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al., 1993; Nowicki et al., 2012). P. infestans also causes 
root, foot, stem and fruit rot in addition to foliar blight in 
tomato (Lievens et al., 2004). The most commonly practiced 
methods to manage late blight are cultural, fungicide 
sprays, and use of resistant cultivars (Nowicki et al., 
2012). Management of late blight using cultural practices 
alone is highly challenging particularly in areas, where 
tomato is grown year–round. Since commercial cultivars 
do not have adequate tolerance to late blight, chemical 
control involving fungicides scheduled at 5–7 days 
interval, form the basis for late blight management 
programs (Fry et al., 1993; Tumwine et al., 2002).  Although 
fungicides have been successfully employed in managing 
late blight, their residues and environmental hazards 
leading to human health risks are major concerns. 
Development of resistance to fungicides by P. infestans 
further limits their use for disease management 
(Chowdappa et al., 2013a).   

In recent years, biological control gained importance as 
an alternative to chemicals for plant disease 
management (Murphy et al., 2003; Woo et al., 2006; 
Harman, 2011). Biocontrol agents control the pathogens 
by several mechanisms which include direct antagonism, 
antibiosis, mycoparasitsm and siderophore production 
(Compant et al., 2005; Fridlender et al., 1993; Parke et 
al., 1991; Daayf et al., 1997). Besides, induced systemic 
resistance (ISR) in plants has been demonstrated as one 
of the modes by which biocontrol agents limit the effects 
of fungal infections (Schneider and Ullrich, 1994; 
Ramamoorthy et al., 2002; Saravanakumar et al., 2007; 
Latha et al., 2009; Chitrashree et al., 2011). Microbial 
consortia for plant growth enhancement and induction of 
systemic resistance (Janisiewicz, 1988; Choure et al., 
2012) were successfully used. Janisiewicz (1988) 
reported antagonistic mixtures that exhibited biocontrol of 
post-harvest diseases in apple. Combination of three 
strains viz. Pseudomonas fluorescens LPK2, 
Sinorhizobium fredii KCC5 and Azotobacter chroococcum 
AZK2, suppressed the wilt incidence in Cajanus cajan 
(Choure et al., 2012) and enhanced plant growth due to 
synergism.  Bio-consortium containing effective Bacillus 
bassiana and P. fluorescens strains controlled collar rot 
disease in groundnut both under polyhouse and field 
(Senthilraja et al., 2010).  

Induction of defense responses by Bacillus spp., 
Pseudomonas spp. and Trichoderma spp. is largely related 
to increase of β-1,3-glucanase, phenylalanine ammonia-
lyase, peroxidase, polyphenol oxidase and superoxide 
dismutase (Yedidia et al., 1999; Ahmed et al., 2000; 
Compant et al., 2005; Elad, 2000; Yang et al., 2009; 
Babitha et al., 2002). ISR incited by PGPR has been 
reported in many plants like Arabidopsis spp., bean, 
carnation, cucumber, radish, tobacco, and tomato (Van  
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Loon et al., 1998). These biocontrol organisms control 
the diseases besides plant growth promotion through 
production of growth hormones like IAA and GA3 
(Chowdappa et al., 2013b). Systemic acquired resistance 
(SAR) against late blight was reported earlier in tomato 
by inoculating either pathogen (Christ and Mosinger 
1989; Enkerli et al., 1993; Heller and Gessler, 1986) or by 
applying chemicals (Cohen, 1994) proceeding to confront 
the pathogen. ISR induced by PGPR has also been 
demonstrated in tomato against late blight incited by 
Phytophthora infestans (Yan et al., 2002). In our previous 
study, Trichoderma harzianum (OTPB3) and Bacillus 
subtilis (OTPB1) strains were identified that have the 
ability to induce systemic resistance against Alternaria 
solani and P. infestans (Chowdappa et al., 2013b) and 
also enhance plant growth. The aim of the present 
investigation was to know the additive effect of T. 
harzianum (OTPB3) and B. subtilis (OTPB1) strains as 
consortium and Pseudomonas putida (OPf1) individually 
through seed treatment in comparison to mancozeb 
followed by foliar spray of P. putida (OPf1) and 
fenamidone + macozeb for induction of systemic 
resistance in tomato against P. infestans and also plant 
growth promotion.  
 
 
MATERIALS AND METHODS 
 
Isolation and identification of biocontrol strains 
 
Biocontrol strains B. subtilis OTPB1 and T. harzianum OTPB3 
identified in our previous study (Chowdappa et al., 2013b) were 
used in this study. P. putida OPf1 was isolated from the rhizosphere 
soil sample from tomato crop at Ranga Samudrum, Andhra 
Pradesh, India using King’s B Medium (King et al., 1954).  Soil 
samples from rhizosphere were collected from healthy tomato 
plants grown under field conditions by uprooting plants carefully 
without any injury to the root system. Four plants from four different 
places were collected and the samples were mixed together and 
placed in polythene bags. Ten grams of soil was added to 90 ml of 
sterile distilled water and vigorously shaken for 10 min. The 
suspensions were serially diluted up to 10-7. Then, 0.1 ml of 10-1, 
10-3, 10-5 and 10-7 diluted samples was spread on King’s medium B 
(King et al., 1954). Three replicate plates were incubated at 27±1C 
for 48 h. After 48 h of incubation, all the isolates were checked for 
fluorescence under UV light at 365 nm (Sharifi-Tehrani et al., 1998). 
Colonies that showed fluorescence were selected and further 
purified on King’s medium B agar medium. Pure isolates were 
stored at -80°C after addition of 30% glycerol (v/v). 

DNA was isolated from 36 h old cultures of P. putida OPf1, grown 
in nutrient broth at 26±1C, using bacterial DNA isolation kit (Zymo 
Research Bacterial DNA Mini Prep., USA). PCR amplification of 
16S rDNA was performed using 27F (5’-
AGAGTTTGATCCTGGCTCAG-3’) (Weisberg et al., 1991) and 
1492R-5´- GGTTACCTTACGACTT-3´ (Reysenbach et al., 1992). 
PCR was carried out in 50 μl reaction volumes. Each reaction 
consisted approximately of 1 µl of template DNA, 5 μl 10 x PCR 
buffer,  40.75 μl sterile distilled water, 1 μl 2.0 mM dNTPs, 1 μl each
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of 50 pM primers 27F and 1492R and 0.25 μl Taq polymerase (5 
U/μl) (Merck Bio Sciences, India). Thermocycling conditions 
consisted of initial one denaturation step at 94C for 5 min followed 
by 32 amplification cycles at 94C for 30 s, 55C for 40 s, 72C for 
40 s followed by a final extension at 72C for 5 min. PCR products 
were analysed by electrophoresis in 2% (w/v) agarose gel in 1x Tris 
Borate-EDTA buffer and stained with ethidium bromide (5 µg/ ml) 
and visualized by Alpha imager EP (Alpha Innotech Corporation, 
USA). PCR products were sequenced to confirm that it has 
homology identical to the previously reported rDNA sequence of P. 
putida available in NCBI. 

The phylogentic analysis of P. putida OPf1 was inferred using the 
Maximum Parsimony method. Tree 1 out of 3 most parsimonious 
trees (length = 74) is shown. The consistency index was 0.612245, 
the retention index was 0.707692, and the composite index was 
0.523498 (0.433281) for all sites and parsimony-informative sites 
(in parentheses). The percentage of replicate trees in which the 
associated taxa clustered together in the bootstrap test (1000 
replicates) were shown above the branches (Felsenstein, 1985). 
The MP tree was obtained using the Tree-Bisection-Regrafting 
(TBR) algorithm (Nei and Kumar, 2000) with search level 1 in which 
the initial trees were obtained by the random addition of sequences 
(10 replicates). The tree was drawn to scale, with branch lengths 
computed following the average pathway method (Nei and Kumar, 
2000) and expressed in the units of number of changes over the 
whole sequence. The analysis involved 27 nucleotide sequences. 
All positions with less than 95% site coverage were eliminated. That 
is, fewer than 5% alignment gaps, missing data, and ambiguous 
bases were allowed at any position. There were a total of 406 
positions in the final dataset. Evolutionary analyses were conducted 
in MEGA5 (Tamura et al., 2011). 

B. subtilis OTPB1 and T. harzianum OTPB3 were deposited at 
National Bureau of Agriculturally Important Microorganisms, Mau, 
India bearing accession numbers NAIMCC-B-01339 and NAIMCC-
F-03065, respectively and P. putida OPf1 was deposited at 
Microbial Type Culture Collection and Gene Bank (MTCC), Institute 
of Microbial Technology, Chandigarh, India, as accession number 
MTCC 5824. 
 
 
Agar plate-based pathogen inhibition assays 
 
Antagonistic effect of B. subtilis OTPB1 or T. harzianum OTPB3 
was evaluated against P. infestans PIT 30 by adopting dual culture 
method (Webber and Hedger, 1986). For inhibition assays by P. 
putida OTPf1, a 5 mm-diameter agar plug of a 7-day-old culture of 
P. infestans PIT 30 was transferred to the center of a plate Rye 
agar A and incubated at 19 ± 1C  in darkness. Then, 5 µl from an 
exponentially growing bacterial culture in nutrient broth at OD600 of 
0.1 was spotted 1 cm from the edge of the rye agar plate on one 
side of the pathogen plug. Controls consisted of a 5 mm-diameter 
agar plug of without P. putida OTPf1. 
 
 
Preparation of bacterial cell suspension 
 
Bacterial inoculum of B. subtilis OTPB1 and P. putida OPf1 were 
prepared by harvesting cells from nutrient broth cultures grown at 
28 ± 1C for 48 h followed by centrifugation at 6000 rpm for 15 min. 
The inoculum was re-suspended in sterile distilled water and then 
the concentration was adjusted using a Biomate 3 spectrophoto-
meter (Thermo spectronic, USA) to 108 cfu/ml (Thompson, 1996; 
Yan et al., 2002) as confirmed by plating on nutrient agar.  
 
 
Preparation of spore suspension of T. harzianum OTPB3 
 
Spore suspensions of T. harzianum OTPB3 were prepared by 

 
 
 
 
scraping them from cultures grown on potato dextrose agar plates 
placed under cool-white fluorescent light with a 12 h alternating light 
and dark cycle at 25± 1C for 7 days. Spores were suspended in 
sterile distilled water and the number of colony forming units (cfu) 
that developed was assayed on a Trichoderma selective medium 
(Elad et al., 1981) and adjusted the values to 108 CFU/ ml.  
 
 
Preparation of zoospore suspension of P. infestans PIT 30 
 
P. infestans PIT 30 (GenBank accession JF834691) was used 
(Chowdappa et al., 2013b) in the present study. Zoospore 
suspension was prepared by growing P. infestans PIT 30 on Rye 
agar B medium at 18°C under light (16 h cool white fluorescent light 
and 8 h dark) for 14 days.  Sporangial suspension was obtained 
from rye agar plates that were gently washed with cold sterile 
distilled water to liberate sporangia. The sporangial suspension was 
placed in a refrigerator for 2h to induce zoospore release. 
Zoospores were separated from sporangia by filtration through a 
12-µm mesh filter and diluted to a concentration of 3x105 zoospores 

⁄ml. 
 
 
Test chemicals 
 
Mancozeb was procured from Indofil Chemicals Pvt. Ltd., India and 
the pre-packed mixture of fenamidone and macozeb was obtained 
from Bayer Pvt. Ltd., India. 
 
 
Compatibility between T. harzianum OTPB3 and B. subtilis 
OTPB1 
 
In vitro bioassay test was done on potato dextrose agar (Himedia, 
Mumbai, India) to determine the compatibility of the T. harzianum 
OTPB3 and B. subtilis OTPB1. A Petri dish containing PDA medium 
was spot inoculated with a 48 h-old cell suspension of B. subtilis 
OTPB1 at four different corners on the edge of agar medium. A 
mycelial plug (4mm diameter, cut from the actively growing edge of 
a 4 day old mycelial mat on PDA) of T. harzianum OTPB3 was 
placed in centre of the plate and incubated at 25 ± 1C for 5 days in 
the dark. Each bioassay was replicated and repeated thrice.  The 
compatibility between T. harzianum OTPB3 and B. subtilis OTPB1 
was also studied by mixing equal ratio (1:1 ml) of cell suspension of 
B .subtilis OTPB1 (108cfu ml_1) and conidial suspension of T. 
harzianum OTPB3  (108 spores ml_1).  The mixture was inoculated 
into potato dextrose broth and incubated at 25 ± 1C for 7 days and 
one loop of culture broth was streaked on potato dextrose agar and 
incubated at 25 ± 1OC for 3 days in the dark. 
 
 
Seed treatments 
 
Tomato Cv. Arka vikas seeds were surface sterilized with 1% 
sodium hypochlorite for 2 min followed by three rinses with sterile 
distilled water. Ten grams of sterilized tomato seeds were incubated 
in 50 ml spore suspension (108 spores/ml,) of T. harzianum OTPB3 
or cell suspension (108cfu ml_1) of B.subtilis OTPB1, amended with 
0.2% (w/v) sterile carboxymethyl cellulose (CMC) sticker 
suspensions at 25C in a rotary shaker at 80 rpm for 2 h for 
allowing attachment of bacterial cells or spore suspension or test 
chemicals to the seed coat. The treated seeds were placed in 
sterile 90 mm Petri dishes and air-dried on a laminar flow bench for 
12 h. For combined inoculation of Trichoderma and Bacillus 
isolates, seeds were soaked in a mixture of cell suspension of B 
.subtilis OTPB1 (108cfu ml-1) and conidial suspension of T. 
harzianum OTPB3 (108 spores ml-1) in ratio of 1:1. Suspension of 
mancozeb (0.2%) was used. The seeds treated with  sterile distilled 



 
 
 
 
water amended with CMC and seeds soaked in distilled water 
served as controls. Inoculant densities on treated tomato seeds 
were determined using a dilution plating technique. Five tomato 
seeds treated with OTPB3, OTPB1 and consortium of OTPB3 and 
OTPB1 were suspended in 5 ml of 10 mM sterile phosphate buffer 
(pH 7.0) and sonicated in an ultrasonic bath to release adhering 
bacteria and Trichoderma and then serial dilutions (1/10) were 
plated on Kings B medium and Trichoderma selective medium. 
Petri dishes were incubated for 5 days at 28C for bacteria and 7 
days at 25C for Trichoderma. The number of cfu per seed was 
determined at inoculation time (0 h), and 24 h and 48 h from 
inoculation time (Correa et al., 2009). 
 
 
Effect of seed treatment on growth promotion under 
greenhouse conditions 
 
Seeds treated with fresh suspension of microbial consortium and 
test chemicals along with untreated controls sown separately in pot- 
trays filled with sterilized coco peat. Seedlings were allowed to grow 
for 30 days at 25 ± 2ºC under natural light. After 30 days, seedling 
growth parameters such as root length and shoot lengths, root and 
shoot weights and leaf area were measured for 1,536 seedlings. 
Each treatment consisted of four replicates and each replication 
consisting of 96 plants, thereby making a total of 384 plants per 
treatment and the experiment was repeated thrice. The germination 
percentage was calculated on the 14th day after sowing as most of 
the seeds germinate within this period. Seeds were considered as 
germinated when their two cotyledonary leaves were visible above 
the coco peat. About 1,536 seeds (3 independent experiments with 
four replicates) were scored for determining germination percentage. 
Seedling vigour index was calculated using the following formula as 
described by Baki and Anderson (1973) that is seedling vigour 
index = seedling length (cm) × germination percentage. The data of 
all 1,536 seedlings were pooled and analyzed after no block effects 
were noted. 
 
 
Determination of growth hormones in tomato   
 
IAA and GA3 levels were determined in the roots of tomato 
seedlings treated with biocontrol agents, mancozeb and untreated 
control according to the method of Kelen et al. (2004) with a few 
modifications. Tomato root samples (10 g) from 30 day old 
seedlings were macerated in 80% chilled methanol (50 ml) and 
centrifuged at 4000 rpm for 10 min after leaving the extract 
overnight at 4C. The supernatant was evaporated in vacuo at 
40C, residue dissolved in water and adjusted to pH 8.0. The 
alkaline extract was partitioned twice with ethyl acetate and 
discarded. pH of the aqueous phase of the extracts was adjusted to 
pH 2.5 using 0.5 N hydrochloric acid. The acidic extract was then 
partitioned twice with equal volumes of diethyl ether. The diethyl 
ether portion, after drying over anhydrous Na2SO4, was filtered 
through Whatman No. 1 filter paper, and the ether was removed in 
vacuo. The residue was dissolved in 0.5 ml of 100% methanol for 
GA3 and IAA analyses as described below. 
 
 
High performance liquid chromatography (HPLC) conditions  
 
IAA and GA3 were assessed by HPLC (Model-Prominence, Make-
Schimadzu, Japan) as described by Kelen et al. (2004) with a few 
modifications. A C18 reverse phase column (Synergi, 250 x 4.6 mm, 
4 µm, Phenomenex, USA) and photodiode array (PDA) detector 
(Model SPD-M20A, Schimadzu, Japan) were used in the HPLC 
system. The solvent system included 70% water at pH 4.0 [adjusted 
with ortho phosphoric acid (5%)] (B) in acetonitrile (A) at a flow rate 
of 0.8 ml/min to  resolve  GA3 and IAA. The  quantification  of  these  
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phytohormones was carried out at 205 and 220 nm against external 
standards.  The experiment was repeated 12 times with five plants 
each time. 
 
 
Induction of systemic resistance 
 
Pot trays containing 30 days-old tomato seedlings treated with 
different seed treatments were placed in growth chambers 
(Research and Test Equipment Co,, Bangalore, India ). Then, each 
pot tray containing 96 seedlings were sprayed separately with cell 
suspensions of P. putida OPf1 (108cfu ml_1), mancozeb (2 g/l) and 
pre-packed mixture of fenamidone + mancozeb (3 /l) followed by 
zoospore suspension containing 3x105 zoospores ⁄ml of  P. 
infestans  PIT 30 (Chowdappa et al., 2013b). The treated plants 
were then kept in plant growth chambers and incubated at 18 ± 1ºC 
with 100% relative humidity under 16 h cool white fluorescent light 
and 8 h dark (Chowdappa et al., 2013a). The disease incidence 
was recorded six days after inoculation and rated by estimating the 
affected percentage leaf area (James, 1971) of all leaves. 
Percentage of disease severity incidence was calculated using the 
formula (Amin et al., 2013). 
 

 
 
The experiments were repeated thrice. Each experiment consists of 
3 pot- trays with 96 plants/tray, totaling 288 plants. Total number of 
plants used for experiments are 864 seedlings. The data of all the 
864 seedlings were pooled and analyzed after no block effects 
were recorded. The samples for enzyme assay were collected 
separately during three repetitions. 
 
 
Sample collection and assay of defense-related proteins 
 
Thirty days old plants were carefully uprooted without causing any 
damage to root and leaf tissues at intervals of 0, 1, 3, 5, 7, 9 and 11 
days after challenge inoculation (Latha et al., 2009). The seedlings 
from each replication were separately washed in running water, blot 
dried and homogenized with liquid nitrogen in a pre-chilled mortar 
and pestle. One gram of sample was homogenized with 2 ml of 0.1 
M sodium phosphate buffer (pH 7.0) at 4C. The homogenate was 
centrifuged for 20 min at 10,000 rpm. The supernatant was used as 
a crude enzyme extract for assaying peroxidase (PO; EC 1.11.1) 
(Hammerschmidt et al., 1982), polyphenol oxidase (PPO; EC 
1.12.18.1) (Mayer et al., 1965) and phenylalanine ammonia lyase 
(PAL; EC 4.3.1.5) (Dickerson et al., 1984). Enzyme extracted in 0.1 
M sodium citrate buffer (pH 5.0) was used for the estimation of β-
1,3-glucanase (Pan et al., 1991). Each enzyme assay consisted of 
eight replications (leaves) and two spectrophotometric readings per 
replication using a Biomate 3 spectrophotometer (Thermospectronic, 
USA). Each replication consists of five plants. 
 
 
Assay of peroxidase (EC 1.11.1) 
 
The assay was carried out as described by Hammerschmidt et al. 
(1982). The reaction mixture consisted of 1.5 ml of 0.05 pyrogallol, 
0.5 ml enzyme extract and 0.5 ml of H2O2 and incubated at 28±1C. 
The changes in absorbance were measured at 42 0nm at 30 s 
interval for 3 min. The enzyme activity was expressed as changes 
in absorbance of the reaction mixture min-1g-1

 on fresh weight source. 
 
 
Assay of polyphenol oxidase (EC 1.12.18.1) 
 
Enzyme assay was performed as described by (Mayer et al., 1965). 

Percentage  
Severity Index =

              Sum of Individual numerical rating                 × 
Total Number of assessed x Maximum score in scale

100%
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200 µl of enzyme extract was added with 1.5 ml of 0.1 M sodium 
phosphate buffer (pH 6.5). Reaction was initiated by adding 200 µl 
of 0.01catechol. Changes in absorbance of the reaction mixture 
were expressed in min-1g-1 on fresh weight source.  
 
 
Assay of phenylalanine ammonia lyase (EC 4.3.1.5) 
 
Enzyme assay was performed as described by Dickerson et al. 
(1984). Reaction mixture containing 100 µl of enzyme with 500 µl of 
50 mM Tris HCL (pH 8.8) and 600 µl of 1 mM L- phenylalanine 
were incubated for 60 min at 25C. The reaction was arrested by 
adding 2 N HCl. Meanwhile 1.5 ml of toluene was added, mixed in 
vortex for 30 s, centrifuged at 10,000 rpm at 4°C for 5 min. Toluene 
portion with trans-cinnamic acid was separated and toluene phase 
was read at 290 nm against toluene as blank.  A standard curve 
was plotted using cinnamic acid solution in toluene at described 
concentrations. 
 
 
Assay of β-1, 3-glucanase (EC 3.2.1.39) 
 
Assay was carried out as using laminarin dinitrosalicylic acid 
method as described by Pan et al. (1991). The reaction mixture 
consisted of 62.5 µl of 4% laminarin and 62.5 µl of enzyme extract. 
The assay was carried out at 40C for 10 min. The reaction was 
terminated by adding 375 µl of dinitrosalicylic acid and heating for 5 
min in hot water bath, mixed well and measured absorbance at 
500nm. The activity was expressed as µg of glucose released 
units/mg of protein. 
 
 
Protein estimation 
 
Protein contents of the extract for all enzymes were estimated 
following the method of Bradford (1976) using bovine serum 
albumin (BSA) (Sigma, USA) as standard. 
 
 
Native polyacrylamide gel electrophoresis analysis 

 
The isoform profiles of PPO were separated by discontinuous 
native polyacrylamide gel electrophoresis (PAGE) (Laemmli, 1970). 
The protein extract was prepared by homogenizing 1 g of leaf 
sample in 2 ml of 0.1 M sodium phosphate buffer (pH 7.0) and 
centrifuged at 18,000 rpm for 20 min at 4C. After the protein 
content was determined (Bradford, 1976), the samples (50 µg 
protein) were loaded onto 8% polyacrylamide gels (Sigma, USA). 
After electrophoresis, PPO isoform profiles were assessed by 
equilibrating gels for 30 min in 0.1% p-phenylene diamine, followed 
by addition of 10 mM catechol in the same buffer (Jayaraman et al., 
1987). 
 
 
Statistical analysis 

 
All data were statistically analyzed using one way analysis of 
variance (ANOVA) to identify the origin of significance and followed 
up with a Fishers test to separate means and treatments  using 
Graphpad Prism V.5.00  for windows (Graph pad software, San 
Diego, California, USA). Means were compared between 
treatments by least significant difference (LSD) at the 1% level 
(p<0.01).  Percentage data were arcsine-transformed before 
analysis according to y = arcsin [sqr (x/100)]. 

 
 
 
 
RESULTS 
 
Identification of Pseudomonas putida OPf1 
 
PCR amplication of the 16S rDNA gene amplified from the 
genomic DNA of P. putida OPf1 yielded fragment of 1464 
bp. Blast search of the P. putida OPf116S rDNA gene 
sequence revealed that it had 98% similarity to the 16S 
rDNA gene sequences of P. putida strains in NCBI 
(Figure 1). A phylogenetic tree generated using 16S rDNA 
gene sequences showed that P. putida OPf1 was closely 
related to P. putida (Figure 1). The OPf1 was identified as 
P. putida, based on the sequence analyses of 16S rDNA 
gene. The 16S rDNA sequence of OPf1 was deposited in 
NCBI (www.ncbi.nlm.nih.gov/) with accession no. 
KC964109. 
 
 
In vitro evaluation of antagonists 
 
The P. putida OPf1 significantly reduced mycelial growth 
of P. infestans by 72.9% when evaluated under in vitro 
conditions (Table 1). 
 
 
Compatibility between T. harzianum OTPB3 and B. 
subtilis OTPB1 
 
When one loop of culture broth streaked on potato dex-
trose agar, both B. subtilis OTPB1 and T. harzianum 
exhibited growth on PDA without any antagonistic activity 
after 72 h of incubation (Figure 2). They also did not 
exhibit inhibitory effects on each other when spot 
inoculated on PDA. The number of colony forming units 
(cfu) recovered from treated seed at different time 
intervals after inoculation (Table 2) showed that OTPB3, 
OTPB1 and microbial consortium were effectively 
colonized tomato seeds. No differences were observed in 
colony forming units, irrespective of treatment and 
remained unaffected up to 48 h of post inoculation (Table 
2). Thus, the isolates OTPB3 and OTPB1 were com-
patible and can be utilized for seed coating formulation 
(Table 2).  
 
 
Growth parameters  
 
Tomato seeds treated with a mixture of B. subtilis OTPB1 
and T. harzianum (OTPB3) or singly with OTPB1, OTPB3 
and P. putida OPf1 exhibited increase (p<0.01) in 
seedling growth parameters (Table 3) significantly 

compared to mancozeb (0.2%) and untreated control. 
The consortium enhanced root and shoot lengths, leaf 
area, fresh weight of shoots and roots by 56.3, 40.9, 
34.0, 50.2 and 56.9% respectively as compared to the 
control seedlings (Table 3). The data also indicated that 
the microbial consortium stimulated better growth than 
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Figure 1. Phylogenetic tree of the Pseudomonas putida OPf1 based on the 16s rDNA gene sequences.  

 
 
 

Table 1. In vitro inhibition of and P. infestans (OTA 30) by P. putida (OPf1)A. 
 

Isolate  Pathogen Pathogen growth (mm)  

P. putida (OPf1) P. infestans (PIT30) 21.0 ± 1.0 (72.9) 
Control P. infestans (PIT30) 77.7 ± 0.5  
 

Values in parentheses indicate percent inhibition of pathogen growth over control. 
Percentage of inhibition was calculated based on data collected after seven days of 
inoculation. Inhibition percentage defined as [C-T/C](100)], where C is the colony 
diameter of pathogen on control plate and T is the colony diameter of pathogen 
against test antagonist(mm). Percentage data were arcsin-transformed before 
analysis according to y = arcsin [sqr. (/100)]. Data are the means and standard 
deviation of nine independent experiments. Each experiment contained three 
replicates. Each replicate contained six Petri plates.A Phytophthora infestans 
inhibition assay on rye A agar 19 ± 1C were performed. The radial growth of the 
pathogens were measured after every 24 h till the fungus reached the perimeter of 
the control plate (up to 7 days). 

 
 
 
other treatments including treatments with OTPB1, 
OTPB3 and P. putida OPf1 separately.  Further studies 
were restricted to consortium only as they stimulated 

higher growth and the data on stand-alone treatments of 
OTPB1, OTPB3 was published earlier (Chowdappa et al., 
2013b). 

 JF751057 Pseudomonas putida strain AQ

 JN585672 Pseudomonas putida strain RA8

 gJX514414 Pseudomonas putida strain DAPG5

 HM439967 Pseudomonas putida strain NBAII RPF-9

 KC439677 Pseudomonas putida strain LJS75

 HM439963 Pseudomonas putida strain NBAII GR-1 ARS-1

 KC439680 Pseudomonas putida strain XZ16

 EU826028 Pseudomonas putida strain SRI156

 HQ270551 Pseudomonas putida strain GPSD-8

 JX514407 Pseudomonas putida strain DAPG4

 KC820813 Pseudomonas putida strain E16

 HM439958 Pseudomonas putida strain NBAII PF-4K

 HQ697262 Pseudomonas putida strain A3

 FJ932760 Pseudomonas putida strain 31920-1

 DQ229315 Pseudomonas putida isolate BCNU106

 KC964109 Pseudomonas putida OPf1

 GU073466 Pseudomonas putida strain TP0701

 AF068259 Pseudomonas jessenii

 KF864552 Pseudomonas fluorescens strain Pf1

 AJ308299 Pseudomonas aurantiaca ICMP 6003T

 NR_024902 Pseudomonas mandelii strain CIP 105273

 U63909 PTU63909 Pseudomonas tolaasii

 AB541974 Pseudomonas entomophila T1

 AJ308315 Pseudomonas stutzeri strain ICMP 12561T

 KC713611 Pseudomonas aeruginosa strain VSHUB005

 AB257323 Pseudomonas pseudoalcaligenes

 KF511638 Pseudomonas koreensis strain PS6
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Table 3. Effect of seed treatment of fresh suspensions on growth of tomato seedlingsA. 
 

TreatmentB 
Root 

Length(cm) 
Shoot length 

(cm) 
Seedling vigour 

indexC 
Root weight (g) Shoot weight (g) Leaf area(cm2) 

OTPB3 14.4±2.2(41.1)b 20.5±2.4(42.0)b 3434.0±348.1(45.7)b 1.3±0.3(52.9)b 2.0±0.4(63.2)ab 7.1±1.3(46.6)b 

OTPB1 11.7±2.7(27.8)c 22.3±3.1(35.9)c 2935.9±271.3(36.4)c 1.0±0.1(26.9)b 1.8±0.3(60.4)b 6.3±1.8(40.3)c 

OTPB3+OTPB1 16.5±2.3(56.3)a 23.5±2.2(40.9)a 3708.9±178.2(53.5)a 0.3±0.05(56.9)a 2.4± 0.2(50.2)a 8.8±1.1 (34.0)a 

OPf1 11.0±1.4 (34.5)c 18.4±1.8(37.9)c 2877.7±118.5(40.1)c 0.2±0.03(38.2)c 1.8±0.3 (46.2)c 6.2±1.2 (19.2)c 

Mancozeb (0.2%) 7.3±1.1 (1.5)d 16.6±1.4(16.4)d 1952.7±114.3(11.7)d 0.1± 0.05(8.5)d 1.6± 0.2(23.2)d 6.2±1.4 (5.4)d 

Control CMC 7.8±1.3d 14.0±1.6d 1785.8±145.2d 0.1±0.05d 1.3±0.1d 6.0±1.1d 

Control 7.2±1.2d 13.8±1.8d 1723.3±138.6d 0.1±0.025d 1.2±0.2d 5.8±1.4d 

CD 1% 1.3 0.9 127.1 0.04 0.3 0.5 
 
A Values are mean of 3 independent experiments ± standard deviation. Each experiment consists of 4 pot trays with 96 plants/tray, totaling 384 plants. 
Total number of plants used for experiments are 1536 seedlings. Seedling growth parameters like root length, shoot length, root fresh weight, shoot 
fresh weight and leaf area were determined for 1536 seedlings 30 days after sowing. Values in parentheses indicates percentage increase over 
control. For each row values followed by a different lower case letter are significantly different at p < 0.01, according to Fishers LSD test. BBacterial 
isolate B. subtilis OTPB1 (108) and one isolate Trichoderma harzianum OTPB3 suspension (108), P. putida OPf1 suspension (108) and consortium of 
OTPB1 (108) and OTPB3 (108) and 0.25% suspension of mancozeb were used as fresh suspension for seed treatment and each treated tomato seed 
var. Arka vikas was placed in each cavity of pot trays containing sterilized cocpeat. Seed receiving only sterile distilled water and CMC for seed 
treatment served as untreated control and growth parameters were recorded after 30 days of sowing. CSeedling vigour index = seedling length (cm) x 
germination percentage .Vigor indices were calculated after 4 weeks. 
 
 
 

Table 4. Ability of Biocontrol agents to induce growth hormones in tomato rootsA. 
 

TreatmentsB IAA (nmol/g)B GA3 (nmol/g)B 

OTPB1+OTPB3 35.8±0.8(71.1)a 10.4±0.4(78.8)a 

OPf1 18.7±0.9(44.7)b 5.6±0.2(60.7)b 

Mancozeb 11.01±0.8(6.08)c 2.2±0.2c 

Control 10.34±0.2ce 2.2±0.3c 

CD1% 5.7 0.5 
 
AValues are mean of six plants ± standard deviation. Five plants each were drawn from 12 
independent experiments.Values in parentheses indicate percentage increase over control. For 
each row values followed by a different lower case letter are significantly different at p < 0.01, 
according to Fishers LSD test. BIndole-3-Acetic acid (IAA) and Gibberlic acid (GA3)levels were 
determined in the roots of the tomato seedlings treated with bio-control agents and untreated 
control using HPLC method by macerating tomato root samples (10 g) from 30 day old seedlings 
in 80% chilled methanol (50 ml). The quantification of these phytohormones was carried out at 
205 and 220 nm using external standards. 

 
 
 

defense enzyme activities against P. infestans compared 
to other treatments (Figure 3). The enzyme activities were 
increased after 3 days and reached to a maximum after 5 
days of pathogen inoculation and decreased, thereafter. 
However, the enzyme activities in tomato plants treated 
with a combination of OTPB3+OTPB1+ OPf1 remained 
high, up to 11 days after inoculation as compared to all 
other treatments. In contrast, the increased activities of 
enzymes were observed only up to the seventh day of P. 
infestans inoculation in other treatments and, thereafter, 
a drastic decline was recorded. Control plants or 
inoculation with pathogen alone did not exhibit any 
noticeable changes in the activities of the enzyme (Figure 
3). 
 
 
Native polyacrylamide gel electrophoresis analysis of 
PPO 
 
An analysis of PPO extract from tomato plants treated 

with OTPB3+OTPB1+ OPf1 combination and inoculated 
with P. infestans by native PAGE exhibited three isoforms 
PPO1, PPO2 and PPO3, whereas in other treatments 
only two isoforms PPO1 and PPO2 were observed with 
very low intensity and were absent in untreated plants 
(Figure 4). Further, the expression of isoform banding 
patterns in plants treated with OTPB3+OTPB1+ OPf1 
was more intense compared to other treatments and 
untreated control.  
 
 

DISCUSSION 
 
The results from agar plate and seed assays indicated 
that the isolates of T. harzianum (OTPB3) and B. subtilis 
(OTPB1) were compatible. Previous studies showed that 
biocontrol agents should be compatible when combined 
in order to obtain desired and consistent plant growth 
promotion and disease suppression (Janisiewicz and 
Bors 1995; Raaijmakers et al., 1995; Janisiewicz 1996; Li 
and Alexander, 1988). Many earlier reports also illustrated 
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Table 5. Effect of seed treatments with fresh suspensions of OTPB3+OTPB1, 
OPf1 and fungicides and foliar sprays of fungicides on late blight incidence of 
tomato under controlled conditions in growth chamber A. 
 

TreatmentsB Late blight incidence (%)C 

Pathogen spray alone 76.6±2.3e 
OTPB3+OTPB1* 38.4±2.4 (49.9)c 
Mancozeb* 51.4±3.2 (32.9)b 
OPf1* 61.2±4.1(20.1)d 
OTPB3+OTPB1+OPf1** 20.6±2.4(73.1)a 
OTPB3+OTPB1+ Fenamidone + Mancozeb** 20.0±2.4(73.9)a 
Mancozeb + Fenamidone + Mancozeb** 20.6±2.2(72.8)a 
Mancozeb + OPf1** 25.4±2.1(66.8)a 
OPf1+ Fenamidone + Mancozeb** 20.5±3.1(68.0)a 
OPf1+OPf1** 48.2±3.5(37.1)c 
Control CMC 71.4±3.4(6.8)e 
CD 5%` 14.6 

 

*Seed treatment; **Seed treatment with foliar spray. AValues are mean of 3 independent 

experiments ± standard deviation. Each experiment consists of 3 pot trays with 96 

plants/tray, totaling 288 plants. Total number of plants used for experiments are 864 

seedlings. Percentage of disease severity index was estimated after initiation of 

symptom, i.e., 72 hrs of pathogen spray. Values in parentheses indicate percent 

inhibition of pathogen growth over control. Percentage of inhibition was calculated 

based on data collected after seven days of inoculation. Inhibition percentage defined 

as [C-T/C](100)], where C is the late blight incidence of control plant and T is the late 

blight incidence of treated. Percentage data were arcsin-transformed before analysis 

according to y = arcsin [sqr. (_/100)].  For each row values followed by a different 

lower case letter are significantly different at p < 0.05, according to Fishers LSD test. 

BPot trays containing tomato seedlings of 30 days old treated with different seed 

treatments were placed in growth chambers were sprayed with different foliar 

treatments which includes P. putida OPf1, Mancozeb and Famaxodine + Mancozeb 

followed with spray of P.infestans PIT 30 spore suspension and plants were incubated 

in 100% relative humidity (RH) and maintained at 25 0C at day and 20°C at night, with 

a 12-h photoperiod (Yan et al., 2002). Six days after inoculation with the pathogen, 

disease was rated by estimating the affected percentage leaf area (James, 1971) of all 

leaves and percentage of disease severity incidence was calculated using the formula 

(Amin et al., 2013). 

                                                          Sum of Individual numerical rating   
cPercentage Severity Index =                                                                              x 100 
                                                 Total Number of assessed x Maximum score in scale 

 
 
 
that disease suppression can be increased by utilizing  
combinations of biological control agents and plant growth 
promoting rhizobacteria (PGPR) and their combined effects 
are pronounced in  improving crop yields and enhancing 
nutrient uptake by plants (Alagawadi and Gaur, 1988; 
Alagawadi and Gaur, 1992, Jisha and Alagawadi, 1996; 
Guetsky et al., 2002; (van Peer et al., 1991; Duffy et al., 
1996; de Boer et al., 1999; Nandakumar et al., 2001; 
Domenech et al., 2006; Saravanakumar et al., 2007; 
Thilagavathi et al., 2007; Ganeshmoorthi et al., 2008; 

Latha et al., 2009) over single organism inoculations.  
Meanwhile Yobo et al. (2009) demonstrated that 
Trichoderma and Bacillus combinations were better than 
the Trichoderma isolated and Bacillus isolates used 
alone. They reported that there was potential in using 
mixtures of Trichoderma and Bacillus for improving plant 
growth and disease control. Earlier studies also 
demonstrated that the mixtures of T. harzianum and B. 
subtilis may not affect each other in vivo due to spatial 
separation on the roots or production of antimicrobial
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mixture of pioneered biocontrol agents would further closely 
imitate the natural condition and might broaden the spec-
trum of biocontrol activity, improve the efficiency and 
consistency of biological control (Mishra et al., 2011). 
Direct interactions taking place among members of 
dissimilar microbial types often result in the promotion of 
key processes benefiting plant growth and health. Syntro-
phic relationships between different organisms have been 
demonstrated in several microbial ecosystems. Hence 
combinations of microorganisms that interact synergisti-
cally are currently being devised, which yield better and 
quick results (Bashan, 1998). Hence microbial consortium 
was suggested for plant growth promotion and disease 
suppression (Seneviratne, 2003). However, information 
pertaining to combined inoculations of Trichoderma and 
Bacillus species on plant growth and especially on disease 
control appears to be very sparse, even though both 
Bacillus and Trichoderma species are well known for their 
biological control and plant growth promoting properties 
(Yobo et al., 2009). 

Tomato seeds coated with fresh suspensions of micro-
bial mixture containing T. harzianum (OTPB3) and B. 
subtilis (OTPB1) resulted in significant increase in growth 
parameters in comparison with P. putida OPf1 and 
mancozeb treatments and untreated control. Many strains 
of Trichoderma spp., Bacillus spp. and Pseudomonas 
spp. were reported as potential plant growth promoters 
and disease resistance inducers in a range of crops 
(Schneider and Ullrich, 1994; Raupach and Kloepper, 
1998; Nandakumar et al., 2001; Ramamoorthy et al., 
2002; Harman et al., 2004; Kleifeld and Chet, 1992; 
MacKenzie et al., 1995; Windham et al., 1986; Yedidia et 
al., 1999; Chithrashree et al., 2011; Chowdappa et al., 
2013b). Choure et al. (2012) demonstrated that use of 
microbial consortia promoted early growth in Cajanus 
cajan, compared to individual strains of S. fredii KCC5, P. 
fluorescens LPK2 and Azotobacter chroococcum AZK2. 
Senthilraja et al. (2010) also reported that B. bassiana 
and P. fluorescens formulation has effectively decreased 
the collar rot and increased yield in groundnut production. 

The significant increase in growth parameters of tomato 
was possible due to higher production of IAA and GA3 in 
roots of tomato seedlings raised from seeds coated with 
T. harzianum (OTPB3) and B. subtilis (OTPB1) consortium. 
The enhancement of IAA and GA3 levels is one of the 
mechanisms by which biocontrol organisms can enhance 
shoot and root growth and leaf area in tomato plants. IAA 
plays a vital role in initiation and elongation of lateral and 
adventitious roots and also influence shoot development 
(Hedden and Thomas, 2006). GA3 in combination with 
auxins promotes axial part elongation (Srivastava, 2002). 
IAA stimulates cell elongation or cell division by reducing 
the effect of 1-aminocyclopropane-1-carboxylic acid (ACC) 
deaminase activity and promotes root growth. ACC is a 
known inhibitor of root growth and several bacteria produce 
ACC-deaminase (Jacobson et al., 1994). Many studies  
demonstrated that certain bacteria and fungi promote  
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plant growth directly through increased nutrition uptake 
excited by growth regulators (Idris et al., 2007; Gravel et 
al., 2007; Harman, 2011; Shoresh et al., 2010; Kloepper 
et al., 2004; Chen et al., 2007; Chowdappa et al., 2013b). 
They also colonize plant roots, suppress many soil borne 
fungal pathogens and also stimulate growth and crop 
yield (Idris et al., 2007).   

Accumulation of enzymes such as peroxidase, poly-
phenol oxidase, phenylalanine ammonia lyase and β-1, 
3-glucanase were significantly higher in tomato seedlings 
treated with OTPB3+OTPB1 consortium followed by P. 
putida OPf1 foliar spray after challenge inoculation with 
P.infestans as compared to other treatments including 
fungicidal check, mancozeb, fenamidone – mancozeb, and 
untreated control and is presumably responsible for the  
reduction of late blight disease index in plants challenged 
with P. infestans. Enhanced activities of the enzymes 
related to defense in the PGP microbes treated tomato 
plants may play a role in suppression of pathogen inter-
ference in the host eventually preventing development of 
disease. Several studies have demonstrated that enhance-
ment of PO, PPO, PAL and β-1, 3-glucanase activities 
were responsible for fungal disease suppression in plants 
treated with T. harzianum (Jayalakshmi et al., 2009; 
Houssien et al., 2010) or B. subtilis (Nakkeeran et al., 
2006; Thilagavathi et al., 2007; Latha et al., 2009; 
Chitrashree et al., 2011) or Pseudomonas spp (Latha et 
al., 2009, Sundaramoorthy et al., 2012). 

In the present study, enzyme activities were initiated 72 
h after pathogen inoculation and were maximum on 5th 
day in all treatments. Plants treated with OTPB3+OTPB1 
consortia followed by OPf1 foliar spray exhibited maxi-
mum activities of the defense enzymes during the initial 
stage of pathogen attack and persisted up to 11th day 
after pathogen inoculation, which may be the cause of 
reduction in late blight disease incidence. Similar kind of 
responses were reported in many host-pathogen interac-
tions (Dalisay and Kuc, 1995; Chen et al., 2007; 
Ramamoorthy et al., 2002; Rajendran and Samiyappan, 
2008). Increased accumulation of both PO and PAL plays 
an important role in biosynthesis of secondary 
metabolites and phytoalexins and attributed their role in 
disease resistance (Daayf et al., 1997; Ryals et al., 1996; 
Kosuge, 1969). Increased activity of PO and PAL was 
reported in tomato treated with P. fluorescens infected by 
Fusarium oxysporum (Ramamoorthy et al., 2002), PO, 
PPO and PAL activity in rice, treated with B. pumilus 
SE34 and B. subtilis GBO3 after challenge inoculation 
with  Xanthomonas oryzae pv. oryzae (Chithrashree et 
al., 2011). β-1-3-glucanase have the ability to hydrolyze 
β-1-3-glucan, a major component of cell wall of 
Stramenopile  fungus like, P.infestans leading to direct 
the inhibition of growth of pathogen (Karthikeyan et al., 
2005). Umamaheswari et al. (2009) reported that 
watermelon plants pre-treated with bio-agents showed 
enhanced PAL, PO, PPO, β-1-3-glucanase activities 
upon challenge inoculation with Alternaria alternata. 
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The present study is clearly demonstrated better ability 
of the ‘synthetic microbial consortium’ of T. harzianum 
(OTPB3) and B. subtilis (OTPB1) to promote plant growth 
and induce systemic resistance against P. infestans in 
tomato than those of seed treatments with mancozeb and 
stand-alone treatments of OTPB3 and OTPB1. Thus, 
development of seed coating formulation with the microbial 
consortium of OTPB3 and OTPB1 is crucial to raise 
healthy tomato seedlings as P.infestans is a soil/seed 
borne pathogen (Wangsomboondee and Ristaino, 2002).  
In addition to seed and soil borne inoculums, airborne 
inoculum is also vital to late blight outbreaks under 
congenial tropical and subtropical conditions. In practice, 
protective foliar fungicidal applications at weekly intervals 
are used to effectively control the late blight disease. 
Thus, seeds treated with consortium of OTPB3 and 
OTPB1 followed by OPf1 foliar spray showed persistence 
of higher activities of the defense enzymes up to 11th day 
after pathogen inoculation leading to reduction in late 
blight disease incidence. This synthetic microbial consor-
tium has the ability to protect plants from soil/seed/air 
borne inoculums. As most of the vegetable growers in 
India purchase tomato seedlings from commercial 
vegetable nurseries grown in pot trays using coco peat, 
movement of the P. infestans through seedlings is very 
high and this can be contained through seed treatments. 
Systemic resistance can be extended in field by foliar 
spray of P. putida OPf1 comparable with results of 
fungicide check fenamidone-mancozeb .  

Therefore, in comparison with our previous work, where 
basal application of isolates of T. harzianum OTPB3 or B. 
subtilis OPTB1 individually promoted growth and induced 
systemic resistance against early and late blight of 
tomato, and in present paper, the effects of growth 
promotion and induction of systemic resistance are more 
in the tomato seedlings when seeds treated with 
consortium of OTPB3 and OTPB1 followed by OPF1 
spray..   

We, therefore, suggest that a combination of OTPB3 
and OTPB1 can be effectively used for development of 
seed coating formulations to produce disease free and 
quality tomato seedlings and P. putida OPf1 as foliar spray 
for effective management of late blight disease. 

However, this technology ‘synthetic microbial consortia’ 
needs to be validated further under field conditions at 
multi-locations before any recommendations are made.  
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