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ABSTRACT

The formation of implicit second order backward difference Adam’s formulae for solving stiff
systems of ODEs was study in this paper. We used interpolation and collocation in deriving
backward differentiae Adam’s formulae. The basic properties of our method was analyzed, and it
was found to be consistent, zero-stability and convergent, we further plotted the region of absolute
stability and it was shown to be A-stable. Numerical evidences shows that the multistep method
develop is very effective method for in handling linear ODEs either initial value problems or
boundary value problems.
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1. INTRODUCTION

Most of these improvements in the class of linear
multistep methods have been based on
backward differentiation formula (BDF), because
of its special properties. Among the first
modifications introduced by different authors was
the Extended Backward Differentiation formulas
(EBDFs), introduced in 1980 by Cash, in which
one-super future point technique was applied.
Cash, [1], proposed Second derivative extended
backward differentiation formulas for the
numerical integration of stiff systems. As
opposed to one-step methods, which only utilize
one previous value of the numerical solution to
approximate the subsequent value, multistep
methods approximate numerical values of the
solution by referring to more than one previous
value. Accordingly, multistep methods may often
achieve greater accuracy than one-step methods
that use the same number of function
evaluations, since they utilize more information
about the known portion of the solution than one-
step methods do.

Meanwhile, some scholars such as Meyer,
Berghe and Vanthournout, [2], developed the
Modified backward differentiation methods of
Adams type based on exponential interpolation.
A study of generalized Adams-Moulton method
for the satellite orbit determination problem was
study by Hong and Hahmwood, [3]. Skwame,
Sabo, Kyagya and Bakari, [4], has developed a
class of two-step second derivative Adam
Moulton method with two off-step points for
solving second order stiff ordinary differential
equations. And, a sixth order implicit hybrid
backward differentiation formulae (HBDF) for
block solution of ordinary differential equations
was study by Muhammad and Yahaya, [5].
Again, the study of second derivative hybrid
block backward differentiation formula for
numerical solution of stiff systems was carried
out by Skwame, Kumlengand Bakari, [6]. Stuart
and Humphries, [7], realized that there was an
important class of ordinary differential equations
(ODEs), which have become known as stiff
equations, which presented a severe challenge
to numerical methods that existed at that time.
Since then an enormous amount of effort has
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gone into the analysis of stiff problems and, as a
result, a great many numerical methods have
been proposed for their solution. Their work
motivated us to propose implicit second order
backward difference Adam’s formulae for solving
stiff systems of ODEs of the form,
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subject to the initial conditions

yl(xo):ylo
:yz(xo)zyg (1.2)
yn(xO):yi?

In order to achieve the aim and objectives of this
paper, we shall interpolate, collocate and
evaluate a power series approximate solution at
some chosen grid and off-grid points via Cash,

8.

2. DERIVATION OF BACKWARD
DIFFERENCE ADAMS-MOULTON
FORMULAE (BDAMF)

The difference between Adams-Moulton and
Adams-Bashforth methods is that Adams-
Moulton methods use an interpolating polynomial
of degree <k rather than < k — 1 , and it

includes f at the unknown value tn as well,

Moulton, [9]. A special category of multistep
methods are the linear multi-step methods,
where the numerical solution to the ODE (1.1) at
a specific location is expressed as a linear
combination of the numerical solution’s values
and the function’s values at previous Points
Cash, [1]. For the standard system of (1.1), a
linear multistep method with & — step would

have the form:

where &;, [3; are constants, V), is the numerical solution at f =7, andf, Zf(tn, yn).
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In contrast to the linear multistep schemes in the Adams Family, who are derived by integrating an
interpolating polynomial ¢(t) that approximates f , the BDAMF are derived by differentiating an
interpolating polynomial ¢(t) that approximates y (one such that
¢(t”7i)=y(tnﬂ,)for i=0,1,2,---,k), and setting the derivative at ¢, to be equal to f(tn, y”),
Hairer and Wanner, [10].

For example, the one-step BDF method is derived as follows. We first construct the interpolating
polynomial (o(t) that approximates y , with (p(tnfi)zy(tm) fori=0,1.

) y(tn)_y(tn—l)

yt)=olt)=y(,)+ (-1, — 2.2)
n n—1
upon differentiation (2.2), we get:
t)—ylt
V()= ) )= 2 ) e
n n—1

we can then use the approximation in (2.2) as inspiration to construct our 1—step BDF method, by
Setting ¢'(tn ):f(tn > yn ):

yie,)-y(,)

h :f(tn 2 yn) (24)

Similarly, we can construct a k£ — step Backward Difference Adams Moulton’s Formulae (BDAMF) by
generating the k& —degree interpolating polynomial Bashford and Adams, [11]:

y(t)z w(t):yn +%(t_tn)vyn + 2;[2 (t_tn)(t_tn—l)vzyn et hl}k'(t_tn)(t_tn—k+l)vk (25)

where Vi is the backward difference operator:
V.=, (2.6)
Viy,=VTy, -V, (2.7)

then upon differentiating, and setting ¢' (tn )=f(tn , yn) , we get

k
.
S vy, =i, v, 2o

which can be transformed to match the general expression of (2.1), with ﬁj =0 for j >0 (note that

this makes them implicit schemes):
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j=0 j=0 j=0 (2.9)

from (2.9), we obtain the general form of the a k —step Backward Difference Adams Moulton’s
formulae (BDAMF) as

k k k
Yn _Za—jyn—j :hzﬂ—jfn—j +h225—jgn—j
j=0 Jj=0 Jj=0

(2.10)

we obtain the continuous scheme for the single-step BDAMF by evaluating

k=-La ,,y,,,j=0and B,,6,, f, ;»8, ;)= 0,—%,—%,—%,—1asfollows
o, =0
1, (916650 +6348825¢+21637224 > + 43701000 £° + 54662400 ¢* + 41630400 ¢°
Po=t 010" h[+17704960t" +3225600¢ ]
5 :_512Z3h[945+13230z+66591z2 +172515¢° +256140t4+220815t5]
-, 8505 " (+103040¢° +20160¢7
8 ., (1890 +17955¢+69678¢% +137760 ¢ +146880¢* +80640¢°
T h(+17920z6 J
F, =£t3h(945 +10710¢ + 52479¢% +140595¢° +220140¢* +200655sz
-2 8505 +985607° +20160¢7
1, (100170 +1172745¢ + 5987016¢> + 16874760t + 28074240¢* + 27437760¢°
P = 1010 h(+14551040t(’ +3225600¢7 J
1, ,(5670 + 630007 +329175¢> +1002960¢° +1909320¢* + 2304000 ¢°
70" T340 ! (+1713600t6 +716800¢7 +129024 ¢ ]
32, ,(1890 +17955¢+ 74214¢* +170520 ¢ + 233640 ¢t* + 190260 ¢°
S Lgslzot“ +16128¢7 }

v =§t3h2 (256¢% +512¢° +376¢% +120¢ +15)(¢ + 1)

2

-3 2835 +76160¢° +16128¢’

4
1 oy 3780 + 444157 + 22780812 + 645960¢° +1082880¢* +1068480¢°
11340 +573440¢° +129024 ¢’

2 (630 + 72451 +361621> +991204° + 159480 ¢* +149940t5]
3

Y

On evaluating the continuous scheme at the same points, yields the hybrid block backward difference
Adams Moulton’s formula as follows.
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nfi nfi 68040 1171 nfa 1171

1
+——h*|11g +538 —538 -11
90720 ( gn g”—i g’ 3 gn—l]

Vo= y s h|137f, 43792 F |+ 6912 f | +4912f , +2167 f,
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3. ANALYSIS OF BACKWARD DIFFERENCE ADAMS MOULTON FORMULAE

In this section, the basic properties of backward difference Adams Moulton’s formulae which include
order, error constant, consistency, zero-stability, convergence and the stability region shall be
analyzed.

3.1 Order and Error Constants of the Method

(Definition 3.1): Following Lambert, [12], the linear difference operator ¢ associated with the LMM
(2.10) is defined by

Ly, =Y [(a,p e+ jh)+ BB,y (x+ jh)+ B B,y (x + jh)) 3.1)

J=0

where y(x) is an arbitrary test function and it is continuously differentiable on [a, b]. Expanding
y(x + jh)and y'(x + jh) as Taylor series about X , and collecting common terms yields

Cly(x)h]=coy(x)+ e hy' (x)+-+c hy?(x)+- (32)
where the constant Cq, q =0, 1, --- coefficients are given as follows

c,=oa,ta + - +a,
¢ =Qq +26¥2 + +kak _(ﬁo +IB1 :Bk)

c,=sla, +2%a, + - +k'a,) - 5 (B, + 2B+ -+ KTV B), g =23,
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According to Lambert, [12], the method (2.10) has order p if

G=¢=-=c,=0andc,,#0

of (3.2), then

Therefore the backward difference Adams Moulton’s method (2.10) is of uniform order nine, where

p =9 is the order of the method and €, is the error constant, given by

=[4.1791x10 ~6.7501x 107 ~1.3501x 10 -5.5292x 10" |

3.2 Consistency

Lambert, [13], explained that consistency
controls the magnitude of the local truncation
error while zero stability controls the manner in
which the error is propagated at each step of the
calculation.

(Definition 3.2): The LMM (2.10) is said to be
consistent if its order P >1 It also follows from
(3.2) that the LMM (2.10) is consistent if and only

>, -

j=0

> ja, i
=0 =0
It also follows from (3.3) that the LMM (2.10) is
consistent if and only if
p(1)=0 }
p(1)=c'(1)

According to (definition 3.1), the hybrid block
(2.10) is consistent.

3.3 Zero Stability

(Definition 3.3): The LMM (2.10) said to be zero
stable if the first characteristic polynomial 7r(r)
having roots such that

\rZ\SI and if ‘I”Z‘Zl,then the multiplicity

(3.4)

of 7, must not be greater than two, Dahlquist,
[14].

In order to find the zero-stability of hybrid block
method (2.10), we only consider the first
characteristic  polynomial of the method
according to Definition [3.3] as follows,

26
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which implies » =0, 0, 0, 1. Hence the method

is zero-stable since | |< 1.

3.4 Convergence

Convergence is an essential property that every
acceptable linear multistep method (LMM) must
possess. According to Dahlquist, [14],
consistency and zero stability are the necessary
conditions for the convergence of any numerical
method.

Theorem (3.1): The consistency and zero
stability are sufficient condition for linear
multistep method to be convergent. Since the
hybrid block method (2.8) is consistent and zero
stable, it implies that the method is convergent
for all point Lambert, [13].

3.5 Region of Absolute Stability of the
Block Method

The absolute stability region consists is the set of
points in the complex plane outside the enclosed
figure Following Lambert, [13] and Dahlquist,
[14]. The absolute stability region of backward
difference Adams Moulton’s method (2.10) is
obtained using the formula:

Aw—E, —E, —h*d—h*bw (3.5)

Simplify (2.11), yield the stability polynomial and
the stability polynomial is then substituted into
Matlab software program, Dahlquist, [14], and
the region of absolute stability is shown below.
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Fig. 1. Absolute Stability Region of the backward difference Adams method

4. NUMERICAL RESULTS

To illustrate the performance of our proposed
BDAMF on three of stiff systems IVPs, we will
compare our performance with the existing
methods. The problems considered are the one
solved by Skwame, Kumleng and Bakari, [6].

System 4.1

Consider the stiffly system,

YI(O):I
yz(o): -1,

y{ =198 y, +199 y,

y, = =398 y, —399 y, h=0.1

With Exact Solution

—X

%(x):e
J’2(x): e
xe[O,l]

—X

Source, Skwame, Kumleng and Bakari, [6].

Table 1. Comparison of result of the new method with that of Skwame, Kumleng and Bakari, [6]

X Absolute errors in Skwame, Kumleng and Bakari, [6] Absolute error in New
method
K=2and p=6 K=3and p=7 K=2and p=10
v (x) v, (x) i (x) v, (x) i (x) ¥, (x)
0.1 3.61x107 3.60x107 2.60x10° 2.60x10°° 2.02x10°  2.14x10°®
0.2 3.21x107  3.30x1077 2.42x10°° 2.42x10°° 3.53x10°  3.65x10°"
0.3 6.28 x10 77 3.27x1077 2.18x10°°  2.18x10° 472 x107%  4.84x10°"
0.4 5.65x1077 5.65x1077 3.90 x10*  3.90x10° 5.68x10°  5.76 x10 °®
0.5 6.69x107 6.68x1077  3.58x10°° 3.58x10°°  6.38x10°* 6.47 x10°®
0.6 6.03x1077 6.02x1077 3.23x10°° 3.23x10° 6.8 x10* 7.96x10°"
0.7 5.92x107 592x1077 435x10°  435x10° 723x10® 7.29x10°®
0.8 536x107  537x1077 3.97 x10°°  3.97x10° 7.47x10* 7.53x10°"
0.9 7.38x107 7.38x10” 3.59 10 3.59x10°  7.56x10®* 7.62x10"
1.0 6.70 x 107 6.70x107’ 431x10° 430x10°  7.62x10"° 7.69x10*
System 4.2
Consider the stiffly equation,
vi=-n; n0)=1 h_ol 0<x<l

¥y, ==2000y, ; ¥,(0)=1

27
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32 (x): e’
y2 (X) — e—2000x
Table 2. Comparison of absolute error
X Absolute errors
7.(x) 7,(x)

0.1 6.00x107"° 9.52x10™
0.2 9.00x107"° 9.10x10™
0.3 1.10x107° 8.62x10™
0.4 1.40x107° 8.20x10""
0.5 1.50x10~° 7.80x10™
0.6 1.70x107 7.42x107™
0.7 1.80x107° 7.10x10"
0.8 1.80x107° 6.72x10™"
0.9 1.80x107° 6.39%x10""
1.0 1.80 x10 ~* 6.08 x 10 '

System 4.3

Consider the stiffly problem,

y; =—100y, +9.901y,; y,(0)=1

vy, =01y, —y,; »,(0)=10, ~=0.1
With Exact Solution

yl(x): 670'99)(
y2 (x) — 10670.99x

Xe€ [0, 1]
Table 3. Comparison of absolute error
X Absolute error
K=2 p=8
7 (x) ¥, (x)
0.1 1.80x107° 1.40x10°*
0.2 2.70x107° 2.30x107°
0.3 3.70x107° 3.30x10°*
0.4 4.40x107° 3.90x10°®
0.5 5.00x107° 470 x10°°
0.6 5.20x107° 5.00x107*
0.7 5.40x107° 520x107°
0.8 5.70x107° 5.40x107°
0.9 5.60x107° 5.50x10°*
1.0 5.70%x107° 5.50x107°
5. CONCLUSION via Cash, [1] in deriving the method. The

The formation of implicit backward difference
Adam’s Moulton formulae has been studied in
this paper. We use interpolation and collocation

28

property of the method has been analyzed, and it
was found to be consistent, zero-stable and
convergent with region of absolutely stability
within which the method is stable. Therefore the



general solution of first order backward
difference Adam’s Moulton formulae is a
convenient technique for determining the

solutions of mathematical modeling since it can
approximate the result even though the efficiency
is less than the other multistep method. This
study concluded that, the multistep method is
very effective method for solving linear IVPs.

6. RECOMMENDATION

The pair of backward difference Adam’s Moulton
formulae  developed in this paper is
recommended for testing first order stiff system
of ordinary differential equations. The basis
function [1] used is also recommended for the
derivation of Numerical methods for second
order differential equations and the pair of
methods derived are also recommended for the
solution of systems of second order stiffly
ordinary differential equations.
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