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ABSTRACT

The changes in dynamic properties such as natural frequencies and mode shapes are used in
vibration health monitoring as tools for assessing the structures health status. They are, however,
also affected by environmental conditions like wind, humidity and temperature changes. Of
particular importance is the change of the environmental temperature, and it is the most commonly
considered environmental variable that influences the vibration health monitoring algorithms. This
paper discusses how cable-strut structures can be designed such that their first natural frequency
is less sensitive to the temperature changes. The optimization problem is solved by using a genetic
algorithm. The level of pre-stress can be regulated to achieve the solution, particularly when a
symmetric self-stress vector is chosen.
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1 INTRODUCTION

Cable-strut assemblies are inherently non-linear
structure. In literature, they are sometimes called
tensegrity structures when some conditions are
satisfied i.g, if the structure find its stiffness
and self-equilibrium states from the integrity
between tension and compression and the stress
unilateral property of the components (struts in
compression and cables in tension) is satisfied.
Fundamentals of tensegrity structures, such as
definitions regarding self-stress vectors and its
derivation, may be found at [1, 2]. Their stiffness
can be improved by regulating the level of pre-
stress, using their lowest natural frequencies as
indicators for their pre-stress [3]. In vibration
health monitoring (‘VHM’), the lowest natural
frequencies are used as indicators of damage
presence [4]. It is well known that, the sensitivity
of the natural frequencies to damage is the
core of VHM. However, the natural frequencies
are also affected by environmental conditions
like wind, humidity and temperature changes.
Of particular importance is the change of the
environmental temperature, and this is the most
commonly considered environmental variable
influencing the VHM algorithms [5].

To avoid confusion when interpreting the
results from VHM algorithms, there are two
options: a prior understanding and knowledge
of the behaviour of the healthy structure with
temperature changes, or optimizing the design of
the structure such that its natural frequencies are
very little sensitive to the temperature changes.
Most of the studies found in literature show that
an increase in temperature leads to a decrease

in structural frequencies. [6] reviewed the effect
of temperature on vibration properties of civil
structures and gave some case studies. They
concluded that an increase in temperature leads
to a decrease in natural frequencies due to
reduced pre-stressed stiffness. Their conclusion
is in agreement with other studies regarding the
relation between the temperature changes and
natural frequencies.

In this paper we investigate how a cable-strut
structure can be optimized such that its lowest
natural frequencies have a very low sensitivity to
the temperature changes.

The effect of temperature changes on the
natural frequencies depends on the material
used for components, support conditions and
the size and shape of the structure. In general,
the temperature variations change the natural
frequency through the change in size (expansion
coefficients) and the change in the elastic
modulus [6].

In literature, optimization problems for these
structures are normally classified into size,
shape and topology optimization [7]. However,
the optimum solution here was achieved by
using a symmetric self-stress vector, where
the level of pre-stress is regulated such that
the natural frequencies are not affected by
temperature changes. This method has been
explained considering a simple 2D string and
tube assembly shown in Fig. 1. and a 3D T3
cable-strut (Tensegrity prism), Fig. 2(b) for a
certain (pre-decided) topology, shape, and size
of the structure.

Fig. 1. String and tube assembly
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2 FORMULATION STRATEGY

In this study, for complex structures like the one
shown in Fig. 2(b), a feasible symmetric unit self-
stress vector ĝ is chosen by means of one of
the Form-Finding methods available in literature
[8, 9], to name but a few. For simple structures
like the tube and string shown in Fig. 1. this can
be done by inspection. The unit self-stress vector
ĝ can be scaled to regulate the level of pre-stress
by means of the scaler ψ. Hence, the designed

self-stress vector g will be seen as:

g = ψĝ, (2.1)

where ψ is the level of pre-stress and ĝ
represents the force density coefficients in each
component of the structure. In other words, ĝ
represents the internal force distribution pattern
in the whole structure. In this study, the level of
pre-stress represented by ψ is the optimization
variable.
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Fig. 2. Topology and the numbering scheme of, (a) The base module of the structure (b)
Four-module structure
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3 FINITE ELEMENT FORMU-
LATION

The finite element model used in this study
represents both axial and transversal frequencies
of the components, as Euler-Bernoulli beam
elements were used. The geometric non-
linearity of cable-strut structures is emphasised
by the coupling between the axial and bending
stiffnesses of the components which has been
included in the tangent stiffness matrix k(T ) =
kE(T ) + kG(T ), with a linear part kE and a
geometric part kG.

The influence of temperature changes on the
dynamic properties of cable-strut structures is a
complex topic, as many factors are interacting
in this process. These are mainly related to a
thermal expansion coefficient α and the variation
of the elastic modulus E. In this study, we have
made some assumptions concerning the design.
The final geometry and topology of the structure
are known in advance, the final geometry is
connected to a specific pre-stress state, i.e.,
components are shortened or lengthened from
an unstrained length Lo

i (T ), introducing axial
forces when brought to their design lengths.
Two parameters are affected by the temperature
changes, with the following assumptions:

(i) The unstrained length Lo
i (T ),

Lo
i (T ) = Lo

i (To)[1 + α∆T ], (3.1)

where Lo
i (To) is calculated from the self-stress

vector g at a reference temperature To, Eq. (2.1).
Each element in g is, gi = Ni/L

f
i , [10], where Ni

is the axial internal force and Lf
i is the designed

length of the component i (pre-defined). But
Ni = EAi[L

f
i − Lo

i (To)]/L
o
i (To) with Ni = giL

f
i ,

from which the unstrained length Lo
i (To) can be

calculated as Lo
i (To) = EAiL

f
i /(Ni + EAi).

Thus, Lo
i (T ) at each temperature change ∆T

can be found from Eq. (3.1). (ii) The change
of the elastic modulus E with temperature. In
literature this topic has been investigated by
many researchers [11, 12, 13, 14, 15]. In
this study, the experimental results from [14]
were adopted. Therefore, it was assumed that
the materials were different steel grades. The
temperature dependence of the elastic modulus

was thereby assumed as

E(T ) = E20(−0.000835T + 1.0167), (3.2)

where E20 is the elastic modulus at the design
temperature, To = 20 ◦C, and centigrade are
used for temperatures.

Both Lo
i (T ), Eq. (3.1) and E(T ), Eq.(3.2), were

used to evaluate the element tangent stiffness
matrix kT and to iteratively find the corresponding
equilibrium state using the Newton-Raphson
method [16, 17]. The range for ∆T considered
was ∆Tmin = −45 ≤ ∆T ≤ ∆Tmax = 25 ◦C and
T = To+∆T .

The linear beam element mass matrix was
calculated at To and not modified for ∆T . More
details about the finite element model used can
be found in [18, 19].

With the tangent stiffness and mass matrices
assembled formally as K(T ) =

∑
k(T ) and

M =
∑
m, the natural frequencies of the

undamped free vibration of the structure around
the evaluated equilibrium state were obtained
from the generalized eigenproblem

− ω2
kMϕk +KTϕk = 0, (3.3)

where ω2
k is one of the n eigenvalues and ϕk

the corresponding eigenvector, with n the number
of active degrees of freedom. The eigenvalues
were ordered so that ω1 ≤ ω2 · · · ≤ ωn. The
spectral decomposition thereby gave n natural
frequencies ωk and the related vibration modes
ϕk of the structure at the considered equilibrium
state. As the cable-strut structures normally
contain high degrees of symmetry, the resonance
solutions will normally contain sets of closely
situated frequencies, and possibly eigenspaces
of higher dimensions [20].

4 OPTIMIZATION PROBLEM

The optimum value of the level of pre-stress ψ in
Eq. (2.1), has been found using built in functions
for a genetic algorithm (GA) of Matlab1 . We
minimized the difference between the first natural
frequency ω1 at three successive points of ∆T ,
chosen as -45, 0 and 25 ◦C (equivalent to T =
−25, 20 and 45 ◦C), Eq. (4.1).

1Version 2013a, The MathWorks, Inc., Natick, U.S.A.
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Table 1. Genetic algorithm setup and the basic parameters used in this study

Parameter name Type and value

Bounds of variables To be positive
Population (type,size) Double vector, 50
Selection (function) Stochastic uniform

Crossover (type,ratio) Heuristic, default value=1.2
Mutation (function) Adaptive feasible
Stopping criterion The number of generation

This is because there is a high probability for the
natural frequency to change in between these
two points if only ∆Tmin and ∆Tmax are chosen
because of the non-linearity of this relation. The
optimization problem was formulated as:

minimize
√

(ωT1
1 − ωT2

1 )2 + (ωT2
1 − ωT3

1 )2

g = ψĝ

subject to (ψ) > 0,

(4.1)

where ωTx
1 is the first natural frequency at

Tx temperature, chosen between ∆Tmin and
∆Tmax as mentioned above.

The only constraint applied was that the level
of pre-stress had to be positive. However, the
level of pre-stress has to be at least enough
for the stability of the structure, otherwise the
tangent stiffness matrix will be singular. The
tangent stiffness matrix singularity was handled
by assigning a large fitness value (estimated from
multiple runs) to solutions giving singularity.

The performance and efficiency of a genetic
algorithm depends on some basic setups and
parameters, the used ones are given in Table 1.
Different results in different runs were obtained
when solving the optimization problem. For this
reason we have run the algorithm several times.
The solution given in each example is from a
typical run, which we believe is converged to a
global optimum.

5 NUMERICAL EXAMPLES
AND RESULTS

Two examples were considered: a 2D tube and
string assembly, Fig. 1., and a 3D cable-strut

structure (T3 tensegrity prism), Fig. 2.(b). The
method was applied for both structures, where a
unit symmetric self-stress vector was used with
the level of pre-stress ψ as free parameter for the
optimization problem.

The focus here was to maintain the first natural
frequency approximately the same as its value
f20, the natural frequency at ∆T = 0 (T =
20). In the presented Figures, the first four
natural frequencies fT at temperature T were
normalized to their values f20.

Cable-strut components can be made from same
or different materials. Because of different
mechanical properties requirements of tension
and compression components, normally different
materials for cables and bars are used. Hence,
we have investigated the case when different
materials are used for bars and cables. Two
material combinations were used. The first one
was: ρ = 7585 kg/m3, αc = 9 × 10−6/◦C and
E20 = 190 GPa, for cables, and ρ = 7585 kg/m3,
αb = 11.5 × 10−6/◦C and E20 = 210 GPa, for
bars. In the second material combination, we
switched the material between cables and bars,
and investigated the cases; αcable < αbar and
αcable > αbar.

5.1 Example 1, a Tube and Cable
Assembly

The assembly in Fig. 1. was composed of a
massive circular cable with a diameter of 0.015 m
and a tube (representing the bar action in a cable-
strut structure) with thickness of 0.001 m and an
outside diameter of 0.05 m with a designed length
of 1 m. The level of pre-stress will be regulated
through the scaler ψ until the optimum design
is reached. The unique unit self-stress vector
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for this assembly is ĝ = [0.7071 − 0.7071]T

with the cable as component 1. With a level
of pre-stress of ψ = 40 kN/m, the first natural
frequency is affected by temperature changes for
both material combinations, as shown in Figs.
3.(a), 3.(b). For the first material combination
(αcable < αbar), the optimum solution was found
at ψ = 37.56 kN/m. When using the second
material combination (αcable > αbar) the optimum
solution was found to be at ψ = 59.65 kN/m, Figs.
4.(a), 4.(b).

5.2 Example 2, a 3-D four-module
cable-strut structure

The 3D cable-strut structure (T3 tensegrity
prism), Fig. 2.(b), was made up of 12 bars and 27
cables. Its nodal coordinates are listed in Table 2.
All bars and cables used in the simulation were
massively circular with diameters of 0.065 m and
0.015 m, respectively. For support conditions we
assumed node 1 as completely fixed, node 2 as
fixed in the Y and Z directions and node 3 as
fixed in the Z direction.
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(d) αc>αb

Fig. 3. The change of the lowest natural frequencies of the assembly shown in Fig. 1., with
different relations for α coefficients and pre-decided level of pre-stress of 40 kN/m
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(e) αc<αb with level of pre-stress of 37.56 kN/m
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(f) αc>αb with level of pre-stress of 59.65 kN/m

Fig. 4. Optimum design of the assembly shown in Fig. 1., with different relations for α
coefficients and optimum level of pre-stress, the first natural frequency is approximately

constant with temperature change
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In the Form-Finding step of this structure,
the equilibrium matrix A is evaluated from a
given topology and nodal coordinates for single
module, “the base module”. A singular value
decomposition (SVD) of A gives the independent
self-stress states sb of the base module, from
which the self-stress vector gb in Table 3 of
the base module can be evaluated . For the
whole structure, a feasible symmetric self-stress
vector g was found with values corresponding to
the shared components between modules were
added. Then, the unit self stress vector ĝ was
calculated by taking the norm of g. As mentioned
above, the unit self-stress vector ĝ can be scaled

to regulate the level of pre-stress by means of
the scaler ψ. Hence, the self stress vector will
be seen as in Eq. (2.1). It is worth nothing
that evaluated self-stress vector g of the whole
structure is symmetric.

An example for non-optimal solution is when ψ =
0.55 MN/m for both cases αcable < αbar and
αcable > αbar, Figs. 5(a) and 5(b), respectively.
In both cases the first natural frequency changed
with ∆T . It is interesting to observe that for both
material combinations the optimum design was
found at ψ = 0.881 MN/m, Figs. 6(a) and 6(b)
using the same self-stress vector g.

Table 2. Nodal coordinates of the cable-strut structure shown in Fig. 2(b)

Coordinates [m]

Node No. X Y Z

1 0.50 0.00 0.00
2 -0.25 0.433 0.00
3 -0.25 -0.433 0.00
4 0.433 0.25 2.00
5 -0.433 0.25 2.00
6 0.00 -0.50 2.00
7 0.25 0.433 4.00
8 -0.50 0.00 4.00
9 0.25 -0.43 4.00
10 0.00 0.50 6.00
11 -0.433 -0.25 6.00
12 0.433 -0.25 6.00
13 -0.25 0.433 8.00
14 -0.25 -0.433 8.00
15 0.50 0.00 8.00

Table 3. Force density coefficients of the base module and the whole structure in Fig. 2.
(symmetric self-stress)

Component Base module (ĝb) Whole structure (ĝ), optimum at
relevant ψ, depends on the
material combination used

All side cables 0.3778 0.1853
All bars -0.4160 -0.2040
All cables forming triangles
between modules — 0.0919
All cables forming top and
bottom triangles 0.0937 0.0459
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(g) αc<αb with level of pre-stress of 0.55
MN/m
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(h) αc>αb with level of pre-stress of 0.55
MN/m

Fig. 5. Non-optimum design of the cable-strut structure shown in Fig. 2(b), the first natural
frequency changes with temperature change
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(i) αc<αb with level of pre-stress of 0.881
MN/m
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Fig. 6. Optimum design of the cable-strut structure shown in Fig. 2(b), using the unit
self-stress vector ĝ from Table 3, and regulating the pre-stress level

6 CONCLUSIONS

In the vibration health monitoring (VHM)
methods, a confusing between weather the
change in the low natural frequencies was
caused by damage or changes in environment
temperature is a major issue. In this study,
it is shown that cable-strut structures can
be designed such that some of their natural
frequencies are little sensitive to the temperature
changes. The level of pre-stress combined with a
symmetric unit self-stress vector can be chosen
such that some of its low natural frequencies
are not sensitive to the temperature changes.
The finding in this study can be very useful
when thinking about vibration health monitoring
methods of the cable-strut structures. For a future
study it might be interested to study if asymmetric

self-stress vector can be chosen (if the structure
has multiple self stress states) to achieve the
same finding.
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