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ABSTRACT 
 

The formation of implicit second order backward difference Adam’s formulae for solving stiff 
systems of ODEs was study in this paper. We used interpolation and collocation in deriving 
backward differentiae Adam’s formulae. The basic properties of our method was analyzed, and it 
was found to be consistent, zero-stability and convergent, we further plotted the region of absolute 
stability and it was shown to be A-stable. Numerical evidences shows that the multistep method 
develop is very effective method for in handling linear ODEs either initial value problems or 
boundary value problems. 
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1. INTRODUCTION 
 

Most of these improvements in the class of linear 
multistep methods have been based on 
backward differentiation formula (BDF), because 
of its special properties. Among the first 
modifications introduced by different authors was 
the Extended Backward Differentiation formulas 
(EBDFs), introduced in 1980 by Cash, in which 
one-super future point technique was applied. 
Cash, [1], proposed Second derivative extended 
backward differentiation formulas for the 
numerical integration of stiff systems. As 
opposed to one-step methods, which only utilize 
one previous value of the numerical solution to 
approximate the subsequent value, multistep 
methods approximate numerical values of the 
solution by referring to more than one previous 
value. Accordingly, multistep methods may often 
achieve greater accuracy than one-step methods 
that use the same number of function 
evaluations, since they utilize more information 
about the known portion of the solution than one-
step methods do. 
 
Meanwhile, some scholars such as Meyer, 
Berghe and Vanthournout, [2], developed the 
Modified backward differentiation methods of 
Adams type based on exponential interpolation. 
A study of generalized Adams-Moulton method 
for the satellite orbit determination problem was 
study by Hong and Hahmwood, [3]. Skwame, 
Sabo, Kyagya and Bakari, [4], has developed a 
class of two-step second derivative Adam 
Moulton method with two off-step points for 
solving second order stiff ordinary differential 
equations. And, a sixth order implicit hybrid 
backward differentiation formulae (HBDF) for 
block solution of ordinary differential equations 
was study by Muhammad and Yahaya, [5]. 
Again, the study of second derivative hybrid 
block backward differentiation formula for 
numerical solution of stiff systems was carried 
out by Skwame, Kumlengand Bakari, [6]. Stuart 
and Humphries, [7], realized that there was an 
important class of ordinary differential equations 
(ODEs), which have become known as stiff 
equations, which presented a severe challenge 
to numerical methods that existed at that time. 
Since then an enormous amount of effort has 

gone into the analysis of stiff problems and, as a 
result, a great many numerical methods have 
been proposed for their solution. Their work 
motivated us to propose implicit second order 
backward difference Adam’s formulae for solving 
stiff systems of ODEs of the form, 
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subject to the initial conditions 
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In order to achieve the aim and objectives of this 
paper, we shall interpolate, collocate and 
evaluate a power series approximate solution at 
some chosen grid and off-grid points via Cash, 
[8]. 
 

2. DERIVATION OF BACKWARD 
DIFFERENCE ADAMS-MOULTON 
FORMULAE (BDAMF) 

 

The difference between Adams-Moulton and 
Adams-Bashforth methods is that Adams-
Moulton methods use an interpolating polynomial 
of degree k  rather than 1 k , and it 

includes f  at the unknown value nt  as well, 

Moulton, [9]. A special category of multistep 
methods are the linear multi-step methods, 
where the numerical solution to the ODE (1.1) at 
a specific location is expressed as a linear 
combination of the numerical solution’s values 
and the function’s values at previous Points 
Cash, [1]. For the standard system of (1.1), a 
linear multistep method with stepk   would 

have the form: 
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where jj  ,  are constants, ny  is the numerical solution at  nnnn ytffandtt , . 
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In contrast to the linear multistep schemes in the Adams Family, who are derived by integrating an 

interpolating polynomial  that approximates f , the BDAMF are derived by differentiating an 

interpolating polynomial ϕ(t) that approximates  (one such that 

), and setting the derivative at  to be equal to , 

Hairer and Wanner, [10]. 
 
For example, the one-step BDF method is derived as follows. We first construct the interpolating 

polynomial  that approximates , with  

 

                                                                              (2.2) 

 
upon differentiation (2.2), we get: 
 

                                                                                      (2.3) 

 

we can then use the approximation in (2.2) as inspiration to construct our  BDF method, by 

setting  

 

                                                                                                            (2.4) 

 

Similarly, we can construct a  Backward Difference Adams Moulton’s Formulae (BDAMF) by 

generating the  interpolating polynomial Bashford and Adams, [11]: 

 

  (2.5) 

 

where  is the backward difference operator: 

 

                                                                                                                                        (2.6) 

 

                                                                                                                (2.7) 

 

then upon differentiating, and setting , we get 

 

                                                                                                                     (2.8) 

 

which can be transformed to match the general expression of (2.1), with  (note that 

this makes them implicit schemes): 
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                                                                        (2.9) 

 

from (2.9), we obtain the general form of the a  Backward Difference Adams Moulton’s 

formulae (BDAMF) as 

 

                                                                (2.10) 

 
we obtain the continuous scheme for the single-step BDAMF by evaluating
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On evaluating the continuous scheme at the same points, yields the hybrid block backward difference 
Adams Moulton’s formula as follows. 
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3. ANALYSIS OF BACKWARD DIFFERENCE ADAMS MOULTON FORMULAE 
 
In this section, the basic properties of backward difference Adams Moulton’s formulae which include 
order, error constant, consistency, zero-stability, convergence and the stability region shall be 
analyzed. 
 

3.1 Order and Error Constants of the Method

 

 

(Definition 3.1): Following Lambert, [12], the linear difference operator  associated with the LMM 
(2.10) is defined by 
 

                                 (3.1) 

 

where  is an arbitrary test function and it is continuously differentiable on . Expanding 

   jhxyandjhxy  '  as Taylor series about , and collecting common terms yields 

 

                                                       (3.2) 

 

where the constant  coefficients are given as follows 
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According to Lambert, [12], the method (2.10) has order  if 
 

 
 

of (3.2), then 
 

Therefore the backward difference Adams Moulton’s method (2.10) is of uniform order nine, where 

9p  is the order of the method and 2pc  is the error constant, given by 
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3.2 Consistency 
 

Lambert, [13], explained that consistency 
controls the magnitude of the local truncation 
error while zero stability controls the manner in 
which the error is propagated at each step of the 
calculation. 
 

(Definition 3.2): The LMM (2.10) is said to be 

consistent if its order , It also follows from 

(3.2) that the LMM (2.10) is consistent if and only 
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It also follows from (3.3) that the LMM (2.10) is 
consistent if and only if 
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According to (definition 3.1), the hybrid block 
(2.10) is consistent. 
 

3.3 Zero Stability 
 

(Definition 3.3): The LMM (2.10) said to be zero 

stable if the first characteristic polynomial  

having roots such that

, then the multiplicity 

of must not be greater than two, Dahlquist, 

[14]. 
 

In order to find the zero-stability of hybrid block 
method (2.10), we only consider the first 
characteristic polynomial of the method 
according to Definition [3.3] as follows, 

 

 
which implies . Hence the method 

is zero-stable since . 

 
3.4 Convergence 
 
Convergence is an essential property that every 
acceptable linear multistep method (LMM) must 
possess. According to Dahlquist, [14], 
consistency and zero stability are the necessary 
conditions for the convergence of any numerical 
method. 
 
Theorem (3.1): The consistency and zero 
stability are sufficient condition for linear 
multistep method to be convergent. Since the 
hybrid block method (2.8) is consistent and zero 
stable, it implies that the method is convergent 
for all point Lambert, [13]. 

 
3.5 Region of Absolute Stability of the 

Block Method 
 
The absolute stability region consists is the set of 
points in the complex plane outside the enclosed 
figure Following Lambert, [13] and Dahlquist, 
[14]. The absolute stability region of backward 
difference Adams Moulton’s method (2.10) is 
obtained using the formula: 
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Fig. 1. Absolute Stability Region of the backward difference Adams method 
 

4. NUMERICAL RESULTS 
 
To illustrate the performance of our proposed 
BDAMF on three of stiff systems IVPs, we will 
compare our performance with the existing 
methods. The problems considered are the one 
solved by Skwame, Kumleng and Bakari, [6]. 
 
System 4.1 

 
Consider the stiffly system, 

 
 

With Exact Solution 
 

 

 

Source, Skwame, Kumleng and Bakari, [6]. 
 

Table 1. Comparison of result of the new method with that of Skwame, Kumleng and Bakari, [6] 

 
x Absolute errors in Skwame, Kumleng and Bakari, [6] Absolute error in New 

method 

62  pandK  73  pandK  102  pandK  

 xy1   xy2   xy1   xy2   xy1   xy2  

1.0  71061.3   71060.3   61060.2   61060.2   81002.2   81014.2   

2.0  71021.3   71030.3   61042.2   61042.2   81053.3   81065.3   

3.0  71028.6   71027.3   61018.2   61018.2   81072.4   81084.4   

4.0  71065.5   71065.5   61090.3   61090.3   81068.5   81076.5   

5.0  71069.6   71068.6   61058.3   61058.3   81038.6   81047.6   

6.0  71003.6   71002.6   61023.3   61023.3   81088.6   81096.7   

7.0  71092.5   71092.5   61035.4   61035.4   81023.7   81029.7   

8.0  71036.5   71037.5   61097.3   61097.3   81047.7   81053.7   

9.0  71038.7   71038.7   61059.3   61059.3   81056.7   81062.7   

0.1  71070.6   71070.6   61031.4   61030.4   81062.7   81069.7   
 
System 4.2 
 

Consider the stiffly equation, 
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

 
 

Table 2. Comparison of absolute error 
 

X  Absolute errors 
 xy1   xy 2  

1.0  
101000.6   11052.9   

2.0  101000.9   11010.9   

3.0  91010.1   11062.8   

4.0  91040.1   11020.8   

5.0  91050.1   11080.7   

6.0  91070.1   11042.7   

7.0  91080.1   11010.7   

8.0  91080.1   11072.6   

9.0  91080.1   11039.6   

0.1  91080.1   11008.6   
 

System 4.3 
 

Consider the stiffly problem, 
 

 
With Exact Solution 
 

 

 
 

 

Table 3. Comparison of absolute error 
 

 Absolute error 
 

  

 91080.1   81040.1   

2.0  91070.2   81030.2   

 91070.3   81030.3   

 91040.4   81090.3   

 91000.5   810470   

 91020.5   81000.5   

 91040.5   81020.5   

 91070.5   81040.5   

 91060.5   81050.5   

0.1  91070.5   81050.5   

 
5. CONCLUSION 
 

The formation of implicit backward difference 
Adam’s Moulton formulae has been studied in 
this paper. We use interpolation and collocation 

via Cash, [1] in deriving the method. The 
property of the method has been analyzed, and it 
was found to be consistent, zero-stable and 
convergent with region of absolutely stability 
within which the method is stable. Therefore the 
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general solution of first order backward 
difference Adam’s Moulton formulae is a 
convenient technique for determining the 
solutions of mathematical modeling since it can 
approximate the result even though the efficiency 
is less than the other multistep method. This 
study concluded that, the multistep method is 
very effective method for solving linear IVPs. 
 

6. RECOMMENDATION 
 

The pair of backward difference Adam’s Moulton 
formulae developed in this paper is 
recommended for testing first order stiff system 
of ordinary differential equations. The basis 
function [1] used is also recommended for the 
derivation of Numerical methods for second 
order differential equations and the pair of 
methods derived are also recommended for the 
solution of systems of second order stiffly 
ordinary differential equations. 
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