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1. Introduction

T he generalized inverse Gaussian (hereafter GIG) distribution with parameters p ∈ R, a > 0, b > 0 has
density

gp,a,b(x) =
(a/b)p/2

2Kp(
√

ab)
xp−1e−

1
2 (ax+b/x), x > 0, (1)

where Kp is the modified Bessel function of the third kind.
In [1], the authors have established the rate of convergence of the GIG distribution to the gamma

distribution by Stein’s method. In order to compare the rate of convergence obtained via Stein’s method with
the rate obtained by using another distance, the authors have established an explicit upper bound of the total
variation distance between the GIG random variable and the gamma random variable, which is of order n−1/4

for the case p = 1
2 . We generalize this result by providing the order of the rate of convergence in total variation

of the GIG distribution to the gamma distribution for all p = k + 1
2 , k ∈ N. In particular, we obtain a rate of

convergence of order n−1/2 for p = 1
2 , which is better than the one in [1].

For a > 0, b ∈ R, c > 0, the Kummer distribution K(a, b, c) has density function

ka,b,c(x) =
1

Γ(a)ψ(a, 1− b; c)
xa−1(1 + x)−a−be−cx, (x > 0) (2)

where ψ is the confluent hypergeometric function of the second kind and Γ is the gamma function. Details on
the GIG and the Kummer distributions can be found in [1–5] and references therein.

For θ > 0, λ > 0, the gamma distribution γ(θ, λ) has density function

γ(θ, λ)(x) =
λθ

Γ(θ)
xθ−1e−λx

1{x>0}.

For θ > 0, λ > 0, the inverse gamma distribution Iγ(θ, λ) has density function

Iγ(θ, λ)(x) =
λθ

Γ(θ)
x−θ−1e−λ/x

1{x>0}.
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The beta distributions of type 2 β(2)(a, b) has density

β(2)(x) =
Γ(a + b)
Γ(a)Γ(b)

xa−1(1 + x)−a−b
1{x>0}, a > 0, b > 0.

We have the following definition and a Property of the total variation distance.

Definition 1. Let W and Z be two continuous real random variables, with density fW and fZ respectively.
Then, the total variation distance between W and Z is given by

dTV(W, Z) =
1
2

∫
R
| fW(x)− fZ(x)| dx. (3)

Property 1. Consider W and Z be two continuous random variables. Let fW (resp. fZ) the density of W (resp.
Z) on (0, ∞). Assume that the function x 7→ fW(x)− fZ(x) has a unique zero λ on (0, ∞).

1. If fW(x)− fZ(x) is positive for x < λ and negative for x > λ, then

dTV(W, Z) =
∫ λ

0
fW(x)− fZ(x)dx.

2. If fW(x)− fZ(x) is negative for x < λ and positive for x > λ, then

dTV(W, Z) =
∫ λ

0
fZ(x)− fW(x)dx.

Proof. Let FW (resp. FZ) be the distribution function of W (resp. Z). If fW(x)− fZ(x) is positive for x < λ and
negative for x > λ, then

dTV(W, Z) =
1
2

∫ ∞

0
| fW(x)− fZ(x)| dx

=
1
2

∫ λ

0
fW(x)− fZ(x)dx− 1

2

∫ ∞

λ
fW(x)− fZ(x)dx

=
1
2

∫ λ

0
fW(x)− fZ(x)dx +

1
2
[FW(λ)− FZ(λ)]

=
1
2

∫ λ

0
fW(x)− fZ(x)dx +

1
2

∫ λ

0
fW(x)− fZ(x)dx

=
∫ λ

0
fW(x)− fZ(x)dx

which proves the item 1. For item 2, using similar arguments as in the previous case leads to the result.

Remark 1. The support of the densities may be any interval, but here we take this support to be (0, ∞) in the
purpose of the application to the GIG and Kummer’s distributions.

The aim of this paper is to provide a bound for the distance between a GIG (resp. a Kummer’s) random
variable and its limiting inverse gamma or gamma variables (resp. gamma or beta variables), and therefore to
give a contribution to the study of the rate of convergence in the limit theorems involved. Section 2 presents
the main results and their proofs in Section 3.

2. Main results

2.1. On the rate of convergence of the generalized inverse Gaussian distribution to the inverse gamma
distribution

The first main result is presented in Theorem 1 below. We recall the convergence of the GIG distribution
to the inverse gamma distribution as Proposition 1.



Open J. Math. Sci. 2021, 5, 182-191 184

Proposition 1. For k ∈ N, b > 0, let (Xn)n≥1 be a sequence of random variables such that Xn ∼ GIG
(
−k− 1

2 ,
1
n

, b
)

for each n ≥ 1. Then, as n → ∞, the sequence (Xn)n≥1 converges in law to a random variable X following the
Iγ
(

k + 1
2 , b

2

)
distribution.

Theorem 1. Under the assumptions and notations of Proposition 1, we have:

dTV(Xn, X) ≤ 1√
n
×
√

b. (4)

Remark 2. The upper bound provided by Theorem 1 is of order n−1/2.

Table 1 and Table 2 are some numerical results for k = 0. This case is particularly interesting since
it corresponds to the inverse Gaussian distribution used in data analysis when the observations are highly
right-skewed [6,7]. The inverse Gaussian law is the distribution of the first hitting time for a Brownian motion
[8].

Table 1. Numerical values for b = 0.1 and k = 0

n dTV(Xn, X)
1√
n
×
√

b

1000 0.008963786 0.01
10000 0.002983103 0.003162278
100000 0.0004934534 0.001

1000000 0.0001549545 0.0003162278
10000000 4.948836× 10−5 0.0001
100000000 1.570466× 10−5 3.162278× 10−5

Table 2. Numerical values for b = 1 and k = 0

n dTV(Xn, X)
1√
n
×
√

b

1000 0.02614564 0.03162278
10000 0.008963782 0.01

100000 0.002971153 0.003162278
1000000 0.0004843202 0.001
10000000 0.0001553049 0.0003162278

100000000 4.927859× 10−5 0.0001

2.2. On the rate of convergence of the generalized inverse Gaussian distribution to the gamma distribution

Theorem 2. For p > 0, a > 0, let (Yn)n≥1 be a sequence of random variables such that

Yn ∼ GIG
(

p, a,
1
n

)
for each n ≥ 1. As n → ∞, the sequence (Yn) converges in distribution to a random variable Λ

following the γ
(

p, a
2
)

distribution.

dTV(Yn, Λ) ≤ 1√
n
×

√
aKp−1

(√
a
n

)
2pKp

(√
a
n

) +
1

np+1 ×
(

1
ln(αn/α)

)p
× aα

2p+2 p2(1 + p)
(5)

where αn =
(an)p/2

2Kp

(√
a
n

) and α =
(a/2)p

Γ(p)
.

Corollary 1. The upper bound provided by Theorem 2 is of order n−1/2 for p =
1
2

and of order n−1 for all p of the form

p = k + 1
2 , k ≥ 1, k integer.

Remark 3. In [1], by Stein method, the authors have established an explicit upper bound of |h(Yn)− h(Λ)|
given a regular function h in Cb

3 , the class of bounded functions h : R+ → R for which h′, h′′, h(3) exist and are
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bounded. For p = k + 1
2 , k ≥ 1, k integer, the upper bound provided in [1] by Stein method is of order n−1

(Proposition 3.3). This is the same in our result. In addition, our upper bound is quite simple when compared
to the one in [1] obtained by Stein’s method (Theorem 3.1), and sharper than the one obtained in Proposition
3.4 [1].

2.3. On the rate of convergence of the Kummer distribution to the gamma distribution

As in the previous subsection, the following theorem contains the rate of convergence in total variation of
the Kummer distribution to the gamma distribution.

Theorem 3. Let (Vn)n≥1 be a sequence of random variables such that Vn ∼ K
(

a,−a + 1
n , c
)

with a > 0, c > 0. Then,

1. As n→ ∞, the sequence (Vn) converges in distribution to a random variable Λ following the γ(a, c) distribution.
2.

dTV(Vn, Λ) ≤ δ

na
1(

a− 1
n

) (δn/δ)an (6)

where δn = 1
Γ(a)ψ(a,1+a− 1

n ;c)
and δ = ca

Γ(a) .

Tables 3 and 4 present the numerical results for fixed values a, c and n. The Upper bound is
δ

na
1(

a− 1
n

) (δn/δ)an.

Table 3. Numerical results for a = c = 1

n dTV(Vn, Λ) Upper bound
1000 0.0001721703 0.001817133

10000 1.721839×10−5 1.815646 ×10−4

100000 1.721869×10−6 1.815546×10−5

1000000 1.722037×10−7 1.816018×10−6

10000000 1.723704×10−8 1.820897×10−7

100000000 1.740368× 10−9 1.870423 ×10−8

Table 4. Numerical results for a = 1.5 and c = 3

n dTV(Xn, X) Upper bound
1000 0.0001045401 0.005830092

10000 1.045445×10−5 5.828016 ×10−4

100000 1.045512×10−6 5.82978×10−5

1000000 1.046143×10−7 5.849711×10−6

10000000 1.052453×10−8 6.053044×10−7

100000000 1.360213× 10−9 8.518632 ×10−8

2.4. On the rate of convergence of the Kummer distribution to the beta distribution

We have the following result.

Theorem 4. Let (Wn)n≥1 be a sequence of random variables such that Wn ∼ K
(

a, b, 1
n

)
with a > 0, b > 0. Then,

1. As n→ ∞, (Wn) converges in law to a random variable W following the β(a, b) distribution.
2.

dTV(Wn, W) ≤ 1
n
× ϕnΓ(a)Γ(b)

(a + b)Γ(a + b)
+

(a + b + 1)ϕnΓ(a)Γ(b)
(a + b)Γ(a + b)

ln(ϕn/ϕ) (7)

where ϕn = 1

Γ(a)ψ

(
a,1−b;

1
n

) and ϕ = Γ(a+b)
Γ(a)Γ(b) .

Remark 4. As n→ ∞, ϕn → ϕ. Therefore, the upper bound provided in (7) is of order n−1.
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3. Proofs of main results

Proof of Proposition 1. For all x > 0,

P (Xn < x) =
(
√

bn)k+ 1
2

2K−k− 1
2

(√
b
n

) ∫ x

0
t−k− 3

2 e−
1
2 (

1
n t+b/t)dt.

We now use the well-known fact that (see for instance [9,10]), as x → 0,

Kp(x) ∼
{

2|p|−1Γ(|p|)x−|p|, p 6= 0

− log x, p = 0
(8)

to see that

lim
n→∞

(
√

bn)k+ 1
2

2K−k− 1
2

(√
b
n

) =
bk+ 1

2

2k+ 1
2 Γ
(

k + 1
2

) .

For all integer n ≥ 1, t−k− 3
2 e−

1
2 (

1
n t+b/t) ≤ t−k− 3

2 e−
b
2t . The function t 7→ t−k− 3

2 e−
b
2t is integrable on (0, ∞). By

the Lebesgue’s Dominated Convergence Theorem: lim
n→∞

∫ x

0
t−k− 3

2 e−
1
2 (

1
n t+b/t)dt =

∫ x

0
t−k− 3

2 e−
b
2t dt. Hence

lim
n→∞

P (Xn < x) =
∫ x

0

bk+ 1
2

2k+ 1
2 Γ
(

k + 1
2

) t−k− 3
2 e−

b
2t dt.

Proof of Theorem 1. Let gn and g the densities of Xn ∼ GIG
(
−k− 1

2 ,
1
n

, b
)

and X ∼ Iγ
(

k + 1
2 , b

2

)
distributions respectively. Let βn =

(
√

bn)k+ 1
2

2K−k− 1
2

(√
b
n

) and β = bk+ 1
2

2k+ 1
2 Γ(k+ 1

2 )
. We have gn(x) =

βnx−k− 3
2 e−

1
2 (

1
n x+b/x) and g(x) = βx−k− 3

2 e−
b

2x . Which gives gn(x)− g(x) =
(

βne−
1

2n x − β
)

x−k− 3
2 e−

b
2x . Now,

let vn(x) = βne−
1

2n x− β, then vn is decreasing on (0,+∞) with lim
x→0+

vn(x) = βn− β and lim
x→+∞

vn(x) = −β < 0.

Also,

βn − β =
(
√

bn)k+ 1
2

2K−k− 1
2

(√
b
n

) − bk+ 1
2

2k+ 1
2 Γ
(

k + 1
2

)
=

(
√

bn)k+ 1
2

2Kk+ 1
2

(√
b
n

) − bk+ 1
2

2k+ 1
2 Γ
(

k + 1
2

)

=
1

2Kk+ 1
2

(√
b
n

)
(√bn

)k+ 1
2 − bk+ 1

2

2k+ 1
2 Γ
(

k + 1
2

)2Kk+ 1
2

(√
b
n

)

=
1

2Kk+ 1
2

(√
b
n

)
(√bn

)k+ 1
2 − bk+ 1

2

2k+ 1
2 Γ
(

k + 1
2

) ∫ +∞

0
xk− 1

2 e−
1
2

√
b
n (x+ 1

x )dx



>
1

2Kk+ 1
2

(√
b
n

)
(√bn

)k+ 1
2 − bk+ 1

2

2k+ 1
2 Γ
(

k + 1
2

) ∫ +∞

0
xk− 1

2 e−
1
2

√
b
n xdx



=
1

2Kk+ 1
2

(√
b
n

)
(√bn

)k+ 1
2 − bk+ 1

2

2k+ 1
2 Γ
(

k + 1
2

) (2
√

n
b

)k+ 1
2 ∫ +∞

0
tk− 1

2 e−tdt

 = 0.
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Then vn have a unique zero λn = 2n ln(βn/β) on (0, ∞). Hence gn(x)− g(x) > 0 if x < λn and gn(x)− g(x) <
0 if x > λn. Using Property 1, we have:

dTV(Xn, X) =
∫ λn

0
gn(x)− g(x)dx.

Then integrating
∫ λn

0
gn(x)dx by part, we get:

dTV(Xn, X) =

[
βne−

1
2n x
∫ x

0
t−k− 3

2 e−
b
2t dt
]λn

0
+

βn

2n

∫ λn

0
e−

1
2n x
∫ x

0
t−k− 3

2 e−
b
2t dtdx− β

∫ λn

0
x−k− 3

2 e−
b

2x dx

= βne−
1

2n λn

∫ λn

0
t−k− 3

2 e−
b
2t dt +

βn

2n

∫ λn

0
e−

1
2n x
∫ x

0
t−k− 3

2 e−
b
2t dtdx− β

∫ λn

0
x−k− 3

2 e−
b

2x dx

= β
∫ λn

0
t−k− 3

2 e−
b
2t dt +

βn

2n

∫ λn

0
e−

1
2n x
∫ x

0
t−k− 3

2 e−
b
2t dtdx− β

∫ λn

0
x−k− 3

2 e−
b

2x dx

=
βn

2n

∫ λn

0
e−

1
2n x
∫ x

0
t−k− 3

2 e−
b
2t dtdx.

Since x 7→ e−
1

2n x is decreasing and positive on (0, ∞), for all x and t such that 0 < t ≤ x, 1 ≤ e−
1

2n t

e−
1

2n x
, we have:

dTV(Xn, X) ≤ βn

2n

∫ λn

0

∫ x

0
t−k− 3

2 e−
b
2t e−

1
2n tdtdx

=
1

2n

∫ λn

0

∫ x

0
βnt−k− 3

2 e−
1
2 (

1
n t+b/t)dtdx

≤ 1
2n

∫ λn

0
dx

=
1

2n
λn

= ln(βn/β).

So

K−1/2

(√
b
n

)
=

√√√√ π

2
√

b
n

e−
√

b
n =⇒ ln(βn/β) = ln

(
e
√

b
n

)
=

1√
n
×
√

b for k = 0,

and

K−3/2

(√
b
n

)
=

√√√√ π

2
√

b
n

e−
√

b
n

(
1 +
√

n√
b

)
=⇒ ln(βn/β) = ln

 e
√

b
n

1 +

√
b
n

 ≤ 1√
n
×
√

b for k = 1.

For k ≥ 2, since K−k− 1
2

(√
b
n

)
=
√

π

2
√

b
n

e−
√

b
n

1 +
k

∑
i=1

(k + i)!
i!(k− i)!

(
2

√
b
n

)−i
 and Γ

(
k + 1

2

)
=

(2k)!
√

π

22kk!
, so,

we have

βn/β =
Γ
(

k + 1
2

)
(√

b
n

)k+ 1
2

2
1
2−kK−k− 1

2

(√
b
n

)

=
(2k)!e

√
b
n

k!2k
(√

b
n

)k
1 +

k

∑
i=1

(k + i)!
i!(k− i)!

(
2

√
b
n

)−i

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=
(2k)!e

√
b
n

k!2k
(√

b
n

)k
1 +

k−1

∑
i=1

(k + i)!
i!(k− i)!

(
2

√
b
n

)−i

+
(2k)!

k!
2−k

(√
b
n

)−k


=
(2k)!e

√
b
n

k!2k
(√

b
n

)k
1 +

k−1

∑
i=1

(k + i)!
i!(k− i)!

(
2

√
b
n

)−i
+ (2k)!

=
e
√

b
n

1 + k!2k

(2k)!

(√ b
n

)k
+

(√
b
n

)k
×

k−1

∑
i=1

(k + i)!
i!(k− i)!

(
2

√
b
n

)−i
 .

Therefore, for k ≥ 2, we have

ln(βn/β) = ln


e
√

b
n

1 + k!2k

(2k)!

(√ b
n

)k
+

(√
b
n

)k
×

k−1

∑
i=1

(k + i)!
i!(k− i)!

(
2

√
b
n

)−i


 ≤
1√
n
×
√

b.

Proof of Theorem 2. Let αn =
(an)p/2

2Kp

(√
a
n

) and α = (a/2)p

Γ(p) . Denote by hn (rep. γ) the density of Yn ∼

GIG
(

p, a,
1
n

)
(resp. Y ∼ γ(p, a/2)). We have hn(x) = αnxp−1e−

1
2 (ax+ 1

nx ) and γ(x) = αxp−1e−
a
2 x. Which

gives hn(x)− γ(x) =
(

αne−
1

2nx − α
)

xp−1e−
a
2 x is negative if x ≤ rn =

1

2n ln
(αn

α

) . Hence

dTV(Yn, Y) =
∫ λn

0
γ(x)− gn(x)dx =

αn

2n

∫ rn

0

1
x2 e−

1
2nx

∫ x

0
tp−1e−

a
2 tdtdx.

Integration by part of
∫ x

0
tp−1e−

a
2 tdt leads to

dTV(Yn, Y) ≤ αn

2np

∫ rn

0
xp−2e−

1
2 (ax+ 1

nx )dx +
αna

4np(1 + p)

∫ rn

0
xp−1e−

1
2nx dx = An + Bn,

where

An =
αn

2np

∫ rn

0
xp−2e−

1
2 (ax+ 1

nx )dx =
1

2np
(an)p/2

Kp

(√
a
n

) × Kp−1

(√
a
n

)
(an)

p−1
2

∫ rn

0

(an)
p−1

2

Kp−1

(√
a
n

) x(p−1)−1e−
1
2 (ax+ 1

nx )dx

≤ 1
2np

(an)p/2

Kp

(√
a
n

) × Kp−1

(√
a
n

)
(an)

p−1
2

=

√
aKp−1

(√
a
n

)
2
√

npKp

(√
a
n

) ,

and

Bn =
αna

4np(1 + p)

∫ rn

0
xp−1e−

1
2nx dx ≤ αna

4np2(1 + p)
rp

ne−
1

2nrn =
αa

2p+2 p2(1 + p)np+1
1

(ln(αn/α))p .

Proof of Corollary 1. By equivalence (8), as n→ +∞, we have
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1√
n
×

√
aKp−1

(√
a
n

)
2pKp

(√
a
n

) ∼



1
n
× a

4p(p− 1)
if p > 1,

1
np ×

apΓ(1− p)
22p−1Γ(p)

if 0 < p < 1,

a log(n)
4n

− a log(a)
4n

if p = 1.

Since K1/2

(√
a
n

)
=
√

π

2
√

a
n

e−
√

a
n , we have

1
n3/2 ×

(
1

ln(αn/α)

)1/2
∼

n→∞
1

n5/4 ×
1

a1/4 .

For p = 3
2 , ln(αn/α) = ln

 e
√

a
n

1 +
√

a
n

 = ln
(

eX

1+X

)
where X =

√
a
n
→ 0 as n→ ∞. We have

eX

1 + X
=

1 + X + X2

2 + o
(

X2

2

)
1 + X

= 1 +
X2

2
+ o

(
X2

2

)
= 1 +

a
2n

+ o
(

1
n

)
.

Hence
1

n5/2 ×
(

1
ln(αn/α)

)3/2
∼

n→∞
1
n
×
(

2
a

)3/2
.

For all p = k + 1/2, k ≥ 2, k integer, we have(
1

ln(αn/α)

)p
=

1ln

 e
√

a
n

1 + k!2k

(2k)!

((√
a
n

)k
+
(√

a
n

)k
×

k−1

∑
i=1

(k + i)!
i!(k− i)!

(
2
√

a
n

)−i)



k+1/2 .

Let X =
√

a
n and Dk = 1 + k!2k

(2k)!

((√
a
n

)k
+
(√

a
n

)k
×

k−1

∑
i=1

(k + i)!
i!(k− i)!

(
2
√

a
n

)−i)
. For k = 2, we have D2 =

1 + 1
3 (X2 + 3X) = 1 + 1

3 X + X2. By induction on k, Dk can be written in the form

Dk = 1 + X +
k− 1

2k− 1
X2 + c3X3 + · · ·+ ckXk, c3, · · · , ck ∈ R.

Since X → 0 as n → ∞, we have e
√

a
n = eX = 1 + X +

X2

2!
+ · · ·+ Xk+1

(k + 1)!
+ o

(
Xk+1

)
, and, by doing the

Euclidean division as in the case p = 3
2 (k = 1), there exist constants b3, · · · , bk+1 such that,

eX

Dk
= 1 +

1
2(2k− 1)

X2 + b3X3 + · · ·+ bkXk + bk+1Xk+1 + o
(

Xk+1
)

= 1 + b2
a
n
+ b3

( a
n

)3/2
+ · · ·+ bk

( a
n

)k/2
+ bk+1

( a
n

) k+1
2

+ o
(

1

n
k+1

2

)
,

b2 =
1

2(2k− 1)
6= 0.

Hence
1

nk+3/2
1

[ln(αn/α)]k+1/2
∼

n→∞
1

n
[

b2a + b3a3/2 × 1
n1/2 + · · ·+ bk+1a

k+1
2 × 1

n
k−1

2

]k+1/2 .
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Proof of Theorem 3. Let θn = (δn/δ)n − 1, with δn = 1
Γ(a)ψ(a,1+a− 1

n ;c)
and δ = ca

Γ(a) . As in the GIG case, we

have

dTV(Vn, Λ) =
1
2

∫ ∞

0

∣∣∣δnxa−1(1 + x)−
1
n e−cx − δxa−1e−cx

∣∣∣ dx

=
δn

n

∫ θn

0
(1 + x)−

1
n−1

∫ x

0
ta−1e−ctdtdx

≤ δn

na

∫ θn

0
(1 + x)−

1
n−1xadx

=
δn

na

∫ θn

0
(1 + x)a− 1

n−1
(

x
1 + x

)a
dx

≤ δn

na

∫ θn

0
(1 + x)a− 1

n−1dx

=
δn

na

(
1

a− 1
n
(1 + θn)

a− 1
n − 1

a− 1
n

)

≤ δn

na
1(

a− 1
n

) (δn/δ)an−1

=
δ

na
1(

a− 1
n

) (δn/δ)an.

Proof of Theorem 4. Let σn = n ln(ϕn/ϕ) with ϕn = 1
Γ(a)ψ(a,1−b; 1

n )
and ϕ = Γ(a+b)

Γ(a)Γ(b) . Then

dTV(Wn, W) =
1
2

∫ ∞

0

∣∣∣ϕnxa−1(1 + x)−a−be−
1
n x − ϕxa−1(1 + x)−a−b

∣∣∣ dx

=
∫ ∞

0
ϕnxa−1(1 + x)−a−be−

1
n x − ϕxa−1(1 + x)−a−bdx

=
ϕn

n

∫ σn

0
e−

1
n x
∫ x

0
ta−1(1 + t)−a−bdtdx

=
ϕn

n

∫ σn

0
e−

1
n x
(

1
a

xa(1 + x)−a−b +
a + b

a

∫ x

0
ta(1 + t)−a−b−1dt

)
dx

=
ϕn

na

∫ σn

0
xa(1 + x)−a−be−

1
n xdx +

(a + b)ϕn

na

∫ σn

0
e−

1
n x
∫ x

0
ta(1 + t)−a−b−1dtdx

= Cn + Dn,

where

Cn =
ϕn

na

∫ σn

0
xa(1 + x)−a−be−

1
n xdx =

ϕn

na

∫ σn

0
xa(1 + x)−a−b−1(1 + x)e−

1
n xdx

≤ ϕnΓ(a + 1)Γ(b)
naΓ(a + b + 1)

(1 + σn)
∫ σn

0

Γ(a + b + 1)
Γ(a + 1)Γ(b)

xa(1 + x)−a−b−1dx

≤ ϕnΓ(a + 1)Γ(b)
naΓ(a + b + 1)

(1 + σn)

=
1
n
× ϕnΓ(a)Γ(b)

(a + b)Γ(a + b)
+

ϕnΓ(a)Γ(b)
(a + b)Γ(a + b)

ln(ϕn/ϕ),

and

Dn =
(a + b)ϕn

na

∫ σn

0
e−

1
n x
∫ x

0
ta(1 + t)−a−b−1dtdx ≤ ϕnΓ(a)Γ(b)

Γ(a + b)
ln(ϕn/ϕ).
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