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Abstract
Natural evolutionary strategies (NES) are a family of gradient-free black-box optimization
algorithms. This study illustrates their use for the optimization of randomly initialized
parameterized quantum circuits (PQCs) in the region of vanishing gradients. We show that using
the NES gradient estimator the exponential decrease in variance can be alleviated. We implement
two specific approaches, the exponential and separable NES, for parameter optimization of PQCs
and compare them against standard gradient descent. We apply them to two different problems of
ground state energy estimation using variational quantum eigensolver and state preparation with
circuits of varying depth and length. We also introduce batch optimization for circuits with larger
depth to extend the use of ES to a larger number of parameters. We achieve accuracy comparable to
state-of-the-art optimization techniques in all the above cases with a lower number of circuit
evaluations. Our empirical results indicate that one can use NES as a hybrid tool in tandem with
other gradient-based methods for optimization of deep quantum circuits in regions with vanishing
gradients.

1. Introduction

Rapid developments in quantum hardware [1–3] have led to the development of a wide variety of algorithms
to perform useful tasks on the available devices. The limited coherence times and number of qubits of the
devices places limitations on the circuits that can be reliably executed. A class of algorithms which are
well-suited for these noisy intermediate scale quantum [4] devices are the variational quantum algorithms
(VQAs) [5]. These algorithms use classical and quantum computers in tandem, using the quantum
computers for state preparation with parametrized unitaries and measurement, and then optimizing the
parameters of the unitaries on a classical computer in an iterative manner.

VQAs have been used for a variety of tasks such as simulating molecules and many body systems [6–8],
compression of quantum states [9–11], classification tasks [12–14], generative modelling [15–20], and
solving combinatorial optimization problems [21] among others [22–24]. However, these algorithms suffer
in cases when there is little or no knowledge about a good initial point. For such problems, the optimization
of the unitaries using gradient-based methods become impossible for deep quantum circuits, as the average
and variance of the gradient of the objective function decay exponentially as a function of the number of
qubits and layer in the circuits [25]. More recently it was reported [26–28] that the barren plateaus are not
only present in deep circuits, but are dependent on the cost function used for optimization and that
optimization of problems with global cost function is not possible for randomly parameterized shallow
circuits either. Furthermore, another study [29] showed that the variance of the gradient is bounded by the
width of the causal cone of the circuit corresponding to the various Pauli terms in the decomposition of the
cost function. In another recent study [30], the authors investigated the use of gradient-free optimizers in a
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barren plateau region of the landscape, and show that it becomes increasing difficult to optimize as the
number of shots required grows exponentially.

Recently, there have been different studies that have tried to solve the barren plateau problem. One
approach circumvents the problem by formulating better initial guesses for the values of the parameters [31].
A different study [32] investigated ways to boost the gradients for certain problems by using correlated
parameters. In this study we use an approach based on natural evolution strategies (NES) and batch
optimization for avoiding barren plateaus in the optimization landscapes.

Evolutionary strategies (ES) [33, 34] have been applied extensively in classical machine learning tasks as a
viable black-box optimization tool for high-dimensional problems. These strategies are promising for
optimization of quantum circuits with respect to both the number of function evaluations and the scaling
with the size of the circuit. The gradient is estimated by a number of function evaluations that does not
increase with the number of parameters. Moreover, these function evaluations are fully independent and
could be executed in parallel. This means that these methods are suitable for high-dimensional problems.
The optimization of parametrized quantum circuits in quantum computing is an example of such
high-dimensional problem. The application of these optimization strategies to VQAs and the adaptation to
the specific challenges arise in this context pose an interesting research question. They can be further
improved by using estimates of natural search gradients, fitness shaping, and adaptive sampling [35, 36] for
both highly correlated (considering the full co-variance matrix) and separable (only considering a diagonal
co-variance matrix) problems. In a recent work [37], the authors illustrated the use of NES for approximate
combinatorial optimization problems, and show that they can achieve state-of-the-art performance. More
recently in a work [38] NES was used to investigate the problem of manipulating Majorana bound-states in a
topological superconductor, where the authors show that these strategies can be used efficiently to study
quantummechanical many-body systems. In this study we use two modified strategies, separable NES (sNES)
and exponential NES (xNES) [36, 39], for optimizing randomly initialized parameterized quantum circuits
(PQCs) by considering circuit parameters as multivariate normal distributions. We show that optimization
of randomly initialized parameterised quantum circuits can be performed with significantly less circuit
evaluations using NES, while achieving comparable accuracy to gradient-based methods. We also show that
they can be used to amplify gradients and improve parameter initialization for gradient-based approaches.

The rest of the paper is organised as follows, we provide the theory behind NES in section 2, the details of
the numerical experiments in section 3, the result from optimization of randomly parameterized quantum
circuits (RPQCs) in section 4, and finally present some concluding remarks in section 5.

2. Natural evolution strategies

Evolution strategies were first introduced by Rechenberg [33] and Schwefel [34], to cope with
high-dimensional continuous-valued domains. It has remained an active field of research, and has been
developed extensively over the years to include the full covariance matrix [40] for efficient optimization. In
what follows, we describe a specific subclass of evolution strategies called the NES for iteratively updating a
search distribution by ascending the surface along estimated search gradients. The reader is redirected to
[35, 39] for a detailed description of NES.

2.1. Canonical natural evolution strategies
The NES uses search gradients to iteratively update the distribution of a stochastic variable z. The search
gradient can be defined for any distribution for which the derivatives of the log-density can be calculated. If
we consider a distribution with density π(z|θ) with θ as the parameter and f(z) as the fitness for z sampled
from the distribution, then we can write the expected fitness as

J(θ) = Eθ[ f(z)] =

ˆ
f(z)π(z|θ)dz. (1)

Using the ‘log-likelihood trick’ we can then approximate the search gradient from samples z1 . . .zk as

∇θJ(θ)≈
1

k

k∑
n=1

f(zn)∇θ logπ(zn|θ) (2)

where k is the population size. This equation has the benefit that it does not require derivatives of the fitness
function. One can estimate the gradient for different commonly used search distributions including
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Gaussian and Cauchy distributions, and use standard gradient descent to iteratively update the parameters of
the distribution:

θ = θ+ η∇θJ(θ), (3)

where η is the learning rate.
For a Gaussian prior distribution on the perturbation [41], the procedure is shown in algorithm 1:

Algorithm 1. Canonical ES.

input: f, µinit, σinit

while stopping criterion is not met do
for n= 1..k do

draw sample sn ∼ N(0, I)
zn = µ+σinitsn
evaluate the fitness f(zn)

end
compute gradients:

∇J= 1
k

∑k
n=1 f(zn) · sn

update parameters:
µ= µ+ η · 1

σinit
∇J

end

where f is the fitness function, η is the learning rate, σinit is the fixed variance, sn is a Gaussian perturbation
sampled from the normal distribution N(0, I). This procedure replaces the normal gradient with the
evaluation of the objective function blurred with Gaussian noise and samples the stochastic gradient with the
perturbed parameters. It reduces to the simultaneous perturbation stochastic approximation (SPSA) [42] for
the case of a symmetric perturbation forward and backward for a single Gaussian perturbation. As this
method does not follow the exact gradient of the cost function but a stochastic estimator, it does not
necessarily get stuck on the same barren plateaus as the analytical gradient. We will show in the numerical
section that this is the case in all the simulations we performed.

Instead of using the standard gradients for updates, modern ES implementations use the natural
gradients because of their numerous advantages [43, 44]. The natural gradient can be calculated using the
Fisher matrix F which can be estimated from the search gradient as

F≈ 1

k

k∑
n=1

∇θ logπ(zn|θ)∇θ logπ(zn|θ)T, (4)

and the distribution is now updated as:

θ = θ+ η · F−1∇θJ(θ). (5)

The canonical NES can be further improved by fitness shaping and adaptive sampling, which are used in
xNES and sNES [35, 36, 39].

2.2. Exponential natural evolution strategies
The multivariate Gaussian distribution is one of the most prominent search distribution used for ES.
Historically this distribution has received the most attention because of its analytical properties and the
resulting elegance of the equations. Based on these techniques a new algorithm known as xNES can be
formulated, for which we provide the outline in algorithm 2, as presented in [36, 39]. It goes beyond the
standard NES by introducing an exponential parametrization by which it makes the natural gradient easier
to compute:
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Algorithm 2. xNES.

input: f, µinit,
∑

init = AA
T

initialize:
σ = d

√
|det(A)|

B= A/σ
while stopping criterion is not met do
for n= 1..k do

draw sample sn ∼ N(0, I)
zn = µ+σBTsn
evaluate the fitness f(zn)

end
sort {(sn,zn)} with respect to f(zn) and compute utilities un
compute gradients:

∇µJ=
∑k

n=1 un · sn
∇MJ=

∑k
n=1 un · (sns

T
n − I)

∇σJ=tr(∇MJ)/d
∇BJ=∇MJ−∇σJ · I
update parameters:
µ= µ+ ηµ ·σB ·∇µJ
σ = σ · exp(ηs/2 ·∇σJ)
B= B · exp(ηB/2 ·∇BJ)

end

where f is the fitness function, d is the dimension of the problem, A is the covariance matrix, µ is the mean, k
is the number of walkers, sn is the sample in local coordinates, zn is the sample in the task coordinates,N(0, I)
is a normal distribution, ηB is the covariance learning rate, ηµ is the mean learning rate, ηs is the scale
learning rate, and un is the utility function used for fitness shaping which is defined as

un =
max(0, log( k2 + 1)− log(n))∑k
j=1max(0, log( k2 + 1)− log( j))

− 1

k
. (6)

The stopping criterion for the xNES algorithm is met when the maximum value of the covariance matrix
reaches below a threshold of 10−8. The xNES strategy works well across a wide variety of optimization
problems [39], however the computational cost increases significantly with increasing variable dimension.

2.3. Separable natural evolution strategies
For high-dimensional problems, the more suitable variant is the sNES. Here, the correlation between the
distribution variables is not considered (the covariance matrix A is forced to be diagonal), implying that the
parameter distributions of the PQCs are considered independent of each other. The sNES algorithm is
expected to perform at least as well as xNES on separable problems, to perform worse than xNES for highly
correlated problems and to outperform xNES for very high-dimensional problems [39]. The sNES algorithm
is outlined in algorithm 3, as in [39]:

Algorithm 3. sNES.

input: f, µinit, σinit

while stopping criterion is not met do
for n= 1..k do

draw sample sn ∼ N(0, I)
zn = µ+σsn
evaluate the fitness f(zn)

end
sort {(sn,zn)} with respect to f(zn) and compute utilities un
compute gradients:

∇µJ=
∑k

n=1 un · sn
∇σJ=

∑k
n=1 un · (s

2
n − 1)

update parameters:
µ= µ+ ηµ ·σ ·∇µJ
σ = σ · exp(ησ/2 ·∇σJ)
end
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where f is the fitness function, µ is the mean, σ is the standard deviation, k is the number of walkers, sn is the
sample in local coordinates, zn is the sample in the task coordinates, N(0, I) is a normal distribution, ηµ is
the mean learning rate, ησ is the deviation learning rate, and un is the utility function used for fitness shaping
as defined in equation (6). The stopping criterion for the sNES algorithm is met when the maximum value of
the standard deviation vector reaches below a threshold of 10−8.

2.4. NES for quantum algorithms
A VQA generally consists of finding the optimal parameters θ∗ of the PQC U(θ) to minimize the associated
loss function. The traditional way of finding the optimal parameters include gradient-based (free) descent
towards the surface minima. We consider an approach where the parameters of the circuit are sampled from
a distribution, which is updated over time to achieve the global minima. This fits well within the NES
framework, where one uses a search distribution to sample the parameters and update it iteratively to reach
the optimum solution. The NES framework has also been shown to perform efficiently for very
high-dimensional classical problems, thus can be an important tool for optimization of quantum algorithms
as they deal with a high number of parameters and challenging optimization surfaces.

We carry the optimization of PQCs using NES, by considering the parameters θ of the PQCs as centres of
a search distribution π(z|θ). This search distribution is then used in NES to sample different points z and
estimate the gradient on the distribution parameters. The parameters of the search distribution θ are then
optimized over time by using the estimated gradient to find the optimal parameters, θ∗ for the PQC. We use
two specific flavours, xNES and sNES, as illustrated in algorithms 2 and 3 for the optimization as they most
naturally fit the requirements for the optimization of PQCs.

3. Application to quantum circuits

In this section, we illustrate the use of the NES for optimization of VQAs. We consider two different ansatze
for the problem of state preparation. The first ansatz is a RPQC with repeating parameterized and entangling
layers, as

U(θ) = U(θ1 . . . . . .θL) =
L∏

l=1

V(θl)Wl, (7)

where L is the number of layers in the circuit, V(θl) =
⊗Q

j=1Rlj(θlj) is a tensor product of randomly chosen
pauli rotation gates Rlj, Q is the number of qubits in the circuit andW l is a layer of entangling CZ gates
between adjacent qubits. The second ansatz is an alternate layered parameterized quantum circuit (ALPQC)
which consists of two layers of CZ gates between alternate nearest neighbour qubits with layers of RY rotation
gates between the entangling layers:

U(θ) = U(θ1 . . . . . .θL) =
L∏

l=1

V(θl)WlV
′(θl)W

′
l , (8)

where L is the number of layers in the circuit, V(θn) =
⊗Q−1

j=1 RY(θ) and V ′(θl) =
⊗Q

j=2RY(θ) represents the
layer of the rotation gates, andW l andW ′

l represent layers of entangling CZ gates between adjacent qubits.
The circuits are rotated out of the computational basis by adding a layer of RY (π/4) gates, and are shown

in figure 1. The objective Hamiltonian operator H is chosen to be a projector |00....00⟩⟨00....00| on the
vacuum state, and the fitness function is chosen as f(θ) = (1−⟨ψ|H |ψ⟩)2, where |ψ⟩= U(θ) |00....00⟩ is
defined as the state after the application of the parameterized unitary on the vacuum state.

The parameters of the quantum circuits are used to define a search distribution—a multi-normal
Gaussian with centres as the circuit parameters, which is then optimized using NES as discussed in section 2.
For the xNES parameter distributions, the parameter distributions are correlated through the covariance
matrix, while for the sNES the distributions are independent. The estimates of the fitness function are
carried out by calculating the average outcome of the circuit at k different task coordinate values. The
number k of these evaluations, which we will reference as walkers from here on, is independent of the
number of parameters and qubits in the circuit and can be fixed to a constant for a given problem. We
perform different numerical simulations to show the application of NES for estimating the ground state
energy of the water molecule in the STO-3G basis using a unitary coupled cluster (UCC) ansatz with
randomly initialized parameters. We also consider a more abstract example of state preparation. In both
cases we focus on the initial part of the optimization landscape to demonstrate the ability to optimize in cases
with randomly initialized parameters.
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...

|0〉
|0〉
|0〉
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RPi
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a) A random parameterized quantum circuit.
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′
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RY (θ
′
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RY (θ
′
a+5,1)

RY (θa,2)

RY (θa+1,2)

RY (θa+2,2)

RY (θa+3,2)

RY (θa+4,2)

RY (θa+5,2)

...

...

b) An alternate layered parameterized circuit.

θ
′

represents parameters shifted by π
4 .

Figure 1. A figure depicting a single layer of the circuits used in the different numerical simulation.

Table 1. A table containing the values of all the parameters employed for NES strategies used for optimization. d represents the
dimension of the batch.

Parameters Values

ηµ 1

ηs = ηB
(9+3log(d))

5d
√
d

ησ
(3+log(d))

5d
√
d

4. Numerical simulations

The circuit parameters are initialized as a multinormal distribution with randomly chosen centres and
standard deviations of 0.1. The parameters used for the optimization are given in table 1 are the same as
considered in [39]. These values for the different learning rates have been chosen based on the different
investigations carried out in the classical machine learning literature to select the optimal value of these
hyper-parameters for problems of varying dimensions [39]. The value for the number of walkers k, has been
set to 16 in most simulation after analysing the effect of choosing a particular number is investigated in
section 4.4. However, the value that is used widely in the machine learning community [39] based on the
problem dimension is (4+ 3logd). The whole framework is implemented using TEQUILA [45] an open
source package, which uses QULACS [46] as the backend for the execution of all the numerical simulations.

4.1. Search direction for NES
The problem for randomly initialized unstructured quantum circuits is that both the mean and variance tend
to zero for random initializations [25]. This implies that all directions to search for the optimal parameters
are equally likely, thus the difficulty in optimization. Adding random noise can not change the average value
of the gradient but we want to demonstrate that we have a valid search direction in the optimization
landscape. The search direction is defined by an estimate of the gradient of the search distribution on its

6



Mach. Learn.: Sci. Technol. 2 (2021) 045012 A Anand et al

parameters, and we show that this estimate does not have a vanishing variance. For this we have repeated the
calculations in [25] for the circuit in figure 1(a) for 18 qubits with a local cost function. We average each
point over 10 000 random initializations. For each random initialization, we have calculated the estimate of
the search gradient with respect to the first parameter with a varying number of walkers k from 1 to 8.
Figure 2 shows results of the calculations for the mean of the surrogate search gradients obtained with σinit

taking values π/8,π/16,π/32.
The plots show that variance can be amplified arbitrarily as the width of the Gaussian noise is reduced.

This should not be surprising as this parameter appears in the denominator in algorithm 1. Decreasing the
width of the noise also means that the NES samples less far around the current parameters and less
information of the optimization surface is included. As the number of walkers k is increased, the stochastic
approximation of the gradient approaches the true value of the gradient better and the variance is reduced.
Both the width of the noise and the number of walkers are important and need to be chosen appropriately. In
what follows we will let the width of the noise be a variable to optimize and the number of walkers a
hyperparameter of our algorithm.

This section demonstrates that we can get an arbitrary amplification of the gradient for randomly
initialized quantum circuits by replacing the exact gradient with a stochastic surrogate. That does not
necessarily mean that optimization would be possible following this gradient. It is possible that our estimator
leads to finding local minima or poor convergence behaviour. In the next sections we show that optimization
following this gradient is possible for a wide array of problems.

4.2. State preparation
We carry out numerical simulations for optimization of different quantum circuits with varying number of
qubits and layers to prepare the corresponding |00....00⟩ state. The number of walkers for all the simulations
is chosen to be 16 unless stated otherwise. We plot the results from the simulation using NES and the two
different ansätze RPQCs and ALPQCs with different layers in figure 3.

It can be seen from the plots in figure 3 that the optimization is possible in all cases when using sNES, but
xNES fails to find the global optimum in cases with large number of parameters. This finding agrees with the
expected behaviour of sNES for these high-dimensional and multi-modal problems with highly redundant
global optima, as pointed out for various cases earlier [39]. The failure of xNES for high-dimensional
problems suggests that it is not advantageous to retain the full covariance matrix for optimization and that
including the correlations between these parameters leads to bad performance. Thus, instead of considering
the full covariance matrix for optimization of deep quantum circuits, a viable strategy could be using a block
matrix correlating only some parameters, which we employ in section 4.4. It is evident, that the rate of
convergence of the optimization slows down with increasing number of parameters for both techniques
which is expected as the search space becomes very large.

In figure 4, we compare the performance of NES with that of gradient descent for the optimization of
RPQCs. The plots show that optimization with sNES performs equally well for all the cases in terms of
finding the global minimum, but that xNES performance gets worse for circuits with more layers. An
important point to make here is that, an update of the parameters using NES only requires k circuit
evaluations, while a standard gradient descent calculation with the parameter shift procedure typically needs
twice the number of parameters (2QL) function evaluations. Even though gradient descent reaches the global
minimum in less iterations, it does so at a much higher cost in function evaluations. An interesting
observation from the plots is that the initial rate of convergence with NES for circuits with 10 qubits or more
is higher than that using gradient descent in many of the simulations, but similar on average. This is
important in the context of the barren plateaus, where typically no suitable search direction can be found.

It can be also seen from the plots that the NES work very similar for the different numerical simulations.
However the variation in the loss values in simulations using gradient descent is very large indicating the
need for a better strategies in the initial part of the optimization. It opens the possibility for hybrid strategies,
where the NES can be used to provide the initial direction for gradient descent for optimizing large RPQCs.

4.3. VQE for the H2Omolecule
In the context of chemistry, PQCs are commonly used to represent the wave function of molecules. Although
the circuits here typically use structured physically motivated ansatze, the number of parameters becomes
large as the system size grows. The motivation behind choosing this optimization problem is to investigate
the applicability of NES to problems with physically inspired ansatze, and compare their performance with
gradient-based methods for such problems. In this simulation we estimate the ground state energy of a water
molecule at equilibrium geometry using the STO-3G basis (14-qubit) with the UCCSD ansatz (34
parameters). The parameters of the circuit are initialized randomly, which in certain cases lead to
convergence issues due to presence of barren plateaus or getting stuck in a local minina as observed in [47].

7
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a) σinit = π/8

b) σinit = π/16

c) σinit = π/32

Figure 2. The variance over 10 000 random initializations of the estimated search gradient with respect to the first variable for the
circuit in figure 1(a). The plot corresponding to ‘exact’ represent the variance of the analytical gradient.

We plot the results from the numerical experiments in figure 5, and it can be seen from the plots that we can
use both sNES and xNES to optimize the parameters for estimating the ground state energy of water
molecule using variational quantum eigensolver (VQE). We also carry out the optimisation with a
gradient-based optimizer, and plot the results in figure 5. It can be seen from the plots that the performances
of sNES, xNES and gradient descent are pretty similar. However, the xNES performs equally well for this

8
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sCQPLAsCQPR

sNES

a) 5 qubits

b) 10 qubits

c) 15 qubits

xNES

d) 5 qubits

e) 10 qubits

Figure 3. Loss functions with respect to the total number of iterations for different state preparation problems of varying circuit
size. The solid lines corresponds to the mean of the loss functions from 10 different runs, and the shadow represent the area
between the best and worst values from the simulations. The colours in the plots correspond to different number of layers used in
the parameterized quantum circuits for the problem.
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sreyal02sreyal01

a) 5 qubits

b) 10 qubits

Figure 4. Loss function with respect to the total number of iterations for the problem state preparation comparing optimization
with different NES and gradient descent. The solid lines corresponds to the mean of the loss functions from 10 different runs, and
the shadow represent the area between the best and worst values from the simulations.

Figure 5. Convergence to the ground state energy for H2Omolecule using VQE with randomly initialized UCC ansatz. The solid
lines corresponds to the mean of the loss functions from 10 different runs, and the shadow represent the area between the best
and worst values from the simulations.

example as sNES, even though the size of the water molecule is beyond the limit for which we previously
found that xNES loses performance compared to sNES. This suggests that in this case keeping the covariance
matrix gives an advantage and that the parameters for this problem are actually correlated. The degree of
randomness in the circuit topology can be a factor in selecting the optimal NES flavour.

4.4. Batch optimization
As seen in figure 3 the rate of convergence decreases with increasing number of parameters. This leads to
long optimization runs for growing circuits. At the same time the overhead of the full NES strategy grows. To
alleviate these effects, we investigate the use of batch optimization strategy for optimizing RPQCs of larger
depth, as investigated in another recent study [48] where the authors investigate the use of layerwise learning
techniques for optimisation of quantum neural networks. In batch optimization, only a limited number (the
batch size) of parameters are adjusted every iteration to lower the cost. We carry out various simulations to
analyse the effect of the size of the batches, number of walkers and different partitioning strategies on the
convergence of the optimization.

We first investigate the effect of the size of batches and the number of walkers on the optimization by
carrying out different numerical simulations with varying batch size. We use RPQCs with 10 qubits and 50
layers for the simulations and the batches of parameters are selected randomly but fixed over the entire
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SENxSENs

a) Batch size of 5

b) Batch size of 25

c) Batch size of 50

Figure 6. Loss function with respect to the total number of iterations of batch optimization. The solid lines corresponds to the
mean of the loss functions from six different runs, and the shadow represent the area between the best and worst values from the
simulations. The various colours indicate different number of walkers used for optimization.

Figure 7. Loss function with respect to the total number of iterations using different strategies for batch optimization using sNES.
The solid lines corresponds to the mean of the loss functions from six different runs, and the shadow represent the area between
the best and worst values from the simulations.

calculation. The results in figure 6 show clearly that a minimum batch size is required. The xNES needs more
walkers to give meaningful results than the sNES. The curves show both a convergence in the batch size and
the number of walkers at around 16 walkers and a batch size of 50. We will use these values in the following
calculations, it is expected that these values have some problem dependence and need to be tuned
accordingly.

We next carry out simulations to investigate the effect of different strategies for generating the batches.
The different strategies we investigate are dividing the circuit parameters randomly, layer-wise, qubit-wise,
layer-block-wise, and qubit-block-wise. We plot the results from simulations of 10 qubit 50 layered RPQCs in
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Figure 8. Loss function with respect to the total number of iterations of batch optimization comparing the performance of the
NES with gradient descent. The solid lines corresponds to the mean of the loss functions from 10 different runs, and the shadow
represent the area between the best and worst values from the simulations.

SENxSENs

a) 10 qubits RPQCs

b) 15 qubits RPQCs

Figure 9. Loss function with respect to the total number of iterations of batch optimization. The solid lines corresponds to the
mean of the loss functions from 10 different runs, and the shadow represent the area between the best and worst values from the
simulations. The various colors indicate different number of layers in the quantum circuit.

figure 7. It can be seen from the plot that the curves are identical for all the strategies, with the layer-wise
batch optimization strategy a bit deviant because of the different batch size. We also carried out different
simulation with RPQCs of larger depths using the different partition strategies and found that depending on
the problem one might get faster convergence using one of the strategies, thus we recommend investigating
the use of different strategies when dealing with larger RPQCs. Other techniques such as the parameter
efficient circuit training techniques [49] can be also used together with NES to further improve the
optimization procedure.

We also analysed the performance of NES with gradient descent with the batch optimization strategy. We
use RPQCs with 10 qubits and 50 layers, and use batch size of 50 parameters and 16 walkers for the
simulations. The results from the simulation is plotted in figure 8. The optimization with NES performs
better than gradient descent initially, as seen previously in figure 4.

Finally we ran simulations to carry out the optimization of RPQCs with varying number of qubits and
layers using both xNES and sNES by randomly dividing the parameters in batches of size 50 and using 16
walkers. We show the results for 10-qubit and 15-qubits circuits with different number of layers in figure 9.
The plots show that we can perform optimization of significantly deep quantum circuits. As the circuits
depth increases the rate of convergence decreases, and one might require a high number of circuit runs for
the final result. Faster convergence of deep RPQCs might be achieved by selecting specific values of different
parameters such as the initial learning rates, initial values of covariance matrix, number of walkers and the
batch size. We leave such hyperparameter tuning for a future study.

12



Mach. Learn.: Sci. Technol. 2 (2021) 045012 A Anand et al

a) 10 qubits 50 layers RPQC

b) 15 qubits 50 layers RPQC

c) 18 qubits 10 layers RPQC

Figure 10. A violin plot illustrating the distribution of the analytical gradient with respect to all the parameters of the quantum
circuit at different iterations in the optimization using NES.

4.5. Hybrid strategy
As shown above, the convergence with NES is sometimes slower than gradient-based methods in regions with
non-vanishing gradients. In this section we explore a hybrid strategy that uses sNES in areas with vanishing
gradients and regular gradient descent when a search direction has been found. For this, we simulated
circuits with 10 qubits 50 layers, 15 qubits 50 layers, and 18 qubits 10 layers RPQCs with 500, 750 and 180
parameters respectively. We provide numerical evidence of the viability of this strategy by tracking the value
of the analytical gradient with respect to all the parameters at different iterations in the optimization with
NES, and plot the resulting distribution of the analytical gradients using violin plots in figure 10.

We tracked the analytical gradient distribution for the full optimization run for the 10 qubit 50 layers
RPQC plotted in figure 10(a), and as expected, the distributions follow the pattern where it spreads initially
to larger values and then narrows down about zero near the end of the optimization. This indicates that if
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one can increase the spread of the gradients at the beginning of the optimization one might be able to use
gradient-based methods to complete the process. Thus, we generate the distribution of the analytical
gradients after every five iteration of optimization by sNES, and plot the distributions for 15 and 18 qubits
RPQCs in figures 10(b) and (c). The distribution of the analytical gradient in figures 10(b) and (c) start to
spread to higher values already after five iterations of optimization with sNES, which indicates that we can
then use gradient-based methods in these cases for the full optimization. The choice of the number of
optimization step will depend more on the problem, and one can use sNES until the magnitudes of the
analytical gradients are large enough. These empirical results indicate that using a surrogate gradient as the
one in sNES, one might be able to navigate through areas of vanishing gradients and then use gradient-based
methods for finding the optimal solution.

5. Conclusion and outlook

We presented a strategy of representing parameters of quantum circuits as multinormal distributions for
PQCs and use NES for optimizing randomly initialized PQCs. We have shown that the search direction used
in NES can be amplified for randomly initialized PQCs, and that with appropriate number of walkers one
can use them for optimization in all cases. We numerically analyse the performance of NES for PQCs, and
show that they achieve nearly similar accuracies when compared to gradient-based methods. While sNES
works pretty good for deep PQCs, xNES performs nearly well for shallow PQCs and outperforms sNES for
problems where the parameters are correlated. We observe that the convergence curves for both NES and
gradient-based methods are very similar, however, the number of circuit evaluations decrease significantly
for NES and the initial rate of convergence seems to be higher too.

We also extend the optimization problem to deep quantum circuits by using of batch optimization
strategy and show that one can use NES with batch optimization for deep PQCs. Based on various numerical
simulation we observe that we can increase the rate of convergence by choosing appropriate values of
different hyper-parameters, learning rate, number of walkers, and batch size. We also show that random
partition of parameters into batches works comparably well as structured partitioning.

In the end we proposed a hybrid strategy, where we show that using NES we can amplify the gradients
significantly and then use gradient-based methods for faster convergence. Our results indicate that the NES
can be used as alternative to gradient-based methods in regions of vanishing gradients and can be a useful
tool for exploring deep quantum circuits for different tasks.

Our study only explores the basic use of NES for optimization of randomly initialized PQCs, we believe
that they can be used with different gradient-based methods to improve the overall optimization of deep
quantum circuits. Other possibilities like, using other distributions to sample the parameters from, or
combination of strategies to partition parameters into batches and adjusting the hyper-parameters for the
problem in hand, can be used to further improve the training. These different directions are something we
leave for future studies, as they require additional research.
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