× ai (12.37)

(2) Ext-
n∑

i=0

ai ± Ext-
n∑

i=0

bi = Ext-
n∑

i=0

(ai ± bi) (12.38)

(3) splitting a sum Ext-
n∑

i=0

ai = Ext-
j∑

i=0

ai + Ext-
n∑

i=j+1

ai (12.39)

(4)

Ext-
k1∑

i=k0

(
Ext-

l1∑
j=l0

aij

)
= Ext-

l1∑
j=l0

(
Ext-

k1∑
i=k0

aij

)
(12.40)

(5)

(
Ext-

n∑
i=0

ai

)
×

(
Ext-

n∑
j=0

bj

)
= Ext-

n∑
i=0

(
Ext-

n∑
j=0

ai × bj

)
(12.41)

(6)

(
Ext-

n∏
i=0

ai

)
×
(
Ext-

n∏
i=0

bi

)
= Ext-

n∏
i=0

ai × bi (12.42)

(7)

(
Ext-

n∏
i=0

ai

)m

= Ext-
n∏

i=0

ami (12.43)

Proof. Imediately from Theorem 21.1 and hyper infinite induction principle.

Remark 12.1.Note that in general case

Ext-
n∑

i=0

ai ̸= Ext-
n∑

k=0

(a2k + a2k+1) , (12.44)

where n ∈ ∗N \N.
Remark 12.2.We remind that there exists an natural embedding [5]:
∗ [·] : R ↩→ ∗R . (12.45)

For any real number r ∈ R let r̄ denote the constant function with value r in RN,i.e.,

r̄ (n) = r,for all n ∈ N. We then have embedding (11.30).We denote ∗ [·]-image of R in
∗R by ∗ [R] = ∗Rst .

Remark 12.3.We remind that the following statement holds [5].

EXTENSION PRINCIPLE: ∗R is a proper extension of R and ∗r ≡ r for all r ∈ R. This
means that we identify R with its ∗-image ∗Rst in ∗R.
Remark 12.4.We remind that [5]:(i) an element x ∈ ∗R is called finite if |x| < ∗r

for some r > 0,(ii) every finite x ∈ ∗R is infinitely close to some (unique) ∗r ∈ ∗Rst

in the sense that |x− ∗r | is either 0 or positively infinitesimal in ∗R.This unique ∗r is
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called the standard part of x and is denoted by ◦x.If ∗r ∈ ∗Rst, then
◦ ( ∗r ) = r; if x, y ∈ ∗R

are both finite, then

◦(x+ y) = ◦(x) + ◦(y) ,◦ (x− y) = ◦(x) − ◦(y) . (12.46)

Definition 12.1.Let {ai}∞i=0 be a countable R-valued sequence and let {∗ai}∞i=0 be

corresponding countable ∗Rst-valued sequence, where ∗ai =
∗ [ai] . A sequence

{∗ai}∞i=0 converges to standard limit a ∈ ∗Rst and abbraviate a = st-limi→∞
∗ai if for every

ϵ > 0, ϵ ̸≈ 0 there is an integer N ∈ N such that |∗ai − a| < ϵ if i ≥ N.Note that a = ∗a ,where
a = limi→∞ ai.

Theorem 12.4. (i) Let {ai}ni=0 , n ∈ N be a countable R-valued sequence such that a limit

a = limi→∞ ai, a ∈ R exists.Then a countable ∗Rst-valued sequence converges to standard

limit ∗a : ∗a = st-limi→∞
∗ai .

Proof. (i) Immediately from defininition12.1.

Example 12.1.limi→∞
i
n=0

(−1)n π2n+1

22n+1 (2n+ 1)!
= sin

(π
2

)
= 1.Then by Theorem 11.4

we get: st-limi→∞
∗
(

i
n=0

(−1)n π2n+1

22n+1 (2n+ 1)!

)
= ∗1 .

Theorem 12.5. Let {ai}ni=0 , n ∈ N#\N be a hyperfinite sequence such that:

(i) ◦ai = ai for any i ≤ n and (ii) for any m ≤ n : Ext-
m∑
i=0

ai < µ ∈ ∗Rst , then

◦
(
Ext-

n∑
i=0

ai

)
= Ext-

n∑
i=0

ai . (12.47)

Proof. From Eq.(12.46) by the condition (ii) and hyper infinite induction we get

◦
(
Ext-

n∑
i=0

ai

)
= Ext-

n∑
i=0

◦ai . (12.48)

From Eq.(12.48) by the condition (i) we obtain Eq.(12.47).

12.3 Summation of the cauntable ∗R-valued sequences.

Definition 12.2. Let {an}n∈N be ∗R -valued countable sequence. Let {an}mk be any

hyperfinite sequence with m ∈ ∗N \N and such that an = 0 if n ∈ ∗N \N.Then we define

summation of the countable sequence {an}n∈N by the following hyperfinite sum

Ext-
m∑

n=k

an ∈ ∗R (12.49)

and denote such sum by the symbol

Ext-
ω∑

n=k

an. (12.50)

Remark 12.5. Let {an}n∈N be R-valued countable sequence. Note that: (i) for canonical

summation we always apply standard notation

∞∑
n=k

an. (12.51)

(ii) the countable external sum (ω-summ ) (12.50) in contrast with countable external sum

(12.51) obviously always exists even if a series (12.51) diverges absolutely i.e.,
∑∞

n=k |an| =
∞.

Example 12.2. The ω-sum Ext-
ω∑

n=1

1

n
∈ ∗R\R exists by Theorem 12.1, however
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∞∑
n=1

1

n
= ∞. (12.52)

Theorem 12.6. Let Ext-
ω∑

n=k

an = A and Ext-
ω∑

n=k

bn = B,where A,B,C ∈ ∗R .Then

Ext-
ω∑

n=k

C × an = C ×
(
Ext-

ω∑
n=k

an

)
(12.53)

and

Ext-
ω∑

n=k

(an ± bn) = A±B. (12.54)

Proof. It follows directly from Theorem 12.4.

Theorem 12.7. Let {ai}ni=0 , n ∈ N be a countable R-valued sequence such that a siries∑∞
i=0 ai converges absolutely. Assum that: st-limm→∞

(
Ext-

∑ω
i=m |∗ai|

)
= 0. Then

st- limm→∞
∑m

i=0
∗ai = Ext-

∑ω
i=0

∗ai (12.55)

Proof. Note that

∣∣∑m
i=0

∗ai − Ext-
∑ω

i=0
∗ai
∣∣ = ∣∣Ext-∑ω

i=m+1
∗ai
∣∣ ≤ Ext-

∑ω
i=m+1 |

∗ai| . (12.56)

From (12.56) we get

st- limm→∞
∣∣∑m

i=0
∗ai − Ext-

∑ω
i=0

∗ai
∣∣ ≤ st- limm→∞

(
Ext-

∑ω
i=m+1 |

∗ai|
)
= 0. (12.57)

Eq.(12.55) follows directly from Eq.(12.57).

Example 12.2. Consider the countable sum

Sω (∗r) = Ext-
ω∑

n=0

∗r n ,− ∗1 < ∗r < ∗1 . (12.58)

it follows from (12.55)

Sω (∗r) = ∗1 + Ext-
ω∑

n=1

∗r n = ∗1 + ∗r
ω∑

n=0

∗r n = ∗1 + ∗r Sω ( ∗r ) (12.59)

Thus

Sω (∗r) =
∗1

∗1 − ∗r
. (12.60)

Remark 12.6. Note that

Sω (∗r) = Ext-
ω∑

n=0

∗r n = st- limm→∞
m∑

n=0

∗r n ,
∞∑

n=0

∗r n
(12.61)

since as we know

S∞ (r) = limn→∞
n∑

n=0

rn =
∞∑

n=0

rn =
1

1− r
. (12.62)

Theorem 12.8. Let {ai}i∈N be a countable ∗Rst -valued sequence, i.e. ◦ai = ai for any

i ≤ n and st-limm→∞

(
Ext-

m∑
i=0

ai

)
= 0, then

◦
(
Ext-

ω∑
i=0

ai

)
≡ Ext-

ω∑
i=0

ai . (12.63)

Proof. It follows directly from Theorem 12.5 for the case if for any i ∈ N#\N : ai ≡ 0.

Theorem 12.9. Let {bi}∞i=0 , be a countable R-valued sequence such that a limit

103



Foukzon; JAMCS, 36(8): 70-119, 2021; Article no.JAMCS.73147

s = limm→∞
∑m

i=0 bi exists.Then

∗s ≡ Ext-
ω∑

i=0

∗bi . (12.64)

Proof. It follows directly from Theorem 12.7 and Eq.(12.63).

13 ee is Transcendental Number e

13.1 e is #-transcendental number

Definition 13.1. Let g (x) : R → R be any real analytic function such that: (i)

gQ (x) =∞
n=0 anx

n, |x| < r,∀n [an ∈ Q] , (13.1)

and where (ii) the sequence {an}n∈N is recursive.

We will call any function given by Eq.(13.1) constructive Q-analytic function and denoted

such function by gQ (x) .

Definition 13.2. A transcendental number z ∈ R is called #-transcendental number

over field Q, if there does not exists constructive Q-analytic function gQ (x) such that gQ (z) =
0,i.e., for every constructive Q-analytic function gQ (x) the inequality gQ (z) ̸= 0

is satisfied.

Definition 13.3.A transcendental number z is called w-transcendental

number over field Q,if z is not #-transcendental number over field Q,i.e., there

exists an constructive Q-analytic function gQ (x) such that gQ (z) = 0.

Notation 13.1.We will call for a short any constructive Q-analytic function gQ (x) simply

Q-analytic function.

Example 13.1. Number π is transcendental but number π is not #-transcendental

number over fieldQ since:(i) function sinx is aQ-analytic and (ii) sin
(π
2

)
= 1 i.e.,

−1 +
π

2
− π3

233!
+

π5

255!
− π7

277!
+ ...+

(−1)n π2n+1

22n+1 (2n+ 1)!
+ ... = 0. (13.2)

Note that the sequence an =
(−1)n π2n+1

22n+1 (2n+ 1)!
, n = 0, 1, 2..... obviously is primitive

recursive.To prove that e is #-transcendental number we need to show that e is not w-
transcendental i.e., there does not exist real Q-analytic function gQ (x) =∞

n=0 anx
n

with rational coefficients a0, a1, ..., an, ... ∈ Q such that

∞
n=0ake

n = 0,∞n=0 |ak| en ̸= ∞. (13.3)

Suppose that e is w-transcendental, i.e., there exists an Q-analytic function

ğQ (x) =∞
n=0 ănx

n,with rational coefficients:

ă0 =
k0
m0

, ă1 =
k1
m1

, ..., ăn =
kn
mn

, ... ∈ Q, | ă0| > 0, (13.4)

such that the following equality is satisfied:
∞
n=0ăne

n ≡ 0,∞n=0 |ăk| en ̸= ∞. (13.5)
In this subsection we obtain an reduction of the equality is given by Eq.(13.5) to equivalent equality
given by Eq.(13.15). The main tool of such reduction that external countable sum defined in
subsection 12.2 above.

From Eq.(13.5) by Theorem 12.7 one obtains the equality

∗ă0 +
∞
n=1

∗ăn × ∗en ≡ 0, (13.6)

104



Foukzon; JAMCS, 36(8): 70-119, 2021; Article no.JAMCS.73147

whereweabbreviate∞n=1
∗ăn , st- lim

m→∞
m
n=1

∗ăn Note that from Eq.(13.6) by Theorem

12.9 one obtains the equality

∗ă0 + [Ext-ωn=1
∗ăn × ∗en ]/≈ ≡ 0. (13.7)

Theorem 12.1.[4] The equality (13.6) is inconsistent.

Proof.Let ℑ be a hypernatural number ℑ ∈ ∗N\N defined by countable sequence

ℑ = (m0,m0 ×m1, ...,m0 ×m1 × ...×mn, ...) =
= (r0, r1, ..., rn, ...)

(13.8)

where rn = m0 ×m1 × ...×mn.From Eq.(13.7) and Eq.(13.8) one obtains

ℑ ∗ă0
ℑ +

Ext-ωn=1ℑ ∗ăn × ∗en

ℑ = 0. (13.9)

From Eq.(12.9) one obtains

ℑ0

ℑ +
Ext-ωn=1ℑn × ∗en

ℑ ≡ 0, (13.10)

where ℑn = ℑ× ăn, n = 0, 1, 2, ... Note that

∗ en = ∗en =
∗Mn (n,p)
∗M0 (n,p)

+
∗εn (n,p)
∗M0 (n,p)

, (13.11)

n = 1, 2, ..., k ∈ N,n,p ∈∗N∞,see Appendix A,Eq.(30). From Eq.(13.10) and Eq.(13.11)

by Theorem 12.6 we obtain

ℑ0

ℑ +
Ext-ωn=1ℑn × ∗en

ℑ =

ℑ0

ℑ + Ext-ωn=1

[
ℑn × ∗Mn (n,p)

ℑ× ∗M0 (n,p)
+

ℑn × ∗εn (n,p)

ℑ× ∗M0 (n,p)

]
=

=
ℑ0

ℑ + Ext-ωn=1
ℑn × ∗Mn (n,p)

ℑ× ∗M0 (n,p)
+ Ext-ωn=1

ℑn × ∗εn (n,p)

ℑ× ∗M0 (n,p)
≡ 0.

(13.12)

We abbreviate now

∆(n,p) =
ℑ0

ℑ + Ext-ωn=1
ℑn × ∗Mn (n,p)

ℑ× ∗M0 (n,p)
=

ℑ0 × ∗M0 (n,p) + Ext-ωn=1ℑn × ∗Mn (n,p)

ℑ× ∗M0 (n,p)

(13.13)

and

Υ (n,p) = Ext-ωn=1
ℑn × ∗εn (n,p)

ℑ× ∗M0 (n,p)
=

Ext-ωn=1ℑn × ∗εn (n,p)

ℑ× ∗M0 (n,p)

(13.14)

From the Eq.(13.12) and Eq.(13.13)-Eq.(13.14) we get

∆ (n,p) + Υ (n,p) ≡ 0. (13.15)

Note that

∗εn (n,p) ≤
n (∗g (n))

(
[∗a (n)]p−1)

(p− 1)!
, (13.16)
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n = 1, 2, ..., k ∈ N,n,p ∈∗N∞,see Appendix,Eq.(29). From Eq.(13.14) and (13.16) one
obtains

|Υ(n,p)| =
∣∣∣∣Ext-ωn=1ℑn × ∗εn (n,p)

ℑ× ∗M0 (n,p)

∣∣∣∣ ≤
≤

n (∗g (n))
(
[∗a (n)]p−1)

(p− 1)!

∣∣∣∣ Ext-ωn=1ℑn

ℑ× ∗M0 (n,p)

∣∣∣∣ . (13.17)

Let p be a hyperfinite prime integer p ∈ ∗N\N defined by countable sequence

p = (p0, p1, ..., pn, ...) , (13.18)
where any pn ∈ N is a prime integer such that pn > rn.Notice we willing to choose
a sequence {pn}n∈N such that any inequality pn > rn, n ∈ N is decidable, i.e.

∀n [Val (pn > rn) = R] , (13.19)
since the sequence {rn}n∈N is recursive.
We willing to choose now hyperfinite prime integer p in Eq.(13.13) p = p̃∈∗N\N such that

p̃> max (|ℑ0| ,n.) (13.20)
From the Appendix Eq.(27) it follows

p̃ - [∗M0 (n,p̂)] . (13.21)
From the inequality (13.20) and (13.21) it follows

p̃ - [∗M0 (n,p̃)]×ℑ0. (13.22)
From the Appendix A, Eq.(28) one obtains

p̃ | [∗Mn (n,p̃)] ,n = 1, 2, .... (13.23)
From (13.22)-(13.23) we get the inequality

|ℑ0 × ∗M0 (n,p̃) + Ext-ωn=0ℑn × ∗Mn (n,p̃) | ≥ 1 (13.24)
and therefore from Eq.(13.13) we get

|∆(n,p̃)| ≥ 1

|ℑ × ∗M0 (n,p̃) |
. (13.25)

We willing to choose now hyperfinite prime integer p̃ in Eq.(13.16) such that in
additional the inequality is satisfied

n (∗g (n))
(
[∗a (n)]p̃−1

)
Ext-ωn=1ℑn

(p̃− 1)!
< 1. (13.26)

From Eq.(13.17) and the inequality (13.26) we get

|Υ(n,p̃)| =
∣∣∣∣Ext-ωn=1ℑn × ∗εn (n,p̃)

ℑ× ∗M0 (n,p̃)

∣∣∣∣ < 1

|ℑ × ∗M0 (n,p̃) |
. (13.27)

From the inequalities (13.25) and (13.27) finally we get the inequality
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∆(n,p̃) + Υ (n,p̃) ̸= 0. (13.28)
But the inequality (13.28) contradicts with Eq.(13.15).This contradiction completed the
proof.

14 Generalized Lindemann-Weierstrass Theorem

Theorem 14.1.Let fl (z) , l = 1, 2, ..., be a polynomials with coefficients in Z.Assume that
for any l ∈ N algebraic numbers over the field Q : β1,l, ..., βkl,l, kl ≥ 1, l = 1, 2, ... form a
complete set of the roots of fl (z) such that

fl (z) ∈ Z [z] , deg fl (z) = kl, l = 1, 2, ... (14.1)
and al ∈ Q, a0 ̸= 0, l = 1, 2, ..., . We assume now that

∞
l=1 |al|

kl
k=1

∣∣eβk,l
∣∣ <∞. (14.2)

Then

a0 +
∞
l=1 al

kl
k=1e

βk,l ̸= 0. (14.3)
Note that from assumption above by Robinson transfer it follows that algebraic numbers
∗β1,l, ...,

∗ βkl,l, kl ≥ 1, l = 1, 2, ...,over field ∗Q for any l = 1, 2, ..., form a complete set of
the roots of ∗fl (z) such that

∗fl (z) ∈ ∗Z [z] ,deg (∗fl (z)) = kl, l = 1, 2, ... . (14.4)
Assumption 14.1. We assume now that there exists an recursive sequence

ăl =
ql
ml

∈ Q, l = 1, 2, ...; r = 1, 2, ... (14.5)

and rational number

ă0 =
q0
m0

∈ Q, (14.6)

such that

∞
l=1 |ăl|

kl
k=1

∣∣eβk,l
∣∣ <∞. (14.7)

and

ă0 +
∞
l=1 ăl

kl
k=1e

βk,l ≡ 0. (14.8)
Assumption 14.2. We assume now that the all roots ∗β1,l, ...,

∗ βkl,l, kl ≥ 1, l = 1, 2, ...of
∗fl (z) are real.
From Eq.(14.8) by Theorem 12.7 one obtains the equality

∗ă0 +
[
∞
l=1

∗ăl
kl
k=1

∗e
∗βk,l

]
≡ 0, (14.9)

where we abbreviate
∞
l=1

∗ăl
kl
k=1

∗e
∗βk,l , st- lim

m→∞
m
l=1

∗ăn
kl
k=1

∗e
∗βk,l .

Note that from Eq.(14.9) by Theorem 12.9 one obtains the equality

∗ă0 +
[
Ext-ωl=1

∗ăl
kl
k=1

∗e
∗βk,l

]
/≈

≡ 0. (14.10)

Theorem 14.1.The equality (14.10) is inconsistent.
Proof.Let us considered hypernatural number ℑ ∈ ∗N∞ defined by countable sequence
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ℑ = (m0,m0 ×m1, ...,m0 ×m1 × ...×mn, ...) = (r0, r1, ..., rn, ...) (14.11)

where rn = m0 ×m1 × ...×mn.From Eq.(14.10) and Eq.(14.11) one obtains

ℑ ∗ă0
ℑ +

ℑ
ℑ ×

[
Ext-ωl=1

∗ăl
kl
k=1

∗e
∗βk,l

]
=

=
ℑ0

ℑ +
Ext-ωl=1ℑl

kl
k=1

∗e
∗βk,l

ℑ ≡ 0,

(14.12)

where

ℑ0 = ℑă0 =
ℑq0
m0

,ℑl = ℑăl =
ℑql
ml

. (14.13)

Note that[
∗e

∗βk,l =
∗Mk,l (N,p) +

∗εk,l (N,p)
∗M0 (N,p)

]
, (14.14)

where k = 1, ...,∗ kl, l = 1, ..., r,see Apendix C,Eq.(15).From Eq.(14.12) and Eq.(14.14)

we get

ℑ0

ℑ +
Ext-ωl=1ℑl

kl
k=1 [

∗Mk,l (N,p) + ∗εk,l (N,p) ]

ℑ ∗M0 (N,p)
=

ℑ0
∗M0 (N,p)

ℑ ∗M0 (N,p)
+
Ext-ωl=1ℑl

kl
k=1

∗Mk,l (N,p)

ℑ ∗M0 (N,p)
+

+
Ext-ωl=1ℑl

kl
k=1

∗εk,l (N,p)

ℑ ∗M0 (N,p)
=

ℑ0
∗M0 (N,p) + Ext-ωl=1ℑl

kl
k=1

∗Mk,l (N,p)

ℑ ∗M0 (N,p)
+

+
Ext-ωl=1ℑl

kl
k=1

∗εk,l (N,p)

ℑ ∗M0 (N,p)
≡ 0

(14.15)

We abbreviate now

∆(N,p) =
ℑ0

∗M0 (N,p) + Ext-ωl=1ℑl
kl
k=1

∗Mk,l (N,p)

ℑ ∗M0 (N,p)
(14.16)

and

Υ (N,p) =
Ext-ωl=1ℑl

kl
k=1

∗εk,l (N,p)

ℑ ∗M0 (N,p)
. (14.17)

From Eq.(14.15) and Eq.(14.16)-Eq.(14.17) we get

∆ (N,p) + Υ (N,p) ≡ 0. (14.18)

Note that

|∗εk,l (N,p)| ≤≤
[∗g0 (r)]

[∗gp−1 (r)
]

(p− 1)!
, (14.19)

where k = 1, ...,∗ kl, l = 1, ..., r,N,p ∈∗N∞,see Appendix C,Eq.(12). From Eq.(14.17) and

(14.19) one obtains

|Υ(N,p)| =

∣∣∣∣∣Ext-ωl=1ℑl
kl
k=1

∗εk,l (N,p)

ℑ ∗M0 (N,p)

∣∣∣∣∣ ≤ Ext-ωl=1ℑl [
∗g0 (r)]

[∗gp−1 (r)
]

(p− 1)!
(14.20)
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Note that ∀ϵ (ϵ ∈ ∗R+ ) [ϵ ≈ 0] ,there exists p = p (ϵ)

[∗g0 (r)]
[∗gp−1 (r)

]
(p− 1)!

≤ ϵ. (14.21)

We will choose now infinite prime integer p in Eq.(3.56) p = p̃∈∗N\N such that

p̃ > max (|a0| ,bN, |b0| ,ℑ0) . (14.22)

Hence from the Appendix C, Eq.(8) it follows

p̃ -M0 (N,p̃) . (14.23)

From (14.22) and (14.23) one obtains:

p̃ -M0 (N,p̃, r)×ℑ0. (14.24)

From the Appendix C, Eq.(10) it follows

p̃ |Mk,l (N,p̃) ,k, l = 1, 2, .... (14.25)

From (14.24)-(14.25) we get the inequality

ℑ0
∗M0 (N,p) + Ext-ωl=1ℑl

kl
k=1

∗Mk,l (N,p) ≥ 1 (14.26)

and therefore from Eq.(14.16) we get

|∆(n,p̃)| ≥ 1

|ℑ × ∗M0 (n,p̃) |
. (14.27)

We willing to choose now hyperfinite prime integer p̃ in Eq.(14.18) such that in

additional the inequality is satisfied

|Υ(N,p)| < 1

|ℑ × ∗M0 (n,p̃) |
. (14.28)

From the inequalities (14.27) and (14.28) finally we get the inequality

∆ (n,p̃) + Υ (n,p̃) ̸= 0. (14.29)

But the inequality (14.29) contradicts with Eq.(14.18).This contradiction completed the

proof.

15 Conclusion

In this paper intuitionistic set theory INC#

∞# in infinitary set theoretical language is considered.
External induction principle in nonstandard intuitionistic arithmetic were derived. Non trivial
application in number theory is considered. Main results are: (i) number ee is transcendental; (ii)
the both numbers e+ π and e− π are irrational [16,17].
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Appendix A. The Basic Definitions of the Shidlovsky
Quantities

In this apendix we remind the basic definitions of the Shidlovsky quantities [15].LetM0 (n, p) ,Mk (n, p)
and εk (n, p) be the Shidlovsky quantities:

M0 (n, p) =
+∞
0

[
xp−1 [(x− 1) ... (x− n)]p e−x

(p− 1)!

]
dx ̸= 0, (1)

Mk (n, p) = ekk
+∞

[
xp−1 [(x− 1) ... (x− n)]p e−x

(p− 1)!

]
dx, k = 1, 2, ... (2)

εk (n, p) = ek0
k

[
xp−1 [(x− 1) ... (x− n)]p e−x

(p− 1)!

]
dx, k = 1, 2, ... (3)

where p ∈ N this is any prime number.Using Eqs.(1)-(3) by simple calculation one obtains:

Mk (n, p) + εk (n, p) = ekM0 (n, p) ̸= 0, k = 1, 2, .... (4)
and consequently

ek =
Mk (n, p) + εk (n, p)

M0 (n, p)
k = 1, 2, ...

(5)

Lemma 3.1.[15]. Let p be a prime number. Then M0 (n, p) = (−1)n (n!)p + pΘ1,Θ1 ∈ Z.
Proof. ([15], p.128) By simple calculation one obtains the equality

xp−1 [(x− 1) ... (x− n)]p = (−1)n (n!)p xp−1 +
(n+1)×p
µ=p+1 cµ−1x

µ−1,
cµ ∈ Z, µ = p, p+ 1, ..., [(n+ 1)× p]− 1, n > 0,

(6)

where p is a prime. By using equality Γ (µ) =
∫∞
0
xµ−1e−xdx = (µ− 1)!,where µ ∈ N, from

Eq.(1) and Eq.(6) one obtains

M0 (n, p) = (−1)n (n!)p
Γ (p)

(p− 1)!
+

(n+1)×p
µ=p+1 cµ−1

Γ (µ)

(p− 1)!
=

= (−1)n (n!)p + cpp+ cp+1p (p+ 1) + ... =
= (−1)n (n!)p + p×Θ1,Θ1 ∈ Z.

(7)

Thus

M0 (n, p) = (−1)n (n!)p + p ·Θ1 (n, p) ,Θ1 (n, p) ∈ Z. (8)

Lemma 3.2.[15]. Let p be a prime number. Then Mk (n, p) = p · Θ2 (n, p) , Θ2 (n, p) ∈ Z,
k = 1, 2, ..., n .

Proof.([15], p.128) By subsitution x = k + u =⇒ dx = du from Eq.(3.3) one obtains

Mk (n, p) =
+∞
0

[
(u+ k)p−1 [(u+ k − 1)× ...× u× ...× (u+ k − n)]p e−u

(p− 1)!

]
du

k = 1, 2, ...
(9)

By using equality

(u+ k)p−1 [(u+ k − 1)× ...× u× ...× (u+ k − n)]p =
(n+1)×p
µ=p+1 dµ−1u

µ−1,
dµ ∈ Z, µ = p, p+ 1, ..., [(n+ 1)× p]− 1,

(10)

and by subsitution Eq.(3.10) into RHS of the Eq.(3.9) one obtains
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Mk (n, p) =
1

(p− 1)!

+∞

0

(n+1)×p
µ=p+1 dµ−1u

µ−1du = p ·Θ2 (n, p) ,

Θ2 (n, p) ∈ Z, k = 1, 2, ... .

(11)

Lemma 1.3.[15]. (i) There exists sequences a (n) , n ∈ N and g (n) , n ∈ N such that

|εk (n, p)| ≤
n · g (n) · [a (n)]p−1

(p− 1)!
,

(12)

where sequences a (n) , n ∈ N and g (n) , n ∈ N does not depend on number p. (ii) For any
n ∈ N : εk (n, p) → 0 if p→ ∞.

Proof.([15], p.129) Obviously there exists sequences a (n) , n ∈ N and g (n) , k ∈ N, n ∈ N such
that a (n) , n ∈ N and g (n) , n ∈ N does not depend on number p

|x (x− 1) ... (x− n)| < a (n) , 0 ≤ x ≤ n (13)
and∣∣(x− 1) ... (x− n) e−x+k

∣∣ < g (n) , 0 ≤ x ≤ n, k = 1, 2, ..., n. (14)
Substitution inequalities (13)-(14) into RHS of the Eq.(3) by simple calculation gives

εk (n, p) ≤ g (n)
[a (n)]p−1

(p− 1)!

k

0

dx ≤ n · g (n) · [a (n)]p−1

(p− 1)!
. (15)

Statement (i) follows from (15). Statement (ii) immediately follows from a statement (ii).
Lemma 1.4.[15]. For any k ≤ n and for any δ such that 0 < δ < 1 there exists p ∈ N such that∣∣∣∣ek − Mk (n, p)

M0 (n, p)

∣∣∣∣ < δ. (16)

Proof.From Eq.(1.5) one obtains∣∣∣∣ek − Mk (n, p)

M0 (n, p)

∣∣∣∣ = |εk (n, p)|
M0 (n, p)

. (17)

From Eq.(17) by using Lemma 1.3.(ii) one obtains (3.17).
Remark 1.1.We remind now the proof of the transcendence of e following Shidlovsky proof is

given in his book [8].
Theorem 1.1. The number e is transcendental.
Proof.([8], pp.126-129) Suppose now that e is an algebraic number; then it satisfies some

relation of the form

a0 +
n
k=1 ake

k = 0, (18)
where a0, a1, ..., an ∈ Z integers and where a0 > 0.Having substituted RHS of the Eq.(3.5) into

Eq.(18) one obtains

a0 +
n
k=1 ak

Mk (n, p) + εk (n, p)

M0 (n, p)
= a0 +

n
k=1 ak

Mk (n, p)

M0 (n, p)
+n

k=1 ak
εk (n, p)

M0 (n, p)
= 0. (19)

From Eq.(19) one obtains

a0M0 (n, p) +
n
k=1 akMk (n, p) +

n
k=1 akεk (n, p) = 0. (20)

We rewrite the Eq.(20) for short in the form

a0M0 (n, p) +
n
k=1 akMk (n, p) +

n
k=1 akεk (n, p) =

= a0M0 (n, p) + Ξ (n, p) +n
k=1 akεk (n, p) = 0,

Ξ (n, p) =n
k=1 akMk (n, p) .

(21)
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We choose now the integers M1 (n, p) ,M2 (n, p) , ...,Mn (n, p) such that:{
p|M1 (n, p) , p|M2 (n, p) , ..., p|Mn (n, p)

where p > |a0|
(22)

and p -M0 (n, p) . Note that p| Ξ (n, p) .Thus one obtains

p - a0M0 (n, p) + Ξ (n, p) (23)
and therefore

a0M0 (n, p) + Ξ (n, p) ∈ Z, (24)
where a0M0 (n, p) + Ξ (n, p) ̸= 0. By using Lemma 3.4 for any δ such that 0 < δ < 1 we can

choose a prime number p = p (δ) such that:

|nk=1akεk (n, p)| < δnk=1 |ak| = ϵ < 1. (25)
From (25) and Eq.(21) we obtain

a0M0 (n, p) + Ξ (n, p) + ϵ = 0. (26)
From (26) and Eq.(24) one obtains the contradiction.This contradiction finalized the proof.

The Robinson transfer of the Shidlovsky quantities
M0 (n, p) ,Mk (n, p) , εk (n, p)

In this subsection we will replace using Robinson transfer [5], the Shidlovsky quantities
M0 (n, p) ,Mk (n, p) , εk (n, p) by corresponding nonstandard quantities ∗M0 (n,p) ,

∗Mk (n,p) ,
∗εk (n,p) .

The properties of the nonstandard quantities ∗M0 (n,p) ,
∗Mk (n,p) ,

∗εk (n,p) one obtains directly
from the properties of the standard quantitiesM0 (n, p) ,Mk (n, p) , εk (n, p) using Robinson transfer[4],[5].

1.Using Robinson transfer principle [4],[5] from Eq.(8) one obtains directly

∗M0 (n,p) = (−1)n (n!)p + p× ∗Θ1 (n,p) ,
∗Θ1 (n,p) ∈∗ Z∞ , ∗Z/Z,n,p ∈∗N∞.

N∞ , ∗N\N.
(27)

From Eq.(11) using Robinson transfer principle one obtains ∀k (k ∈ N) :

∗Mk (n,p) = p× ( ∗Θ2 (n,p)) ,
∗Θ2 (n,p) ∈ ∗Z∞, k = 1, 2, ..., k ∈ N,n,p ∈∗N∞.

(28)

Using Robinson transfer principle from inequality (3.15) one obtains ∀k (k ∈ N) :

∗εk (n,p) ≤
n · (∗g (n)) ·

(
[∗a (n)]p−1)

(p− 1)!
,

k = 1, 2, ..., k ∈ N,n,p ∈∗N∞.

(29)

Using Robinson transfer principle, from Eq.(3.5) one obtains ∀k (k ∈ N) :

 ∗ (ek) = (∗e)k =
∗Mk (n,p)
∗M0 (n,p)

+
∗εk (n,p)
∗M0 (n,p)

,

k = 1, 2, ..., k ∈ N,n,p ∈∗N∞.
(30)

Lemma 5. Let n ∈ ∗N∞, then for any k ∈ N and for any δ ≈ 0, δ ∈ ∗R+ there exists
p ∈ ∗N∞ such that
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∣∣∣∣∗ek −
∗Mk (n,p)
∗M0 (n,p)

∣∣∣∣ < δ. (31)

Proof. From Eq.(30) we obtain ∀k (k ∈ N) :


∣∣∣∣ ∗ek −

∗Mk (n,p)
∗M0 (n,p)

∣∣∣∣ = |∗εk (n,p)|
|∗M0 (n,p)|

,

k ∈ N,n,p ∈∗N∞.
(32)

Appendix B. Generalized Shidlovsky quantities

In this apendix we remind the basic definitions of the Shidlovsky quantities,see [15]

p.132-134.

Theorem 1.[15] Let fl (z) , l = 1, 2, ..., r be a polynomials with coefficients in Z.Assume

that for any l = 1, 2, ..., r algebraic numbers over the field Q : β1,l, ..., βkl,l, kl ≥ 1, l = 1, 2, ..., r
form a complete set of the roots of fl (z) such that

fl (z) ∈ Z [z] , deg fl (z) = kl, l = 1, 2, ..., r (1)

and al ∈ Z, l = 1, 2, ..., r, a0 ̸= 0.We assume now that

∞
l=1 |al|

kl
k=1

∣∣eβk,l
∣∣ <∞. (2)

Then

a0 +
r
l=1 al

kl
k=1e

βk,l ̸= 0. (3)

Let M0 (Nr, p) ,Mk,l (Nr, p) and εk,l (Nr, p) be the quantities

M0 (Nr, p) =
+∞
0

b
(Nr−1)p−1
Nr

zp−1f p
r (z) e−zdz

(p− 1)!
, (4)

where in (4) we integrate in complex plane C along line [0,+∞] ,see Pic.1.

Mk,l (Nr, p) = e
βk,l

βk,l

+∞ b
(Nr−1)p−1
Nr

zp−1f p
r (z) e−zdz

(p− 1)!
, (5)

where k = 1, ..., kl and where in (5) we integrate in complex plane C along line with initial
point βk,l ∈ C and which are parallel to real axis of the complex plane C,see Pic.1.

εk,l (Nr, p) = e
βk,l

0
βk,l

b
(Nr−1)p−1
Nr

zp−1fp
r (z) e−zdz

(p− 1)!
, (6)

where k = 1, ..., kl and where in (6) we integrate in complex plane C along contour [0, βk,l] , see
Pic.1.
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From Eq.(3) one obtains

b
(Nr−1)p−1
Nr

zp−1fp
r (z) = b

(Nr−1)p−1
Nr

bp0z
p−1 +

(Nr+1)p
s=p+1 cs−1z

s−1, (7)

where bNrb0 ̸= 0, cs ∈ Z, s = p, ..., (Nr − 1) p − 1.Now from Eq.(4) and Eq.(7) using formula
Γ (s) =

∫∞
0
xs−1e−xdx = (s− 1)!, s ∈ N one obtains

M0 (Nr, p) =
b
(Nr−1)p−1
Nr

bp0
(p− 1)!

+∞

0

zp−1e−zdz +
(Nr+1)p
s=p+1

cs−1

(p− 1)!

+∞

0

zs−1e−zdz =

b
(Nr−1)p−1
Nr

bp0 +
(Nr−1)p
s=p+1

(s− 1)!

(p− 1)!
cs−1 = b

(Nr−1)p−1
Nr

bp0 + pC,

(8)

where bNrb0 ̸= 0, C ∈ Z.We choose now a prime p such that p > max (|a0| , bNr , |b0|) .Then from
Eq.(4.8) follows that

p - a0M0 (Nr, p) . (9)

From Eq.(4.3) and Eq.(4.5) one obtains

Mk,l (Nr, p) =
eβk,l

(p− 1)!

+∞

βk,l

{
bNrp−1
Nr

zp−1zp−1
[
r
j=1

kj

i=1 (z − βi,j)
p
]}

e−z+βk,ldz, (10)

where k = 1, ..., kl, l = 1, ..., r.By change of the variable integration z = u+ βk,l in RHS of the
Eq.(10) we obtain

Mk,l (Nr, p) =
1

(p− 1)!

+∞

0

{
bNrp−1
Nr

(u+ βk,l)
p−1 upe−u

[
r
j=1
j ̸=l

kj

i=1
i̸=k

(z + βk,l − βi,j)
p

]}
du, (11)

where k = 1, ..., kl, l = 1, ..., r.Let us rewrite now Eq.(11) in the following form

Mk,l (Nr, p) =

1

(p− 1)!

+∞

0

{
(bNru+ bNrβk,l)

p−1 upe−u

[
r
j=1
j ̸=l

kj

ri=1
i̸=k

(bNru+ bNrβk,l − bNrβi,j)
p

]}
du

(12)

Let ZA be a ring of the all algebraic integers. Note that [8]

αi,j = bNrβi,j ∈ ZA, i = 1, ..., kj , j = 1, ..., r. (13)

Let us rewrite now Eq.(12) in the following form

Mk,l (Nr, p) =
1

(p− 1)!

+∞

0

(bNru+ αk,l)
p−1 upe−u

j=1
j ̸=l

r
i=1
i̸=k

kj (bNru+ αk,l − αi,j)
p du (14)

where k = 1, ..., kl, l = 1, ..., r.From Eq.(14) one obtains
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r
l=1al

kl
k=1Mk,l (Nr, p) =

∞
0
upe−uΦr (u)

(p− 1)!
du,

Φr (u) =
r
l=1 al

kl
k=1 (bNru+ αk,l)

p−1 upe−u
j=1
j ̸=l

r
i=1
i̸=k

kj (bNru+ αk,l − αi,j)
p

(15)

The polynomial Φr (u) is a symmetric polynomial on any system ∆l of variables α1,l, α2,l, ..., αkl,l,
where

∆l = {α1,l, α2,l, ..., αkl,l} , l = 1, ..., r.
α1,l, α2,l, ..., αkl,l ∈ ZA, l = 1, ..., r.

(16)

It well known that Φr (u) ∈ Z [u] (see [8] p.134) and therefore

upΦr (u) =
(Nr+1)p
s=p+1 cs−1u

s−1, cs ∈ Z. (17)

From Eq.(15) and Eq.(17) one obtains

r
l=1al

kl
k=1Mk,l (Nr, p) =

∞
0
upe−uΦr (u)

(p− 1)!
du =

(Nr+1)p
s=p+1

cs−1

(p− 1)!

∞

0

us−1e−udu =
(Nr+1)p
s=p+1 cs−1

(s− 1)!

(p− 1)!
= pC,C ∈ Z.

(18)

Therefore

Ξ (Nr, p) =
r
l=1 al

kl
k=1Mk,l (Nr, p) ∈ Z,

p|Ξ (Nr, p) .
(19)

Let OR ⊂ C be a circle wth the centre at point (0, 0) .We assume now that ∀k∀l (βk,l ∈ OR).
We will designate now

gk,l (r) = max
|z|≤R

∣∣b−1
Nr
fr (z) e

−z+βk,l
∣∣ ,

g0 (r) = max
1≤k≤kl,1≤l≤r

gk,l (r) , g (r) = max
|z|≤R

∣∣b−1
Nr
zfr (z)

∣∣ . (20)

From Eq.(6) and Eq.(20) one obtains

|εk,l (Nr, p)| =

∣∣∣∣∣βk,l

0

b
(Nr−1)p−1
Nr

zp−1f p
r (z) e−z+βk,ldz

(p− 1)!

∣∣∣∣∣ ≤
1

(p− 1)!

βk,l

0

∣∣b−1
Nr
f (z) e−z+βk,l

∣∣ [∣∣b−1
Nr
zfr (z)

∣∣]p−1
dz ≤ g0 (r) g

p−1 (r) |βk,l|
(p− 1)!

≤ g0 (r) g
p−1 (r)R

(p− 1)!
,

(21)

where k = 1, ..., kl, l = 1, ..., r.Note that

g0 (r) g
p−1 (r)R

(p− 1)!
→ 0 if p→ ∞. (22)

From (4.22) follows that for any ϵ ∈ [0, δ] there exists a prime number p such that

r
l=1al

kl
k=1εk,l (Nr, p) = ϵ (p) < 1. (23)

where k = 1, ..., kl, l = 1, ..., r.From Eq.(4)-Eq.(6) follows

eβk,l =
Mk,l (Nr, p) + εk,l (Nr, p)

M0 (Nr, p)
(24)

where k = 1, ..., kl, l = 1, ..., r. Assume now that

a0 +
r
l=1 al

kl
k=1e

βk,l = 0. (25)

Having substituted RHS of the Eq.(24) into Eq.(25) one obtains
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a0 +
r
l=1 al

kl
k=1

Mk,l (Nr, p) + εk,l (Nr, p)

M0 (N, p)
=

a0 +
r
l=1 al

kl
k=1

Mk,l (Nr, p)

M0 (Nr, p)
+r

l=1 al
kl
k=1

εk,l (Nr, p)

M0 (Nr, p)
= 0.

(26)

From Eq.(26) by using Eq.(19) one obtains

a0 + Ξ(Nr, p) +
r
l=1 al

kl
k=1εk,l (Nr, p) = 0. (27)

We choose now a prime p ∈ N such that p > max (|a0| , |b0| , |bNr |) and ϵ (p) < 1. Note
that p|Ξ (Nr, p) and therefore from Eq.(19) and Eq.(27) one obtains the contradiction. This
contradiction completed the proof.

Appendix C. The Robinson transfer of the Shidlovsky
quantities

Let f (z) = fr (z) ∈ ∗Z [z] , z ∈ ∗C, l = 1, 2, ..., r, r ∈∗N∞ be a nonstandard polynomial such that

f (z) = fr (z) =
r
l=1 fl (z) = b0 + b1z + ...+ bNz

N =

= bN
r
l=1

∗kl
k=1 (z − (∗βk,l)) ,b0 ̸= 0,bN > 0,

N = Nr =
∑r

l=1 (
∗kl) ∈∗N∞.

(4)

Let ∗M0 (N,p) ,
∗Mk,l (N,p) and

∗εk,l (N,p) be the quantities:

∗M0 (N,p) =
∗(+ ∞)
0

b
(N−1)p−1
N zp−1f p (z)

[∗e−z
]
dz

(p− 1)!
,

N,p ∈ ∗N∞,

(5)

where in (5) we integrate in nonstandard complex plaine ∗C along line ∗ [0,+∞] ,see Pic.1.

∗Mk,l (N,p) =
(
∗e

∗βk,l

)∗(+∞)

∗βk,l

b
(N−1)p−1
N zp−1f p (z)

[∗e−z
]
dz

(p− 1)!
,

N,p ∈ ∗N∞,

(6)

where k = 1, ...,∗ kl and where in (5.6) we integrate in nonstandard complex plain ∗C along line
with initial point ∗βk,l ∈ ∗C and which are parallel to real axis of the complex plane ∗C,see Pic.1.

∗εk,l (N,p) =
(
∗e

∗βk,l

)∗βk,l

0

b
(N−1)p−1
N zp−1f p (z)

[∗e−z
]
dz

(p− 1)!
,

N,p ∈ ∗N∞,

(7)

where k = 1, ...,∗ kl and where in (5.7) we integrate in nonstandard complex plain ∗C along
contour ∗ [0,∗ βk,l].

1.Using Robinson transfer principle [4],[5],[6] from Eq.(5) and Eq.(8) one obtains directly

∗M0 (N,p) = b
(N−1)p−1
N bp

0 + pC, (8)
where bNb0 ̸= 0,C ∈ ∗Z∞.We choose now infinite prime p ∈ ∗N∞ such that

p > max (|a0| ,bN, |b0|) . (9)
2.Using Robinson transfer principle from Eq.(6) and Eq.(19) one obtains directly
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∀r (r ∈ N) :
∗Ξ (N,p,r) =r

l=1 (∗al)
kl
k=1

∗Mk,l (N,p) = pCr ∈ ∗Z∞.
(10)

and therefore ∀r (r ∈ N) [p| ∗Ξ (N,p,r) ] . (11)
3.Using Robinson transfer principle from Eq.(7) and Eq.(21) one obtains directly

|∗εk,l (N,p)| =

∣∣∣∣∣(∗e∗βk,l

)∗βk,l

0

b
(N−1)p−1
N zp−1f p (z)

[∗e−z
]
dz

(p− 1)!

∣∣∣∣∣ ≤
1

(p− 1)!

∗βk,l

0

∣∣∣b−1
N f (z)

(
∗e−z+(∗βk,l)

)∣∣∣ [∣∣b−1
Nr
zf (z)

∣∣]p−1
dz ≤

[∗g0 (r)]
[∗gp−1 (r)

]
|∗βk,l|

(p− 1)!

≤
[∗g0 (r)]

[∗gp−1 (r)
]

(p− 1)!
,

(12)
where k = 1, ...,∗ kl, l = 1, ..., r.Note that ∀ϵ (ϵ ∈∗ R) [ϵ ≈ 0] , there exists p = p (ϵ)

[∗g0 (r)]
[∗gp−1 (r)

]
(p− 1)!

≤ ϵ. (13)

4. From (13) follows that for any ϵ ∈ [0, δ] there exists an infinite prime p ∈ ∗N∞ such that
∀r (r ∈ N) :

r
l=1 (

∗al)
kl
k=1 (

∗εk,l (N,p)) = ϵ (p) < 1 (14)
where k = 1, ...,∗ kl, l = 1, ..., r..
5. From Eq.(5)-Eq.(7) we obtain[

∗e
∗βk,l =

∗Mk,l (N,p) + (∗εk,l (N,p))
∗M0 (N,p)

]
, (15)

where k = 1, ...,∗ kl, l = 1, ..., r.
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